* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture11
History of electric power transmission wikipedia , lookup
Ground (electricity) wikipedia , lookup
Topology (electrical circuits) wikipedia , lookup
Mechanical-electrical analogies wikipedia , lookup
Flexible electronics wikipedia , lookup
Ground loop (electricity) wikipedia , lookup
Signal-flow graph wikipedia , lookup
Power inverter wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Three-phase electric power wikipedia , lookup
Electrical ballast wikipedia , lookup
Electrical substation wikipedia , lookup
Schmitt trigger wikipedia , lookup
Voltage regulator wikipedia , lookup
Nominal impedance wikipedia , lookup
Power electronics wikipedia , lookup
Voltage optimisation wikipedia , lookup
Power MOSFET wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Two-port network wikipedia , lookup
Stray voltage wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Surge protector wikipedia , lookup
Buck converter wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Zobel network wikipedia , lookup
Current source wikipedia , lookup
Alternating current wikipedia , lookup
Mains electricity wikipedia , lookup
Opto-isolator wikipedia , lookup
AC STEADY-STATE ANALYSIS SINUSOIDAL AND COMPLEX FORCING FUNCTIONS Behavior of circuits with sinusoidal independent sources and modeling of sinusoids in terms of complex exponentials PHASORS Representation of complex exponentials as vectors. It facilitates steady-state analysis of circuits. IMPEDANCE AND ADMITANCE Generalization of the familiar concepts of resistance and conductance to describe AC steady state circuit operation PHASOR DIAGRAMS Representation of AC voltages and currents as complex vectors BASIC AC ANALYSIS USING KIRCHHOFF LAWS ANALYSIS TECHNIQUES Extension of node, loop, Thevenin and other techniques SINUSOIDAL AND COMPLEX FORCING FUNCTIONS KVL : L di (t ) Ri (t ) v (t ) dt In steady state i (t ) A cos( t ), or i (t ) A1 cos t A2 sin t */ R If the independent sources are sinusoids di */ L (t ) A1 sin t A2 cos t of the same frequency then for any dt variable in the linear circuit the steady state response will be sinusoidal and of ( LA1 RA2 ) sin t ( LA2 RA1 ) cos t the same frequency VM cos t LA1 RA2 0 algebraic problem LA2 RA1 VM To determine the steady state solution we only need to determine the parameters A1 RVM , A2 LVM 2 2 2 2 R ( L ) R ( L ) B, v (t ) Asin( t ) iSS (t ) B sin( t ) Determining the steady state solution can be accomplished with only algebraic tools! FURTHER ANALYSIS OF THE SOLUTION The solution is i (t ) A1 cos t A2 sin t The applied voltage is v (t ) VM cos t For comparison purposes one can write i (t ) A cos( t ) A1 A cos , A2 Asin A1 A A12 A22 , tan RVM LVM , A 2 R 2 (L) 2 R 2 (L) 2 A i (t ) VM R 2 (L) 2 , tan 1 VM R (L) 2 2 A2 A1 L R cos( t tan 1 L R ) For L 0 the current ALWAYS lags the voltage If R 0 (pure inductor) the current lags the voltage by 90 SOLVING A SIMPLE ONE LOOP CIRCUIT CAN BE VERY LABORIOUS IF ONE USES SINUSOIDAL EXCITATIONS TO MAKE ANALYSIS SIMPLER ONE RELATES SINUSOIDAL SIGNALS TO COMPLEX NUMBERS. THE ANALYSIS OF STEADY STATE WILL BE CONVERTED TO SOLVING SYSTEMS OF ALGEBRAIC EQUATIONS ... … WITH COMPLEX VARIABLES ESSENTIAL IDENTITY : e j cos j sin (Euler identity) v (t ) VM cos t y (t ) A cos( t ) v (t ) VM sin t y (t ) A sin( t ) * / j (and add) VM e j t Ae j (t ) Ae j e j t y(t ) If everybody knows the frequency of the sinusoid then one can skip the term exp(jwt) VM Ae j Example R jL R2 (L )2 e I M e j v (t ) VM e j t Assume i (t ) I M e ( j t ) di KVL : L (t ) Ri (t ) v (t ) dt di (t ) jI M e ( j t ) dt di L (t ) Ri (t ) jLI M e ( j t ) RI M e ( j t ) dt ( jL R) I M e ( j t ) j ( jL R) I M e e jt ( jL R) I M e j e j t VM e j t VM R jL I M e j */ jL R R jL I M e j VM ( R jL) R 2 (L) 2 IM VM R 2 (L ) 2 VM R 2 (L ) 2 tan 1 e L R tan 1 L R , tan 1 L R v (t ) VM cos t Re{VM e j t } i (t ) Re{I M e ( j t ) } I M cos( t ) C P x jy re j r x 2 y 2 , tan 1 x r cos , y r sin y x PHASORS ESSENTIAL CONDITION ALL INDEPENDENT SOURCES ARE SINUSOIDS OF THE SAME FREQUENCY BECAUSE OF SOURCE SUPERPOSITION ONE CAN CONSIDER A SINGLE SOURCE u(t ) U M cos( t ) THE STEADY STATE RESPONSE OF ANY CIRCUIT VARIABLE WILL BE OF THE FORM y(t ) YM cos( t ) SHORTCUT 1 u(t ) U M e j ( t ) y(t ) YM e Re{U M e j ( t ) } Re{YM e j ( t ) j ( t ) } U M e j ( t ) U M e j e jt u U M e j y YM e j SHORTCUT IN NOTATION NEW IDEA: INSTEAD OF WRITING u U M e j WE WRITE u U M ... AND WE ACCEPT ANGLES IN DEGREES U M IS THE PHASOR REPRESENTA TION FOR U M cos( t ) u(t ) U M cos( t ) U U M Y YM y(t ) YM cos( t ) SHORTCUT 2: DEVELOP EFFICIENT TOOLS TO DETERMINE THE PHASOR OF THE RESPONSE GIVEN THE INPUT PHASOR(S) Example It is essential to be able to move from sinusoids to phasor representation A cos(t ) A A sin(t ) A 90 V V M 0 v Ve jt I I M jt di i Ie L (t ) Ri (t ) v dt L( jIe jt ) RIe jt Ve jt In terms of phasors one has jLI RI V V I R jL The phasor can be obtained using only complex algebra We will develop a phasor representation for the circuit that will eliminate the need of writing the differential equation v (t ) 12 cos(377t 425) 12 425 y(t ) 18 sin( 2513t 4.2) 18 85.8 Given f 400 Hz V1 1020 v1 (t ) 10 cos(800 t 20) V2 12 60 v2 (t ) 12 cos(800 t 60) Phasors can be combined using the rules of complex algebra (V11)(V2 2 ) V1V2(1 2 ) V11 V1 (1 2 ) V2 2 V2 PHASOR RELATIONSHIPS FOR CIRCUIT ELEMENTS RESISTORS v (t ) Ri (t ) VM e ( j t ) RI M e ( j t ) VM e j RI M e j V RI Phasor representation for a resistor Phasors are complex numbers. The resistor model has a geometric interpretation The voltage and current phasors are colineal In terms of the sinusoidal signals this geometric representation implies that the two sinusoids are “in phase” INDUCTORS d ( I M e ( j t ) ) dt jLI M e ( j t ) VM e ( j t ) L Relationship between sinusoids VM e j jLI M e j V jLI Example The relationship between L 20mH , v (t ) 12 cos(377t 20). Find i (t ) phasors is algebraic For the geometric view use the result j 190 e j 90 V LI90 377 1220 ( A) V 1220 I L90 V 12 I I 70( A) jL 377 20 103 i (t ) The voltage leads the current by 90 deg The current lags the voltage by 90 deg 12 cos(377t 70) 3 377 20 10 CAPACITORS I M e ( j t ) C d (VM e ( j t ) ) dt Relationship between sinusoids I M e j jCe j I CV90 I jCV C 100 F , v (t ) 100 cos(314t 15). Find i (t ) The relationship between phasors is algebraic In a capacitor the current leads the voltage by 90 deg The voltage lags the current by 90 deg 314 V 10015 I jCV I C 190 10015 I 314 100 106 100105( A) i (t ) 3.14 cos(314t 105)( A) L 0.05 H , I 4 30( A), f 60 Hz Find the voltage across the inductor 2 f 120 V jLI V 120 0.05 190 4 30 V 2460 v (t ) 24 cos(120 60) Now an example with capacitors C 150 F , I 3.6 145, f 60 Hz Find the voltage across the capacitor 2 f 120 I jCV V V I jC 3.6 145 120 150 106 190 200 V 235 v (t ) 200 cos(120 t 235) IMPEDANCE AND ADMITTANCE For each of the passive components the relationship between the voltage phasor and the current phasor is algebraic. We now generalize for an arbitrary 2-terminal element Z ( ) R( ) jX ( ) R( ) Resistive component X ( ) Reactive component | Z | R 2 X 2 X z tan 1 R (INPUT) IMPEDANCE V V V Z M v M ( v i ) | Z | z I I M i I M (DRIVING POINT IMPEDANCE) The units of impedance are OHMS Impedance is NOT a phasor but a complex number that can be written in polar or Cartesian form. In general its value depends on the frequency Element Phasor Eq. Impedance R L C V RI V jLI 1 V I jC ZR Z j L 1 Z j C KVL AND KCL HOLD FOR PHASOR REPRESENTATIONS v2 (t ) v1 ( t ) v3 ( t ) i0 (t ) i1 (t ) i2 ( t ) i3 (t ) KVL: v1(t ) v2 (t ) v3 (t ) 0 KCL : i0 (t ) i1 (t ) i2 (t ) i3 (t ) 0 vi (t ) VMie j ( t i ) , i 1,2,3 ik (t ) I Mk e j ( t k ) , k 0,1,2,3 In a similar way, one shows ... KVL : (VM 1e j1 VM 2e j 2 VM 3e j 3 )e jt 0 VM11 VM 2 2 VM 33 0 V1 V2 V3 0 Phasors! V2 V1 V3 I0 I1 I 2 I3 0 I0 I1 I2 I3 The components will be represented by their impedances and the relationships will be entirely algebraic!! SPECIAL APPLICATION: IMPEDANCES CAN BE COMBINED USING THE SAME RULES DEVELOPED FOR RESISTORS I V1 Z1 I V2 I Zs Z1 Z2 Z2 Z1 Z2 V V 1 1 k Zp Zk Z s k Zk LEARNING EXAMPLE I Zp Z1Z 2 Z1 Z 2 f 60 Hz, v (t ) 50 cos( t 30) Compute equivalent impedance and current 120 , V 5030, Z R 25 ZR R Z L jL ZC 1 jC 1 j120 50 106 Z L j 7.54, ZC j53.05 Z L j120 20 103 , ZC Z s Z R Z L ZC 25 j 45.51 I V 5030 5030 ( A) ( A) Z s 25 j 45.51 51.93 61.22 I 0.9691.22( A) i (t ) 0.96 cos(120 t 91.22)( A) Parallel Combinatio n of Admittances (COMPLEX) ADMITTANCE Y p Yk 1 G jB (Siemens) Z G conductanc e B Suceptanc e Y k YR 0.1S 1 1 R jX R jX 2 Z R jX R jX R X 2 R R2 X 2 X B 2 R X2 G L C V RI V jLI 1 V I jC ZR Z jL Z 1 jC 1 j1( S ) j1 Y p 0.1 j1( S ) Series Combinatio n of Admittanc es 1 1 Ys k Yk 0.1S Element Phasor Eq. Impedance R YC Admittance 1 Y G R 1 Y j L Y j C j 0.1S 1 1 1 Ys 0.1 j 0.1 10 j10 (0.1)( j 0.1) 0.1 j 0.1 0.1 j 0.1 0.1 j 0.1 1 10 j10 Ys 10 j10 200 Ys 0.05 j 0.05 S Ys FIND THE IMPEDANCE ZT Z1 4 j 6 j 4 Z1 4 j 2 Y12 Y1 Y2 ( R P ) Z1 4.47226.565 Y1 0.224 26.565 ( P R)Y1 0.200 j 0.100 Y12 Y1 Y2 0.45 j 0.35 ( R P )Y12 0.570 37.875 Z12 1.75437.875 ( P R) Z12 1.384 j1.077 Z2 2 j 2 ( R P ) Z2 2.82845 Y2 0.354 45 ( P R)Y2 0.250 j 0.250 1 4 j2 ZT 2 (1.384 j1077) 3.383 j1.077 Y1 2 4 j 2 (4) (2) 2 1 2 j2 Y2 2 2 j 2 (2) (2) 2 1 1 0.45 j 0.35 Z12 Y12 0.45 j 0.35 0.325 1 Z12 Y12 PHASOR DIAGRAMS Display all relevant phasors on a common reference frame Very useful to visualize phase relationships among variables. Especially if some variable, like the frequency, can change SKETCH THE PHASOR DIAGRAM FOR THE CIRCUIT Any one variable can be chosen as reference. For this case select the voltage V KCL : I S V V jCV R jL (capacitiv e) | I L || IC | | I L || IC | IC jCV IL V jl INDUCTIVE CASE CAPACITIVE CASE (inductive ) LEARNING EXAMPLE DO THE PHASOR DIAGRAM FOR THE CIRCUIT 377( s 1 ) 2. PUT KNOWN NUMERICAL VALUES | VL VC || VR | VR RI VL jLI It is convenient to select 1 the current as reference VC I j C VS VR VL VC 1. DRAW ALL THE PHASORS | VL || VC | DIAGRAM WITH REFERENCE VS 12 290 VL 18135(V ) Read values from diagram! I 345( A) VR 1245(V ) (Pythagoras) VC 6 45 BASIC ANALYSIS USING KIRCHHOFF’S LAWS PROBLEM SOLVING STRATEGY For relatively simple circuits use Ohm' s law for AC analysis; i.e., V IZ The rules for combining Z and Y KCL AND KVL Current and voltage divider For more complex circuits use Node analysis Loop analysis Superposit ion Thevenin' s and Norton' s theorems MATLAB PSPICE ANALYSIS TECHNIQUES PURPOSE: TO REVIEW ALL CIRCUIT ANALYSIS TOOLS DEVELOPED FOR RESISTIVE CIRCUITS; I.E., NODE AND LOOP ANALYSIS, SOURCE SUPERPOSITION, SOURCE TRANSFORMATION, THEVENIN’S AND NORTON’S THEOREMS. COMPUTE I0 V2 60 V 20 V2 2 0 1 j1 1 j1 1 1 6 V2 1 2 1 j1 1 j1 1 j1 V2 1. NODE ANALYSIS V1 V V 20 2 2 0 1 j1 1 1 j1 V1 V2 60 I0 V2 ( A) 1 (1 j1) (1 j1)(1 j1) (1 j1) 2(1 j1) 6 (1 j1)(1 j1) 1 j1 V2 4 8 j2 1 j V2 (4 j )(1 j ) 2 3 5 I 0 j ( A) 2 2 I0 2.92 30.96 Circuit with voltage source set to zero (SHORT CIRCUITED) SOURCE SUPERPOSITION I I L2 1 L = V 1 L + Circuit with current source set to zero(OPEN) Due to the linearity of the models we must have I L I L1 I L2 VL VL1 VL2 Principle of Source Superposition The approach will be useful if solving the two circuits is simpler, or more convenient, than solving a circuit with two sources We can have any combination of sources. And we can partition any way we find convenient VL2 3. SOURCE SUPERPOSITION I 0' 10( A) Z ' (1 j ) || (1 j ) (1 j )(1 j ) 1 (1 j ) (1 j ) COULD USE SOURCE TRANSFORMATION TO COMPUTE I"0 V1" 1 j 1 j I 0" 6 2 j ( 1 j ) 3 j I 0" 6 ( A) 1 j 6 6 " 1 j I j ( A) 0 2 j 4 4 5 3 I 0 I 0' I 0" j ( A) 2 2 Z" Z " 1 || (1 j ) Z" Z" " " 60(V ) I 0 " 60( A) Z 1 j Z 1 j THEVENIN’S EQUIVALENCE THEOREM LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART A ZTH RTH vTH i a vO b _ i a LINEAR CIRCUIT vO _ LINEAR CIRCUIT May contain independent and dependent sources with their controlling variables PART B b PART B PART A Phasor Thevenin Equivalent Circuit for PART A vTH Thevenin Equivalent Source RTH Thevenin Equivalent Resistance Impedance 5. THEVENIN ANALYSIS Voltage Divider VOC 10 6 j 1 j (8 2 j ) 2 (1 j ) (1 j ) ZTH (1 j ) || (1 j ) 1 8 2j I0 53j ( A) 2 EXAMPLE Find the current i(t) in steady state The sources have different frequencies! For phasor analysis MUST use source superpositio Frequency domain SOURCE 2: FREQUENCY 20r/s Principle of superposition LEARNING BY DESIGN USING PASSIVE COMPONENTS TO CREATE GAINS LARGER THAN ONE PRODUCE A GAIN=10 AT 1KhZ WHEN R=100 2 LC 1 L 1.59mH C 15.9 F