* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download immune - 中華民國防疫學會
Bioterrorism wikipedia , lookup
West Nile fever wikipedia , lookup
Dirofilaria immitis wikipedia , lookup
Sarcocystis wikipedia , lookup
Tuberculosis wikipedia , lookup
Human cytomegalovirus wikipedia , lookup
Brucellosis wikipedia , lookup
Bovine spongiform encephalopathy wikipedia , lookup
Gastroenteritis wikipedia , lookup
Neglected tropical diseases wikipedia , lookup
Meningococcal disease wikipedia , lookup
Neonatal infection wikipedia , lookup
Trichinosis wikipedia , lookup
Hepatitis C wikipedia , lookup
Chagas disease wikipedia , lookup
Middle East respiratory syndrome wikipedia , lookup
Onchocerciasis wikipedia , lookup
Hepatitis B wikipedia , lookup
Visceral leishmaniasis wikipedia , lookup
Marburg virus disease wikipedia , lookup
Schistosomiasis wikipedia , lookup
Leptospirosis wikipedia , lookup
Hospital-acquired infection wikipedia , lookup
African trypanosomiasis wikipedia , lookup
Coccidioidomycosis wikipedia , lookup
Sexually transmitted infection wikipedia , lookup
Oesophagostomum wikipedia , lookup
傳染病傳染力之評估 中華民國防疫學會 王任賢 理事長 Infectious Disease Epidemiology: Major Differences A case can also be an exposure Subclinical infections influence epidemiology Contact patterns play major role Immunity There is sometimes a need for urgency What is infectious disease epidemiology? Epidemiology Deals with one population Risk case Identifies causes Infectious disease epidemiology Two or more population A case is a risk factor The cause often known What is infectious disease epidemiology? Two or more populations Humans Infectious agents Vectors Helminths, bacteria, fungi, protozoa, viruses, prions Mosquito (protozoa-malaria), snails (helminthsschistosomiasis) Blackfly (microfilaria-onchocerciasis) – bacteria? Animals Dogs and sheep/goats – Echinococcus Mice and ticks – Borrelia What is infectious disease epidemiology? A case is a risk factor … Infection in one person can be transmitted to others What is infectious disease epidemiology? The cause often known An infectious agent is a necessary cause What is infectious disease epidemiology then used for? Identification of causes of new, emerging infections, e.g. HIV, vCJD, SARS Surveillence of infectious disease Identification of source of outbreaks Studies of routes of transmission and natural history of infections Identification of new interventions (www) Concepts Specific to Infectious Disease Epidemiology Attack rate, immunity, vector, transmission, carrier, subclinical disease, serial interval, index case, source, exposure, reservoir, incubation period, colonization, generations, susceptible, non-specific immunity, clone, resistance, repeat episodes … Infectious Disease Definitions Infectious diseases Measles vCJD Caused by an infectious agent Communicable diseases Tetanus Transmission – directly or indirectly – from an infected person Transmissible diseases Transmission – through unnatural routes – from an infected person Note Infections are often subclinical – infections vs infectious diseases! Antonyms not well-defined Non-communicable diseases – virus involved in pathogenesis of diabetes? Chronic diseases – HIV? Routes of transmission Direct Indirect Skin-skin Herpes type 1 Mucous-mucous STI Across placenta toxoplasmosis Through breast milk HIV Sneeze-cough Influenza Food-borne Salmonella Water-borne Hepatitis A Vector-borne Malaria Air-borne Chickenpox Ting-borne Scarlatina Exposure A relevant contact – depends on the agent Skin, sexual intercourse, water contact, etc Some Pathogens that Cross the Placenta Modes of Disease Transmission Exposure to Infectious Agents No infection Death Clinical Carrier Sub-clinical Immunity Outcome Carrier No immunity Timeline for Infection Dynamics of infectiousness Latent period Infectious period Non-infectious Susceptible Time Dynamics of disease Incubation period Symptomatic period Non-diseased Susceptible Time Transmission Cases Index – the first case identified Primary – the case that brings the infection into a population Secondary – infected by a primary case Tertiary – infected by a secondary case T S Susceptible Immune Sub-clinical Clinical P S S T Person-to-Person Transmission Data from Dr. Simpson’s studies in England (1952) Measles Chickenpox Rubella Children exposed Children ill 251 201 238 172 218 82 attack rate 0.80 0.72 0.38 Attack rate = ill exposed Epidemiologic Triad Disease is the result of forces within a dynamic system consisting of: agent of infection host environment Factors Influencing Disease Transmission Agent Environment • Weather • Infectivity • Housing • Pathogenicity • Geography • Virulence • Occupational setting • Immunogenicity • Air quality • Antigenic stability • Food • Survival • Age • Sex Host • Genotype • Behaviour • Nutritional status • Health status Epidemiologic Triad-Related Concepts Infectivity (ability to infect)感染力 (number infected / number susceptible) x 100 Pathogenicity (ability to cause disease)致病力 (number with clinical disease / number infected) x 100 Virulence (ability to cause death)毒性 (number of deaths / number with disease) x 100 All are dependent on host factors Predisposition to Infections (Host Factors) Gender Genetics Climate and Weather Nutrition, Stress, Sleep Smoking Stomach Acidity Hygiene Chain of Infection Horton & Parker: Informed Infection Control Practice (www) Mathematical Modelling in Infectious Disease Epidemiology Reproductive Number, R0 A measure of the potential for transmission The basic reproductive number, R0, the mean number of individuals directly infected by an infectious case through the total infectious period, when introduced to a susceptible population probability of transmission per contact R0 = p • c • d duration of infectiousness contacts per unit time Infection will ….. disappear, if become endemic, if become epidemic, if R<1 R=1 R>1 (www) Reproductive Number, R0 Useful summary statistic Definition: the average number of secondary cases a typical infectious individual will cause in a completely susceptible population Measure of the intrinsic potential for an infectious agent to spread (www) Reproductive Number, R0 If R0 < 1 then infection cannot invade a population implications: infection control mechanisms unnecessary (therefore not cost-effective) If R0 > 1 then (on average) the pathogen will invade that population implications: control measure necessary to prevent (delay) an epidemic Reproductive Number, R0 Use in STI Control R0 = p • c • d p c condoms, acyclovir, zidovudine D case ascertainment (screening, partner notification), treatment, compliance, health seeking behaviour, accessibility of services health education, negotiating skills (www) What determines R0 ? p, transmission probability per exposure – depends on the infection HIV, p(hand shake)=0, p(transfusion)=1, p(sex)=0.001 interventions often aim at reducing p use gloves, screene blood, condoms c, number of contacts per time unit – relevant contact depends on infection same room, within sneezing distance, skin contact, interventions often aim at reducing c Isolation, sexual abstinence d, duration of infectious period may be reduced by medical interventions (TB, but not salmonella) Immunity – herd immunity If R0 is the mean number of secondary cases in a susceptible population, then R is the mean number of secondary cases in a population where a proportion, p, are immune R = R0 – (p • R0) What proportion needs to be immune to prevent epidemics? If R0 is 2, then R < 1 if the proportion of immune, p, is > 0.50 If R0 is 4, then R < 1 if the proportion of immune, p, is > 0.75 If the mean number of secondary cases should be < 1, then R0 – (p • R0) < 1 p > (R0 – 1)/ R0 = 1 – 1/ R0 If R0 =15, how large will p need to be to avoid an epidemic? p > 1-1/15 = 0.94 The higher R0, the higher proportion of immune required for herd immunity Endemic - Epidemic - Pandemic R>1 R=1 R<1 Time Endemic Epidemic Transmission occur, but the number of cases remains constant The number of cases increases Pandemic When epidemics occur at several continents – global epidemic Number of Cases of a Disease Endemic vs Epidemic Endemic Time Epidemic Levels of Disease Occurrence Sporadic level: occasional cases occurring at irregular intervals Endemic level: persistent occurrence with a low to moderate level Hyperendemic level: persistently high level of occurrence Epidemic or outbreak: occurrence clearly in excess of the expected level for a given time period Pandemic: epidemic spread over several countries or continents, affecting a large number of people 懇請賜教