* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Density functional calculations show noncovalent interactions
Survey
Document related concepts
Transcript
Densityfunctionalcalculations shownoncovalentinteractions drivingelectrocatalysis KlemensNoga1,3,PiotrP.Romańczyk2,Mariusz Radoń3,StefanS.Kurek2 1 AcademicComputerCenter CYFRONET,ul.Nawojki 11,30-950Kraków,Poland 2 MolecularElectrochemistryGroup,FacultyofChemicalEngineeringandTechnology, CracowUniversityofTechnology,ul.Warszawska 24,31-155Kraków,Poland 3 FacultyofChemistry,Jagiellonian University,ul.Ingardena 3,30-060Kraków,Poland [email protected],[email protected] Scientificinterests • Electrontransfermechanismbetweenredoxcentresin mixed-valencemolybdenumandtungstenscorpionates involvedinelectrocatalysis • Dissociativeelectrontransfer(DET)processesin dehalogenationoforganichalides • Roleofnoncovalentinteractionsinelectrocatalysis andDET processes • Computationalestimationofreductionandoxidation potentialsoftransitionmetalcomplexesandorganic compounds MoandWscorpionate alkoxides {MoII(NO)(TpMe2)}(OCH3)2 Reversibleredoxpotentialfine tunedbyalkoxy ligandRO- • Redoxpotentialof{MII/I(NO)(TpMe2)−Oalk}0/•− (M=MoorW)well reproducedbyDFT:B3LYP/LACV3P+/IEF-PCM: • {Mo−OMe}0/•− - calculated:1.80V,measured:1.84V • {W−OMe}0/•−- calculated:2.45V,measured:2.40V • Strongmetal-metalinteractions(uptoΔredE1/21440mV)inmixedvalencecompoundswithtwo{MoII–0(NO+)(TpMe2)}2+,1+,0 cores Electrocatalysis ofofCHCl3 dehalogenation by{MoI(NO)(TpMe2)(Oalkoxy)}•− Autocatalytic process ΔEred,CHCl3 ~1V ReductionofCHCl3by Hold-ramp-stepexperiment Inhibitionofreactionby {MoI(NO)(TpMe2)(Oalkoxy)}•− provingstabilityofcatalyst alkene • CHCl3 - fastautocatalyticprocess • CCl4 andC2Cl4 donotreactinthoseconditions,C2HCl5 andC2HCl3 typicalelectrocatalysis Roleof{MoII/I(NO)(TpMe2)(Oalkoxy)}•− in electrocatalysis - adducts DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof {MoII/I(NO)(TpMe2)}(OCH3)2adductswithCHCl3 • Moscorpionates formweaklybondedadductswithCHCl3 through C−H···Oalkoxy hydrogenbondanddispersiveinteractions • AfterreductionofMocentre∆Ebind increases Roleof{MoII/I(NO)(TpMe2)(Oalkoxy)}•− in electrocatalysis - dehalogenation DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof (a){MoI(NO)(TpMe2)}(OCH3)2•−···HCCl3adductwithelongatedC-Clbond(upto2.2Å)inCHCl3 (b){MoII(NO)(TpMe2)}(OCH3)2···HCCl2• adductafterDET • Weaklybonded{MoI(NO)(TpMe2)}(OCH3)2•−···HCCl3adductfacilitates electrontransfertochloroformcoupledwithC-Clbondcleavage Roleof{WII/I(NO)(TpMe2)(Oalkoxy)}•− inC2HCl5 andC2HCl4•dehalogenation DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof (a){WI(NO)(TpMe2)}(OCH3)2•−···HC2Cl5adduct (b){WII(NO)(TpMe2)}(OCH3)2···HC2Cl4• adductafterDET • Weaklybonded{WI(NO)(TpMe2)}(OCH3)2•−···HC2Cl5 adductalsofacilitates electrontransfertopentachloroethane coupledwithC-Clbondcleavage Thermodynamical stabilityofadducts Adduct {MoII−Oalk}0···HCCl3 {MoI−Oalk}•−···HCCl3 {MoII−Oalk}0···HCCl2• {MoI−Oalk}•−···HC2Cl5 {MoI−Oalk}•−···HC2Cl3 {MoI−Oalk}•−···H2CCl2 {WI−Oalk}•−···HC2Cl5 {WII−Oalk}···HC2Cl4• {WI−Oalk}•−···HC2Cl4• {WI−Oalk}•−···HC2Cl3 {WI−Oalk}•−···H2CCl2 ∆Ebind −44.4 −52.3 −37.2 −53.6 −43.1 −37.7 −54.8 −46.4 −56.1 −44.4 −41.0 ∆Gbind 0.8 −6,7 6.3 −2.9 1.3 3.8 −5.0 1.7 −5.4 0.4 1.7 inkJ·mol−1 inCH2Cl2 solvent,BSSEcorrected • {MoI−Oalk}•−···HCCl3 and{WI−Oalk}•−···HC2Cl5stabilisationfacilitatesET • Lowerstabilityof{MoII−Oalk}0···HCCl2•and{WII−Oalk}···HC2Cl4•enables radicaldissociationandtriggersanothercatalyticloop MolecularcatalysisofCHCl3 andC2HCl3 reduction triggeredbyMo/Walkoxy scorpionates • CHCl3dehalogenation- twocatalyticloops,withautocatalyticreaction: 2CHCl3 +CCl2•− +3e− →CH2Cl2 +2CCl2•− +2Cl− • ForC2HCl3 evenmorecathodicWII/I redoxpotentialnotsufficienttoclose secondorganicloop Redoxpotentialsofcompoundsinvolved inC2HCl5 reduction Species E0calc(DFT-D) {WII−OMe}/{WI−OMe}•− −2.45 {WIII−OMe}•+/{WII−OMe} +0.68 C2HCl5/C2HCl4• +Cl− −0.66 C2HCl4•/C2HCl3 +Cl− +0.93 C2HCl3/cis-C2HCl2• +Cl− −1.66 cis-C2HCl2•/cis-C2HCl2− −0.42 cis-C2H2Cl2/cis-C2H2Cl• +Cl− −1.97 cis-C2H2Cl•/C2H2 +Cl− +0.99 C2Cl4/C2Cl4•− −2.32 (−2.14) C2Cl4/C2Cl3• +Cl− −1.57 C2Cl3•/C2Cl3− −0.24 C2HCl/C2H•···Cl− −2.12 C2HCl/C2H• +Cl− −2.72 C2HCl/C2H• +Cl− −2.72 E0calc(CC) – – −1.27(−1.01) +0.80 −2.12(−1.86) −0.48 −2.36(−2.10) +0.91(+1.18) −2.66(−2.48) −2.09(−1.82) −0.24 −2.55(−2.32) −2.94(−2.68) −2.94(−2.68) E0exp −2,40 +0.63 (−0.98) (−1.86) (−2.09) (−2.11) (−1.73) inVvsFc,obtainedinCH2Cl2 solvent(orDMF) • SignificantdifferencesbetweenDFT-DandCCresultsonlyinthecaseof dissociativereduction(duetoerrorsinestimationofC-ClbondstrengthinDFT) Inhibitionofcatalysis DFT-D(COSMO/B3LYP-D3/def2-TZVPP)geometriesof (a)alcohol adduct,(b)alkeneadduct • AlcoholsformstrongerhydrogenbondthanCHCl3 andblockthebindingsite • Alkenesand DMFarebondedsignificantlyweakerthanCHCl3 • whenaddedingreatexcess • inhibitionoccurs bytrappingoftransientCHCl2•radicalbyalkeneor:CCl2byDMF Roleofnoncovalentinteractionsin electrocatalycis ComparisonofDFT-D(sharp,Clatomsyellow)andDFT(diffused,Clatomsgreen) (a){MoII−Oalk}··HCCl3, (b){MoI−Oalk}•−···HCCl3,(c){MoI−Oalk} 0···HCCl2• • Significantdifferencesinadductsgeometries,especiallyin{MoI−Oalk} 0···HCCl •,wherehydrogenbondisweakerandhasdispersivecharacter 2 • Noncovalentinteractionsarecrucialforstabilisationofadductswith weakhydrogenbond Roleofnoncovalentinteractionsin electrocatalysis Adduct {MoII−Oalk}0···HCCl3 {MoI−Oalk}•−···HCCl3 {MoII−Oalk}•−···HCCl2• {MoI−Oalk}•−···HOCH3 {MoI−Oalk}•−···HC(=O)N(CH3)2a {WI−Oalk}•−···H2C=CHCH3 DFT 4.2 −4.2 2.1 −22.2 10.5 12.6 DFT//DFT-D3 −32.2 −42.7 −23.8 −52.3 −22.6 −11.3 DFT-D3 Opt −44.4 −52.3 −37.2 −56.1 −30.1 −22.6 ∆Gbind inkJ·mol−1 inCH2Cl2 solvent(a inDMF),BSSEcorrected • Noncovalentinteractionsarecrucialforstabilisationofadductswith weakhydrogenbond • Even{MoI−Oalk}•−···HOCH3 adductwithstrongH-bondshows stabilisationeffectfromdispersiveinteractions • GeometryoptimizationusingDFT-D3stronglyrecommended Softwareremarksandcomputationaldetails • Gaussian03andGaussian09 • usedforDFTgeometryoptimizationsandredoxpotentialscalculations • widespectrumofsolvationmethods • Turbomole 6.xand7.x • usedforDFT-D3geometryoptimizations • veryfastingeometryoptimizationsandBSSEestimations • onlynumericalfrequenciescalculationswhenCOSMOmodelisused • embarrassinglyparallelbutconsumebigamountofresources(upto120cores forweek) • Molpro 2012and2015 • usedforparallelCCSD(T)calculations • canconsumegreatamountofresources(upto200coresforweeks)dueto scalingfactorofO(N7) Outcome • Rationalizedmechanismofelectrocatalytic dehalogenationof polychloroalkanes byMoandWscorpionate alkoxides anditsinhibition • combinedactionofC−H···Oalk bondingandCl···πpyrazolyl dispersiveinteractionsmay facilitateintramolecularelectrontransfer • Shownthatdispersioninteractionscouldbecrucialforstabilisationof weaklybondedadducts • DFT-Dhastobeusedinsuchcasestoyieldreasonableresults • Establishedcomputationalprotocolforcalculationofredoxpotentials forinvestigatedMo/Walkoxides andfororganicchlorideswiththe accuracyofupto0.05V • ComputationalresourceshavebeenprovidedbyACCCyfronet AGH whichispartofPLGrid Infrastructure Publications • P.P.Romańczyk,M.Radoń,K.Noga,S.S.Kurek,Autocatalyticcathodic dehalogenationtriggeredbydissociativeelectrontransferthrougha C−H···Ohydrogenbond,Phys.Chem.Chem.Phys. 15(2013)17522. • P.P.Romańczyk,K.Noga,M.Radoń,G.Rotko,S.S.Kurek,Ontheroleof noncovalentinteractionsinelectrocatalysis.Twocasesofmediated reductivedehalogenation,Electrochim.Acta,110(2013)619. • P.P.Romańczyk,G.Rotko,K.Noga,M.Radoń,G.Andryianau,S.S.Kurek, TheeffectofC−H···ObondingandCl···πinteractionsinelectrocatalytic dehalogenationofC2chloridescontaininganacidichydrogen, Electrochim.Acta 140(2014)497.