Download Clinical Implications of Dihydropyrimidine

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Discovery and development of neuraminidase inhibitors wikipedia , lookup

Discovery and development of cephalosporins wikipedia , lookup

Neuropharmacology wikipedia , lookup

Discovery and development of integrase inhibitors wikipedia , lookup

Biosimilar wikipedia , lookup

Clinical trial wikipedia , lookup

Pharmaceutical industry wikipedia , lookup

Psychopharmacology wikipedia , lookup

Metalloprotease inhibitor wikipedia , lookup

Medication wikipedia , lookup

Discovery and development of proton pump inhibitors wikipedia , lookup

Prescription costs wikipedia , lookup

Drug discovery wikipedia , lookup

Drug interaction wikipedia , lookup

Pharmacognosy wikipedia , lookup

Theralizumab wikipedia , lookup

Pharmacokinetics wikipedia , lookup

Bad Pharma wikipedia , lookup

Dydrogesterone wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Pharmacogenomics wikipedia , lookup

Bilastine wikipedia , lookup

Transcript
Clinical Implications of Dihydropyrimidine Dehydrogena
Published on Psychiatric Times
(http://www.psychiatrictimes.com)
Clinical Implications of Dihydropyrimidine Dehydrogenase
Inhibition
Review Article [1] | July 01, 1997
By Robert B. Diasio, MD [2]
Dihydropyrimidine dehydrogenase (DPD) is the initial, rate-limiting enzyme in the catabolism of
5-fluorouracil (5-FU). DPD has an important role in regulating the availability of 5-FU for anabolism. It
is now clear that DPD also
Introduction
ihydropyrimidine dehydrogenase (DPD), also referred to as dihydrouracil dehydrogenase,
dihydrothymine dehydrogenase, uracil reductase, and EC 1.3.1.2), is the initial, rate-limiting
enzymatic step in the catabolism of the naturally occurring pyrimidines, uracil and thymine, and the
widely used antimetabolite cancer chemotherapy agent, 5-fluorouracil (5-FU).[1,2] As shown in
Figure 1, DPD occupies an important position in the overall metabolism of 5-FU, converting more
than 85% of administered 5-FU to the inactive metabolite 5-fluoro-5,6-dihydrouracil (5-FUH2) in an
enzymatic step that is essentially irreversible.[3] Whereas anabolism is clearly critical in the
conversion of 5-FU to the “active” nucleotides, 5-fluoro-2´-deoxyuridine 5´-monophosphate (FdUMP),
5-fluorouridine 5´-triphosphate (FUTP), and 5-fluoro-2´-deoxy- uridine 5´-triphosphate (FdUTP),
catabolism controls the availability of 5-FU for anabolism, and thus occupies a critical position in the
overall metabolism of 5-FU. FdUMP, FUTP, and FdUTP are, in turn, responsible for inhibition of cell
replication through inhibition of thymidylate synthase or through incorporation into ribonucleic acid
(RNA) or deoxyribonucleic acid (DNA), respectively.
D
Clinical Consequences of Modulation of DPD Activity
The importance of DPD to the clinical pharmacology of 5-FU has been further established by several
recent observations (Table 1) that demonstrate that DPD can account for much of the variability that
has been noted in clinical studies with 5-FU. This includes both intrapatient differences (circadian
variation of drug levels) and interpatient variability (in pharmacokinetics, bioavailability, toxicity, and
antitumor effectiveness) of 5-FU’s clinical pharmacology.
DPD has been shown to follow a circadian pattern in both animals and humans.[4-6] This is thought
to explain the variable plasma levels of 5-FU observed in patients receiving continuous 5-FU infusion
by automated pumps. Studies have, in fact, demonstrated a circadian variation of tissue DPD levels
associated with an inverse circadian pattern in plasma 5-FU concentrations. This has led some
chemotherapists to propose time-modified 5-FU infusions to optimize drug delivery during a 24-hour
period. In Western Europe, some oncologists have reported potential benefit with such regimens in
the treatment of certain human cancers.[7]
DPD enzyme activity in normal tissues (peripheral blood mononuclear cells and liver) has also been
shown to vary from individual to individual in a normal distribution pattern, with as much as a sixfold
variation from the lowest to the highest values.[8,9] This wide variation in DPD activity is thought to
be responsible for the wide variation in the drug’s half-life observed in patients in population
studies.[10] In addition, it is now clear that a small percentage (< 5%) of the population has, without
apparent reason, DPD activity significantly below the normal distribution that characterizes most of
the population.[11-13] These individuals are at significant risk if they develop cancer and are
administered 5-FU. This is a true pharmacogenetic syndrome, the symptoms of which are not
recognized until the patient is exposed to the drug.[14]
Variation in DPD activity has also been shown to be responsible for the apparent variable
bioavailability of 5-FU, which has historically led to recommendations against oral 5-FU
administration. This understanding potentially explains the erratic bioavailability of a small molecule
Page 1 of 5
Clinical Implications of Dihydropyrimidine Dehydrogena
Published on Psychiatric Times
(http://www.psychiatrictimes.com)
with a pKa that should favor excellent absorption and bioavailability. Experimental studies of DPD
inhibitors in animals reveal that inhibition of DPD following oral 5-FU administration yields a
pharmacokinetic pattern essentially the same as that produced by intravenous administration, thus
implying almost 100% bioavailability.[15]
Tumors may also express variable DPD activity.[16] This may explain the inconsistent tumor
response to 5-FU. A recent study of interest demonstrated increased DPD expression in tumors from
patients who were resistant to 5-FU, even when thymidylate synthase expression was low.[17]
Inhibition of DPD for Pharmacologic Gain
The above studies relating inconsistent DPD activity to the observed variability in 5-FU pharmacology
make it attractive to consider inhibiting DPD to eliminate the unpredictable variations. Inhibiting DPD
in 5-FU–susceptible host tissue, such as gastrointestinal (GI) mucosa and bone marrow, should make
dosing from patient to patient less variable, avoiding the typical (with 5-FU and many other cancer
chemotherapeutic agents) dosing decisions based on observed toxicity. Inhibition of DPD in tumor
specimens is also attractive in that most tumors probably become resistant through increased
intratumor DPD activity, leading to increased degradation and thus less anabolism of 5-FU.
Over the years, there have been numerous attempts to synthesize effective inhibitors of DPD,[18]
many of which turned out to be very toxic. In the past several years, new fluoropyrimidine drugs
using DPD inhibition—agents referred to as dihydropyrimidine dehydrogenase–inhibitory
fluoropyrimidines (DIF)—have been introduced to the clinic.
DPD-Inhibitory Fluoropyrimidines
There are currently four new DIF drugs (Table 2): UFT, ethynyluracil, S-1, and BOF-A2. These drugs
differ both in type of DPD “inhibition” and the degree of inhibition produced. The rationale for using
DIF drugs is shown in Table 3. Basically, 5-FU, derived either from 5-FU itself or from a prodrug
converted to 5-FU, is administered together with another drug that interferes with (or inhibits) the
otherwise rapid catabolism of 5-FU. All four of these drugs derive a therapeutic advantage from DPD
inhibition. Most impressive are 1) the capacity for oral delivery of 5-FU (bioavailability > 70%), and 2)
the leveling of 5-FU pharmacokinetic variability. In addition, inhibition of the catabolic pathway
allows more 5-FU to enter the anabolic pathway, potentially increasing the antitumor effect. This
may be particularly important for resistant tumors with increased DPD expression. Finally, at least
some 5-FU toxicities (hand-foot syndrome, some forms of neurotoxicity, and possibly cardiotoxicity)
may be secondary to the catabolic pathway, although this mechanism is not completely understood.
Inhibiting the catabolic pathway should decrease the incidence of these toxicities.
The DIF Drugs
UFT
UFT was the first of the DIF drugs to be synthesized and is therefore the one with which we have the
most experience.[19] This new fluoropyrimidine is a combination of the naturally occurring
pyrimidine, uracil, and the 5-FU prodrug, tegafur, in a 4:1 molar ratio. The presence of uracil in
excess of 5-FU results in “competition” at the level of DPD, such that 5-FU will not be rapidly
degraded and will remain present for a prolonged period. Although this is not true inhibition of DPD,
the competition between 5-FU and uracil for DPD produces an effect similar to what one achieves
with a true DPD inhibitor. In contrast to the effects of true DPD inhibitors and inactivators, the effect
of UFT on DPD is more rapidly reversible, thereby possibly avoiding some of the problems observed
with the earlier DPD inhibitors. This alteration may account for a more favorable toxicity profile
compared with the earlier DPD inhibitors,[18] as well as with some of the newer DIF drugs.
Extensive data from Japan, as well as Europe, South America, and the United States, are now
demonstrating that orally administered UFT has antitumor activity in several tumor types
(particularly breast and colon cancer), either as a single agent or combined with calcium
folinate.[20-22] It appears to be at least as effective as intravenous infusion of 5-FU. Furthermore,
the toxicity profile is quite tolerable, with the typical fluoropyrimidine toxicities (eg, diarrhea and
nausea) seen at the maximum tolerated dose. Of note is the near absence of other 5-FU toxicities, in
particular hand-foot syndrome, neurologic effects, and cardiotoxicity.[23] Although not proven, these
toxicities, which are thought to be secondary to 5-FU catabolites, may be eliminated by using a DIF
drug such as UFT.
Several articles within this supplement provide evidence of the efficacy and tolerable toxicity of UFT.
Page 2 of 5
Clinical Implications of Dihydropyrimidine Dehydrogena
Published on Psychiatric Times
(http://www.psychiatrictimes.com)
Ethynyluracil
Recently, a new DPD inhibitor, ethynyluracil (Eniluracil, or GW776C85), has been synthesized and
demonstrated to be a potent inactivator of DPD.[15] This pyrimidine is structurally similar to both
uracil and 5-FU.[24] In initial phase I clinical studies, ethynyluracil administration led to rapid and
complete DPD inactivation, which was maintained for more than 1 day at clinical doses.[25,26] At
present, a number of phase II studies are underway to evaluate the effectiveness of the
coadministration of low-dose 5-FU and ethynyluracil in a number of different malignancies, including
colorectal and breast cancer.
S-1
In Japan, there have been several attempts to further develop this concept. S-1 is a triple-drug
combination consisting of the prodrug, tegafur, together with a DPD inhibitor,
chloro-2,4-dihydroxypyridine (CDHP), plus potassium oxalate in a molar ratio of 1:0.4:1,
respectively.[27] This combination not only provides sustained release of 5-FU via use of the prodrug
and DPD inhibitor, but also utilizes potassium oxalate theoretically to lessen bothersome GI toxicity
(particularly diarrhea). In preclinical studies, potassium oxalate has been shown to selectively inhibit
5-FU phosphorylation by the enzyme, orotate phosphoribosyltransferase, particularly in the GI tract,
but not in a tumor.[28] Preclinical study results have demonstrated excellent antitumor activity.[29]
Clinical studies thus far have shown S-1 to be quite tolerable.[30,31] United States studies of this
drug have been limited.
BOF-A2
BOF-A2 represents another attempt to develop an improved fluoropyrimidine. With this two-drug
combination, the prodrug 1-ethoxymethyl 5-fluorouracil (EM-FU) is combined with the DPD inhibitor
3-cyano-2,6-dehydropyrimidine (CNDP) in a 1:1 molar ratio.[32,33] EM-FU is relatively resistant to
degradation and is metabolized to 5-FU by liver microsomes. Preclinical studies have confirmed
antitumor activity in several animal models and have demonstrated sustained 5-FU levels resulting
from the release of 5-FU by EM-FU. Clinical studies have been undertaken in Japan and, more
recently, limited studies have been initiated in the United States. It is too early to comment on the
clinical effectiveness of this drug combination. Thus far, BOF-A2 has demonstrated typical 5-FU
toxicities, with some patients experiencing more severe toxicity such as mucositis and diarrhea. At
present, the dose, schedule, and possible combination with other modulators (eg, calcium folinate)
are being evaluated.
Conclusion
It is now clear that DPD is a critical step in pyrimidine metabolism and is responsible for much of the
variability in pharmacokinetics, bioavailability, toxicity, and efficacy following administration of 5-FU.
Inhibition of DPD activity through the use of DPD inhibitors should result in less variation in 5-FU
pharmacokinetics and bioavailability. At the same time, inhibition of the DPD pathway should
potentially improve the therapeutic effectiveness of 5-FU, both by making toxicity more predictable
and by overcoming the high levels of DPD activity that may be a source of resistance in tumors. The
recent availability of DIF drugs provides a means by which 5-FU may be administered orally at
reduced doses, producing an effect similar to continuous infusion of 5-FU without significant
intrapatient or interpatient variability in 5-FU pharmacokinetics. Clinical studies thus far demonstrate
tolerable toxicities. Clinical trials are currently underway to evaluate the therapeutic effectiveness of
each of these drugs.
References:
1. Daher GC, Harris BE, Diasio RB: Metabolism of pyrimidine analogues and their nucleosides, in
Metabolism and Reactions of Anticancer Drugs. The International Encyclopedia of Pharmacology and
Therapeutics, vol 1, chap 2, pp 55-94. Oxford, Pergamon Press, 1994.
2. Diasio RB, Harris BE: Clinical pharmacology of 5-fluorouracil. Clin Pharmcokinet 16:215-237, 1989.
3. Lu Z-H, Zhang R, Diasio RB: Purification and characterization of dihydropyrimidine dehydrogenase
from human liver. J Biol Chem 267:17102-17109, 1992.
4. Harris BE, Song R, He Y, et al: Circadian rhythm of rat liver dihydropyrimidine dehydrogenase:
Possible relevance to fluoropyrimidine chemotherapy. Biochem Pharmacol 37:4759-4763, 1988.
Page 3 of 5
Clinical Implications of Dihydropyrimidine Dehydrogena
Published on Psychiatric Times
(http://www.psychiatrictimes.com)
5. Harris BE, Song R, Soong S-J, et al: Circadian variation of 5-fluorouracil catabolism in isolated
perfused rat liver. Cancer Res 49:6610-6614, 1989.
6. Harris BE, Song R, Soong SJ, et al: Relationship of dihydropyrimidine dehydrogenase activity and
plasma 5-fluorouracil levels: Evidence for circadian variation of 5-fluorouracil levels in cancer
patients receiving protracted continuous infusion. Cancer Res 50:197-201, 1990.
7. Zhang R, Diasio RB: Pharmacologic basis for circadian pharmacodynamics, in Hrushesky WJM (ed):
The Scientific Basis for Optimized Cancer Therapy, chap 4, pp 60-103. Boca Raton, Florida, CRC
Press, 1994.
8. Lu Z, Zhang R, Diasio RB: Dihydropyrimidine dehydrogenase activity in human peripheral blood
mononuclear cells and liver: Population characteristics, newly identified patients, and clinical
implication in 5-fluorouracil chemotherapy. Cancer Res 53:5433-5438, 1993.
9. Lu Z, Zhang R, Diasio RB: Dihydropyrimidine dehydrogenase activity in human liver: Population
characteristics and clinical implication in 5-FU chemotherapy. Clin Pharmacol Ther 58:512-522, 1995.
10. Heggie GD, Sommadossi JP, Cross DS, et al: Clinical pharmacokinetics of 5-fluorouracil and its
metabolites in plasma, urine, and bile. Cancer Res 47:2203-2206, 1987.
11. Diasio RB, Beavers TL, Carpenter JT: Familial deficiency of dihydropyrimidine dehydrogenase:
Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest
81:47-51, 1988.
12. Harris BE, Carpenter JT, Diasio RB: Severe 5-fluorouracil toxicity secondary to dihydropyrimidine
dehydrogenase deficiency: A potentially more common pharmacogenetic syndrome. Cancer
68:499-501, 1991.
13. Takimoto CH, Lu Z-H, Zhang R, et al: Severe neurotoxicity following 5-fluorouracil-based
chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res
2:477-481, 1996.
14. Lu Z, Diasio RB: Polymorphic drug metabolizing enzymes, in Schilsky RL, Milano GA, Ratain MJ
(eds): Principles of Antineoplastic Drug Development and Pharmacology, pp 281-305. New York,
Marcel Dekker, Inc., 1996.
15. Baccanari DP, Davis ST, Knick VC, et al: 5-Ethynyluracil: Effects on the pharmacokinetics and
antitumor activity of 5-fluorouracil. Proc Natl Acad Sci U S A 90:11064-11068, 1993.
16. Jiang W, Lu Z, He Y, et al: Dihydropyrimidine dehydrogenase activity in hepatocellular carcinoma:
Implication for 5-fluorouracil-based chemotherapy. Clin Cancer Res 3:395-399, 1997.
17. Danenberg K, Salonga D, Park JM, et al: Dihydropyrimidine dehydrogenase and thymidylate
synthase gene expressions identify a high percentage of colorectal tumors responding to
5-fluorouracil (abstract 992). Proc Am Soc Clin Oncol 17:258a, 1998.
18. Naguib FNM, el Kouni MH, Cha S: Enzymes of uracil catabolism in normal and neoplastic human
tissues. Cancer Res 45:5405-5412, 1985.
19. Majima H: Phase I and preliminary phase II study of coadministration of uracil and FT-207 (UFT
therapy). Gan To Kagaku Ryoho 7:1383-1387, 1980.
20. Takino T: Clinical studies on the chemotherapy of advanced cancer with UFT (uracil plus futraful
preparation). Gan To Kagaku Ryoho 7:1804-1812, 1980.
21. Gonzalez Baron M, Colmenarejo A, Feliu J, et al: Preliminary results of phase I clinical trial: UFT
modulated by folinic acid (PO) in the treatment of advanced colorectal cancer. Therapeutic Research
Page 4 of 5
Clinical Implications of Dihydropyrimidine Dehydrogena
Published on Psychiatric Times
(http://www.psychiatrictimes.com)
13:451-458, 1992.
22. Pazdur R, Lassere Y, Diaz-Canton E, et al: Phase I trials of uracil-tegafur (UFT) using 5- and
28-day administration schedules: Demonstration of schedule-dependent toxicities. Anticancer Drugs
7:728-733, 1996.
23. Pazdur R, Lassere Y, Diaz-Canton E, et al: Phase I trial of uracil-tegafur (UFT) plus oral leucovorin:
14-day schedule. Invest New Drugs 15:123-128, 1997.
24. Spector T, Porter DJT, Nelson DJ, et al: 5-Ethynyluracil (776C85), a modulator of the therapeutic
activity of 5-fluorouracil. Drugs of the Future 19:566-571, 1994.
25. Baker SD, Khor SP, Adjei AA, et al: Pharmacokinetics, oral bioavailability, and safety study of
fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J
Clin Oncol 14:3085-3096, 1996.
26. Schilsky RL, Burris H, Ratain M, et al: Phase I clinical and pharmacologic study of 776C85 plus
5-fluorouracil in patients with advanced cancer. J Clin Oncol 16:1450-1457, 1998.
27. Shirasaka T, Shimamato Y, Ohsimo H, et al: Development of a novel form of oral 5-fluorouracil
derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by
two biochemical modulators. Anticancer Drugs 7:548-557, 1996.
28. Shirasaka T, Shimamato Y, Fukushima M: Inhibition by oxonic acid of gastrointestinal toxicity of
5-fluorouracil without loss of its antitumor activity in rats. Cancer Res 53:4004-4009, 1993.
29. Shirasaka T, Nakano K, Takechi T, et al: Antitumor activity of 1M tegafur, 0.4M
5-chloro-2,4-dihydroxypyridine and 1M potassium oxonate (S-1) against human colon carcinoma
orthotopically implanted into nude rats. Cancer Res 56:2602-2606, 1996.
30. Ohtsu A, Sakata Y, Horioshi N, et al: A phase II study of S-1 in patients with advanced gastric
cancer (abstract 1005). Proc Am Soc Clin Oncol 17:262a, 1998.
31. Baba H, Ohtsu A, Sakata Y, et al: A late phase II study of S-1 in patients with advanced colorectal
cancer in Japan (abstract 1065). Proc Am Soc Clin Oncol 17:277A, 1998.
32. Shirasaka T, Fujita F, Fujita M, et al: Antitumor activity and metabolism of BOF-A2, a new
5-fluorouracil-derivative with human cancers xenografted in nude mice. Gan To Kagaku Ryoho
17:1871-1876, 1990.
33. Sasaki T: New anti-cancer drugs for gastrointestinal cancers. Gan To Kagaku Ryoho
24:1925-1931, 1997.
Source URL:
http://www.psychiatrictimes.com/review-article/clinical-implications-dihydropyrimidine-dehydrogenas
e-inhibition
Links:
[1] http://www.psychiatrictimes.com/review-article
[2] http://www.psychiatrictimes.com/authors/robert-b-diasio-md
Page 5 of 5