* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download How did the Solar System form?
Astrobiology wikipedia , lookup
Rare Earth hypothesis wikipedia , lookup
Astronomical unit wikipedia , lookup
Definition of planet wikipedia , lookup
Tropical year wikipedia , lookup
IAU definition of planet wikipedia , lookup
Extraterrestrial life wikipedia , lookup
Late Heavy Bombardment wikipedia , lookup
Directed panspermia wikipedia , lookup
Planetary system wikipedia , lookup
Advanced Composition Explorer wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Planetary habitability wikipedia , lookup
Solar System wikipedia , lookup
History of Solar System formation and evolution hypotheses wikipedia , lookup
Nebular hypothesis wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
How did the Solar System form? Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare? Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system Solar System Geometry • • • • Terrestrial planets closer than gas/water giants Planets get smaller beyond Jupiter Most planets orbit in the same plane Some small bodies are tilted Summary of Planetary Interiors Summary (Things a formation theory must explain) • The sun, with most of the system mass • Giant planets with solid cores (far from sun) • Terrestrial planets (close to sun) • Most planets orbit in a flat plane • Many planets have moons Our theory • Solar system formation begins because of gravity - most stuff ends up in the sun • A disk is formed because of rotation • Planet cores form in the disk because rocks hit and/or gravitationally attract each other • If there’s ice around (> 5 AU from the star, where it’s cold) the cores are bigger. If big enough, they’ll suck gas out of the disk and form giant planets • Moons form via collision or capture or in mini disks Why might material in clouds collapse to form stars? What force keeps clouds from collapsing? Why might material in clouds collapse to form stars? gas pressure pushes out (like in a balloon) What force keeps clouds from collapsing? Why might material in clouds collapse to form stars? What force helps clouds collapse? Why might material in clouds collapse to form stars? gravity pulls inwards What force helps clouds collapse? If the cloud is big and cold, gravity will win out and the cloud will collapse. gravity pulls inwards The cloud is spinning. What happens as it collapses? (Think of the water in your bathtub drain) gravity pulls inwards The cloud spins faster and faster, until it can t support itself, and flattens out (think pizza dough) Lucky for us, this is the perfect way to form a solar system. disk = future solar system blob = future sun Formation basics Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system Stars form in Dense Clouds of Dust and Gas What do we mean by dust? What do we mean by gas? The Orion Nebula Disks really exist! Disks really exist! Young stars have asteroid belts and Kuiper belts but notice how much bigger this is than the solar system! In reality, disks are very hard to image. Why do you think this is? In reality, disks are very hard to image. Why do you think this is? So we usually use spectroscopy to study disks. Here s what stars look like with a spectrograph. What would it look like with a disk around it? In reality, disks are very hard to image. Why do you think this is? So we usually use spectroscopy to study disks. Here s what stars look like with a spectrograph. What would it look like with a disk around it? Disks produce infrared light (just like planets) Our theory: What do we think now? • Solar system formation begins because of gravity - most stuff ends up in the sun • A disk is formed because of rotation • Planet cores form in the disk because rocks hit and/or gravitationally attract each other • If there’s ice around (> 5 AU from the star, where it’s cold) the cores are bigger. If big enough, they’ll suck gas out of the disk and form giant planets • Moons form via collision or capture or in mini disks Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system http://www.astronomy.ohio-state.edu/~microfun/ob06109/ Ways to Find Out • Look at our own solar system, and think about how it might have formed • Look at other solar systems while they form • Look for and study other solar systems • Create computer models and see if you can produce a solar system Our theory: What do we think now? • Solar system formation begins because of gravity - most stuff ends up in the sun • A disk is formed because of rotation • Planet cores form in the disk because rocks hit and/or gravitationally attract each other • If there’s ice around (> 5 AU from the star, where it’s cold) the cores are bigger. If big enough, they’ll suck gas out of the disk and form giant planets • Moons form via collision or capture or in mini disks How do you design a computer simulation? Why can’t we make a huge computer simulation to explain everything? What models would you create? A model of planets growing in a disk. Some things we’ve learned from models: Our basic theory holds up pretty well, but... It’s hard to get little particles to stick to each other when they collide. It takes a really, really long time to make planets (maybe too long??) It’s hard to form planetary systems as flat as ours. Solar System Formation: Take-away messages Theory: • • • • • Solar system formation begins because of gravity - most stuff ends up in the sun A disk is formed because of rotation Planet cores form in the disk because rocks hit and/or gravitationally attract each other If there s ice around (> 5 AU from the star, where it s cold) the cores are bigger. If big enough, they ll suck gas out of the disk and form giant planets Moons form via collision or capture or in mini disks Observations generally agree with theory, but it’s hard to see details. They also show us that stars and disks are all very different from each other. And, they gave us the surprising observation of outflows. Simulations also agree with theory, but they can’t model everything at once, and there are some problems (things take too long, for one) Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare?