Download Lesson 23: Base Angles of Isosceles Triangles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Golden ratio wikipedia , lookup

History of geometry wikipedia , lookup

Line (geometry) wikipedia , lookup

Multilateration wikipedia , lookup

Reuleaux triangle wikipedia , lookup

Rational trigonometry wikipedia , lookup

Trigonometric functions wikipedia , lookup

History of trigonometry wikipedia , lookup

Pythagorean theorem wikipedia , lookup

Euler angles wikipedia , lookup

Integer triangle wikipedia , lookup

Euclidean geometry wikipedia , lookup

Transcript
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
Lesson 23: Base Angles of Isosceles Triangles
Student Outcomes
๏‚ง
Students examine two different proof techniques via a familiar theorem.
๏‚ง
Students complete proofs involving properties of an isosceles triangle.
Lesson Notes
In Lesson 23, students study two proofs to demonstrate why the base angles of isosceles triangles are congruent. The
first proof uses transformations, while the second uses the recently acquired understanding of the SAS triangle
congruency. The demonstration of both proofs will highlight the utility of the SAS criteria. Encourage students to
articulate why the SAS criteria is so useful.
The goal of this lesson is to compare two different proof techniques by investigating a familiar theorem. Be careful not
to suggest that proving an established fact about isosceles triangles is somehow the significant aspect of this lesson.
However, if you need to, you can help motivate the lesson by appealing to history. Point out that Euclid used SAS and
that the first application he made of it was in proving that base angles of an isosceles triangle are congruent. This is a
famous part of the Elements. Today, proofs using SAS and proofs using rigid motions are valued equally.
Classwork
Opening Exercise (7 minutes)
Opening Exercise
Describe the additional piece of information needed for each pair of triangles to satisfy the SAS triangle congruence
criteria.
1.
2.
Given:
๐‘จ๐‘ฉ = ๐‘ซ๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ, or ๐’Žโˆ ๐‘ฉ = ๐’Žโˆ ๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ฉ โŠฅ ๐‘ฉ๐‘ช
๐‘ซ๐‘ช โŠฅ ๐‘ช๐‘ฉ
Prove:
โ–ณ ๐‘จ๐‘ฉ๐‘ช โ‰…โ–ณ ๐‘ซ๐‘ช๐‘ฉ
Given:
๐‘จ๐‘ฉ = ๐‘น๐‘บ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ฉ โˆฅ ๐‘น๐‘บ
Prove:
๐‘ช๐‘ฉ = ๐‘ป๐‘บ or ๐‘ช๐‘ป = ๐‘ฉ๐‘บ
โ–ณ ๐‘จ๐‘ฉ๐‘ช โ‰…โ–ณ ๐‘น๐‘บ๐‘ป
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
189
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
Exploratory Challenge (25 minutes)
Exploratory Challenge
Today we examine a geometry fact that we already accept to be true. We are going to
prove this known fact in two ways: (1) by using transformations and (2) by using SAS
triangle congruence criteria.
Here is isosceles triangle ๐‘จ๐‘ฉ๐‘ช. We accept that an isosceles triangle, which has (at
least) two congruent sides, also has congruent base angles.
Label the congruent angles in the figure.
Now we will prove that the base angles of an isosceles triangle are always congruent.
Prove Base Angles of an Isosceles are Congruent: Transformations
While simpler proofs do exist, this version is included to reinforce the idea of congruence as defined by rigid motions.
Allow 15 minutes for the first proof.
Prove Base Angles of an Isosceles are Congruent: Transformations
Given: Isosceles โ–ณ ๐‘จ๐‘ฉ๐‘ช, with ๐‘จ๐‘ฉ = ๐‘จ๐‘ช
Prove: ๐ฆโˆ ๐‘ฉ = ๐ฆโˆ ๐‘ช
Construction: Draw the angle bisector ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘จ๐‘ซ of โˆ ๐‘จ, where ๐‘ซ is the intersection of the
bisector and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฉ๐‘ช. We need to show that rigid motions will map point ๐‘ฉ to point ๐‘ช and
point ๐‘ช to point ๐‘ฉ.
Let ๐’“ be the reflection through โƒ–๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘จ๐‘ซ. Through the reflection, we want to demonstrate two pieces of information that map
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— maps to ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘จ๐‘ช, and (2) ๐‘จ๐‘ฉ = ๐‘จ๐‘ช.
๐‘ฉ to point ๐‘ช and vice versa: (1) ๐‘จ๐‘ฉ
Since ๐‘จ is on the line of reflection, โƒ–๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘จ๐‘ซ, ๐’“(๐‘จ) = ๐‘จ. Reflections preserve angle measures, so the measure of the reflected
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—. Reflections also preserve lengths of segments;
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—๏ฟฝ = ๐‘จ๐‘ช
angle ๐’“(โˆ ๐‘ฉ๐‘จ๐‘ซ) equals the measure of โˆ ๐‘ช๐‘จ๐‘ซ; therefore, ๐’“๏ฟฝ๐‘จ๐‘ฉ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ will still have the same length as ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
therefore, the reflection of ๐‘จ๐‘ฉ
๐‘จ๐‘ฉ. By hypothesis, ๐‘จ๐‘ฉ = ๐‘จ๐‘ช, so the length of the
reflection will also be equal to ๐‘จ๐‘ช. Then ๐’“(๐‘ฉ) = ๐‘ช. Using similar reasoning, we can show that ๐’“(๐‘ช) = ๐‘ฉ.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— and ๐’“๏ฟฝ๐‘ฉ๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—๏ฟฝ = ๐‘ช๐‘ฉ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—. Again, since reflections preserve angle measures, the
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—๏ฟฝ = ๐‘ช๐‘จ
Reflections map rays to rays, so ๐’“๏ฟฝ๐‘ฉ๐‘จ
measure of ๐’“(โˆ ๐‘จ๐‘ฉ๐‘ช) is equal to the measure of โˆ ๐‘จ๐‘ช๐‘ฉ.
We conclude that ๐ฆโˆ ๐‘ฉ = ๐ฆโˆ ๐‘ช. Equivalently, we can state that โˆ ๐‘ฉ โ‰… โˆ ๐‘ช. In proofs, we can state that โ€œbase angles of
an isosceles triangle are equal in measureโ€ or that โ€œbase angles of an isosceles triangle are congruent.โ€
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
190
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
Prove Base Angles of an Isosceles are Congruent: SAS
Allow 10 minutes for the second proof.
Prove Base Angles of an Isosceles are Congruent: SAS
Given: Isosceles โ–ณ ๐‘จ๐‘ฉ๐‘ช, with ๐‘จ๐‘ฉ = ๐‘จ๐‘ช
Prove: โˆ ๐‘ฉ โ‰… โˆ ๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— of โˆ ๐‘จ, where ๐‘ซ is the intersection of the
Construction: Draw the angle bisector ๐‘จ๐‘ซ
bisector and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฉ๐‘ช. We are going to use this auxiliary line towards our SAS criteria.
Allow students five minutes to attempt the proof on their own.
๐‘จ๐‘ฉ = ๐‘จ๐‘ช
Given
๐ฆโˆ ๐‘ฉ๐‘จ๐‘ซ = ๐ฆโˆ ๐‘ช๐‘จ๐‘ซ
Definition of an angle bisector
โˆ ๐‘ฉ โ‰… โˆ ๐‘ช
Corresponding angles of congruent triangles are congruent
๐‘จ๐‘ซ = ๐‘จ๐‘ซ
Reflexive property
โ–ณ ๐‘จ๐‘ฉ๐‘ซ โ‰…โ–ณ ๐‘จ๐‘ช๐‘ซ
Side Angle Side criteria
Exercises (10 minutes)
Note that in Exercise 4, students are asked to use transformations in the proof. This is intentional to reinforce the notion
that congruence is defined in terms of rigid motions.
Exercises
1.
๏ฟฝ๏ฟฝ๏ฟฝ bisects ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฑ๐‘ฒ = ๐‘ฑ๐‘ณ; ๏ฟฝ๐‘ฑ๐‘น
๐‘ฒ๐‘ณ
๏ฟฝ๐‘ฑ๐‘น
๏ฟฝ๏ฟฝ๏ฟฝ โŠฅ ๐‘ฒ๐‘ณ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
Given:
Prove:
๐‘ฑ๐‘ฒ = ๐‘ฑ๐‘ณ
Given
๐‘ฒ๐‘น = ๐‘น๐‘ณ
Definition of a segment bisector
โˆ ๐‘ฑ๐‘น๐‘ฒ โ‰… โˆ ๐‘ฑ๐‘น๐‘ณ
Corresponding angles of congruent triangles are congruent.
๐Ÿ(โˆ ๐‘ฑ๐‘น๐‘ฒ) = ๐Ÿ๐Ÿ–๐ŸŽ°
Substitution property of equality
โˆด ๐‘ฑ๐‘น โŠฅ ๐‘ฒ๐‘ณ
Definition of perpendicular lines
โˆ ๐‘ฒ โ‰… โˆ ๐‘ณ
Base angles of an isosceles triangle are congruent.
โˆด โ–ณ ๐‘ฑ๐‘น๐‘ฒ โ‰… โ–ณ ๐‘ฑ๐‘น๐‘ณ
SAS
๐ฆโˆ ๐‘ฑ๐‘น๐‘ฒ + ๐ฆโˆ ๐‘ฑ๐‘น๐‘ณ = ๐Ÿ๐Ÿ–๐ŸŽ°
Linear pairs form supplementary angles.
โˆ ๐‘ฑ๐‘น๐‘ฒ = ๐Ÿ—๐ŸŽ°
Division property of equality
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
191
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
2.
Given:
๐‘จ๐‘ฉ = ๐‘จ๐‘ช, ๐‘ฟ๐‘ฉ = ๐‘ฟ๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ฟ bisects โˆ ๐‘ฉ๐‘จ๐‘ช
Prove:
๐‘จ๐‘ฉ = ๐‘จ๐‘ช
Given
๐‘ฟ๐‘ฉ = ๐‘ฟ๐‘ช
Given
๐ฆโˆ ๐‘จ๐‘ฉ๐‘ช = ๐ฆโˆ ๐‘จ๐‘ช๐‘ฉ
Base angles of an isosceles triangle are congruent.
๐ฆโˆ ๐‘ฟ๐‘ฉ๐‘ช = ๐ฆโˆ ๐‘ฟ๐‘ช๐‘ฉ
Base angles of an isosceles triangle are equal in measure
๐ฆโˆ ๐‘จ๐‘ฉ๐‘ช = ๐ฆโˆ ๐‘จ๐‘ฉ๐‘ฟ + ๐ฆโˆ ๐‘ฟ๐‘ฉ๐‘ช,
๐ฆโˆ ๐‘จ๐‘ช๐‘ฉ = ๐ฆโˆ ๐‘จ๐‘ช๐‘ฟ + ๐ฆโˆ ๐‘ฟ๐‘ช๐‘ฉ
Angle addition postulate
๐ฆโˆ ๐‘จ๐‘ฉ๐‘ฟ = ๐ฆโˆ ๐‘จ๐‘ฉ๐‘ช โˆ’ ๐ฆโˆ ๐‘ฟ๐‘ฉ๐‘ช,
๐ฆโˆ ๐‘จ๐‘ช๐‘ฟ = ๐ฆโˆ ๐‘จ๐‘ช๐‘ฉ โˆ’ ๐ฆโˆ ๐‘ฟ๐‘ช๐‘ฉ
Subtraction property of equality
โˆด โ–ณ ๐‘จ๐‘ฉ๐‘ฟ โ‰… โ–ณ ๐‘จ๐‘ช๐‘ฟ
SAS
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ bisects โˆ ๐‘ฉ๐‘จ๐‘ช.
โˆด ๐‘จ๐‘ฟ
Definition of an angle bisector
๐ฆโˆ ๐‘จ๐‘ฉ๐‘ฟ = ๐ฆโˆ ๐‘จ๐‘ช๐‘ฟ
Corresponding part of congruent triangles are congruent
โˆ ๐‘ฉ๐‘จ๐‘ฟ โ‰… โˆ ๐‘ช๐‘จ๐‘ฟ
3.
Given:
Substitution property of equality
๐‘ฑ๐‘ฟ = ๐‘ฑ๐’€, ๐‘ฒ๐‘ฟ = ๐‘ณ๐’€
Prove:
โ–ณ ๐‘ฑ๐‘ฒ๐‘ณ is isosceles
๐‘ฑ๐‘ฟ = ๐‘ฑ๐’€
Given
๐ฆโˆ ๐Ÿ = ๐’Žโˆ ๐Ÿ
Base angles of an isosceles triangle are equal in measure
๐‘ฒ๐‘ฟ = ๐‘ณ๐’€
Given
๐ฆโˆ ๐Ÿ + ๐ฆโˆ ๐Ÿ‘ = ๐Ÿ๐Ÿ–๐ŸŽ°
Linear pairs form supplementary angles
๐ฆโˆ ๐Ÿ + ๐ฆโˆ ๐Ÿ’ = ๐Ÿ๐Ÿ–๐ŸŽ°
๐ฆโˆ ๐Ÿ‘ = ๐Ÿ๐Ÿ–๐ŸŽ° โˆ’ ๐ฆโˆ ๐Ÿ
Linear pairs form supplementary angles
Subtraction property of equality
๐ฆโˆ ๐Ÿ’ = ๐Ÿ๐Ÿ–๐ŸŽ° โˆ’ ๐ฆโˆ ๐Ÿ‘
Subtraction property of equality
โˆด โ–ณ ๐‘ฑ๐‘ฒ๐‘ฟ โ‰…โ–ณ ๐‘ฑ๐’€๐‘ณ
SAS
โˆด โ–ณ ๐‘ฑ๐‘ฒ๐‘ณ is isosceles
Definition of an isosceles triangle
๐ฆโˆ ๐Ÿ‘ = ๐ฆโˆ ๐Ÿ’
Substitution property of equality
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฑ๐‘ฒ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฑ๐‘ณ
Corresponding segments of congruent triangles are congruent.
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
192
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
4.
Given:
โ–ณ ๐‘จ๐‘ฉ๐‘ช, with ๐ฆโˆ ๐‘ช๐‘ฉ๐‘จ = ๐ฆโˆ ๐‘ฉ๐‘ช๐‘จ
Prove:
๐‘ฉ๐‘จ = ๐‘ช๐‘จ
(Converse of base angles of isosceles triangle)
Hint: Use a transformation.
Proof:
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ. Note that we do
We can prove that ๐‘จ๐‘ฉ = ๐‘จ๐‘ช by using rigid motions. Construct the perpendicular bisector ๐’ to ๐‘ฉ๐‘ช
not know whether the point ๐‘จ is on ๐’. If we did, we would know immediately that ๐‘จ๐‘ฉ = ๐‘จ๐‘ช, since all points on the
perpendicular bisector are equidistant from ๐‘ฉ and ๐‘ช. We need to show that ๐‘จ is on ๐’, or equivalently, that the
reflection across ๐’ takes ๐‘จ to ๐‘จ.
Let ๐’“๐’ be the transformation that reflects the โ–ณ ๐‘จ๐‘ฉ๐‘ช across ๐’. Since ๐’ is the perpendicular bisector, ๐’“๐’ (๐‘ฉ) = ๐‘ช and
๐’“๐’ (๐‘ช) = ๐‘ฉ. We do not know where the transformation takes ๐‘จ; for now, let us say that ๐’“๐’ (๐‘จ) = ๐‘จโ€ฒ .
Since โˆ ๐‘ช๐‘ฉ๐‘จ โ‰… โˆ ๐‘ฉ๐‘ช๐‘จ and rigid motions preserve angle measures, after applying ๐’“๐’ to โˆ ๐‘ฉ๐‘ช๐‘จ, we get that
โˆ ๐‘ช๐‘ฉ๐‘จ โ‰… โˆ ๐‘ช๐‘ฉ๐‘จโ€ฒ . Angle โˆ ๐‘ช๐‘ฉ๐‘จ and angle โˆ ๐‘ช๐‘ฉ๐‘จโ€ฒ share a ray ๐‘ฉ๐‘ช, are of equal measure, and ๐‘จ and ๐‘จโ€ฒ are both in
the same half-plane with respect to line ๐‘ฉ๐‘ช. Hence, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ฉ๐‘จ and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ฉ๐‘จโ€ฒ are the same ray. In particular, ๐‘จโ€ฒ is a point
somewhere on ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ฉ๐‘จ.
Likewise, applying ๐’“๐’ to โˆ ๐‘ช๐‘ฉ๐‘จ gives โˆ ๐‘ฉ๐‘ช๐‘จ โ‰… โˆ ๐‘ฉ๐‘ช๐‘จโ€ฒ , and for the same reasons in the previous paragraph, ๐‘จโ€ฒ must
๐‘ฉ๐‘จ and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ช๐‘จ.
also be a point somewhere on ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ช๐‘จ. Therefore, ๐‘จโ€ฒ is common to both ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ— and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
The only point common to both ๐‘ฉ๐‘จ
๐‘ช๐‘จ is point ๐‘จ; thus, ๐‘จ and ๐‘จโ€ฒ must be the same point, i.e., ๐‘จ = ๐‘จโ€ฒ .
Hence, the reflection takes ๐‘จ to ๐‘จ, which means ๐‘จ is on the line ๐’ and ๐’“๐’ ๏ฟฝ๐‘ฉ๐‘จ๏ฟฝ = ๐‘ช๐‘จโ€ฒ = ๐‘ช๐‘จ, or ๐‘ฉ๐‘จ = ๐‘ช๐‘จ.
5.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝis the angle bisector of โˆ ๐‘ฉ๐’€๐‘จ, and ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
โ–ณ ๐‘จ๐‘ฉ๐‘ช, with ๐‘ฟ๐’€
๐‘ฉ๐‘ช โˆฅ ๐‘ฟ๐’€
Given:
Prove:
๐’€๐‘ฉ = ๐’€๐‘ช
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฉ๐‘ช โˆฅ ๐‘ฟ๐’€
Given
๐ฆโˆ ๐‘ฟ๐’€๐‘จ = ๐ฆโˆ ๐‘ฉ๐‘ช๐’€
When two parallel lines are cut by a transversal, the corresponding angles are equal
๐ฆโˆ ๐‘ช๐‘ฉ๐’€ = ๐ฆโˆ ๐‘ฉ๐‘ช๐’€
Substitution property of equality
๐ฆโˆ ๐‘ฟ๐’€๐‘ฉ = ๐ฆโˆ ๐‘ช๐‘ฉ๐’€
When two parallel lines are cut by a transversal, the alternate interior angles are equal
๐ฆโˆ ๐‘ฟ๐’€๐‘จ = ๐ฆโˆ ๐‘ฟ๐’€๐‘ฉ
Definition of an angles bisector
๐’€๐‘ฉ = ๐’€๐‘ช
When the base angles of a triangle are equal in measure, the triangle is isosceles
Exit Ticket (3 minutes)
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
193
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
Name ___________________________________________________
Date____________________
Lesson 23: Base Angles of Isosceles Triangles
Exit Ticket
For each of the following, if the given congruence exists, name the isosceles triangle and name the pair of congruent
angles for the triangle based on the image above.
1.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ด๐ธ โ‰… ๐ธ๐ฟ
2.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ฟ๐ธ
๐ฟ๐บ
3.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๐ฟ๐‘
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ด๐‘
4.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ธ๐‘
๐‘๐บ
5.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘๐บ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐บ๐ฟ
6.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ด๐ธ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐ธ๐‘
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
194
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
Exit Ticket Sample Solutions
For each of the following, if the given congruence exists, name the isosceles triangle and name the pair of congruent
angles for the triangle based on the image above.
1.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๐‘ฌ๐‘ณ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ฌ
2.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ต โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ณ๐‘ต
4.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๐‘ฎ๐‘ณ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ต๐‘ฎ
6.
โ–ณ ๐‘จ๐‘ฌ๐‘ณ, โˆ ๐‘ฌ๐‘จ๐‘ณ โ‰… โˆ ๐‘ฌ๐‘ณ๐‘จ
3.
โ–ณ ๐‘ณ๐‘ฌ๐‘ฎ, โˆ ๐‘ณ๐‘ฌ๐‘ฎ โ‰… โˆ ๐‘ณ๐‘ฎ๐‘ฌ
โ–ณ ๐‘ต๐‘ณ๐‘จ, โˆ ๐‘ต๐‘ณ๐‘จ โ‰… โˆ ๐‘ต๐‘จ๐‘ณ
5.
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๐‘ณ๐‘ฎ
๐‘ณ๐‘ฌ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฌ๐‘ต โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ต๐‘ฎ
โ–ณ ๐‘ต๐‘ฎ๐‘ฌ, โˆ ๐‘ต๐‘ฎ๐‘ฌ โ‰… โˆ ๐‘ต๐‘ฌ๐‘ฎ
โ–ณ ๐‘ฎ๐‘ณ๐‘ต, โˆ ๐‘ฎ๐‘ต๐‘ณ โ‰… โˆ ๐‘ฎ๐‘ณ๐‘ต
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๐‘ฌ๐‘ต
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘จ๐‘ฌ
โ–ณ ๐‘จ๐‘ฌ๐‘ต, โˆ ๐‘ฌ๐‘ต๐‘จ โ‰… โˆ ๐‘ฌ๐‘จ๐‘ต
Problem Set Sample Solutions
1.
Given:
๐‘จ๐‘ฉ = ๐‘ฉ๐‘ช, ๐‘จ๐‘ซ = ๐‘ซ๐‘ช
Prove:
โ–ณ ๐‘จ๐‘ซ๐‘ฉ and โ–ณ ๐‘ช๐‘ซ๐‘ฉ are right triangles
Given
๐‘จ๐‘ฉ = ๐‘ฉ๐‘ช
โ–ณ ๐‘จ๐‘ฉ๐‘ช is isosceles
Definition of isosceles triangle
๐‘จ๐‘ซ = ๐‘ซ๐‘ช
Given
๐ฆโˆ ๐‘จ๐‘ซ๐‘ฉ = ๐ฆโˆ ๐‘ช๐‘ซ๐‘ฉ
Corresponding angles of congruent triangles are equal in measure
Base angles of an isosceles triangle are equal in measure
๐ฆโˆ ๐‘จ = ๐ฆโˆ ๐‘ช
โ–ณ ๐‘จ๐‘ซ๐‘ฉ โ‰… โ–ณ ๐‘ช๐‘ซ๐‘ฉ
SAS
๐ฆโˆ ๐‘จ๐‘ซ๐‘ฉ + ๐ฆโˆ ๐‘ช๐‘ซ๐‘ฉ = ๐Ÿ๐Ÿ–๐ŸŽ°
Linear pairs form supplementary angles
๐ฆโˆ ๐‘จ๐‘ซ๐‘ฉ = ๐Ÿ—๐ŸŽ°
Division property of equality
๐Ÿ(๐ฆโˆ ๐‘จ๐‘ซ๐‘ฉ) = ๐Ÿ๐Ÿ–๐ŸŽ°
Substitution property of equality
๐ฆโˆ ๐‘ช๐‘ซ๐‘ฉ = ๐Ÿ—๐ŸŽ°
Transitive property
โ–ณ ๐‘จ๐‘ซ๐‘ฉ and โ–ณ ๐‘ช๐‘ซ๐‘ฉ are right triangles
Lesson 23:
Date:
Definition of a right triangle
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
195
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 23
NYS COMMON CORE MATHEMATICS CURRICULUM
M1
GEOMETRY
2.
Given:
Prove:
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€–๐‘ช๐‘ฌ
๐‘จ๐‘ช = ๐‘จ๐‘ฌ and ๐‘ฉ๐‘ญ
๐‘จ๐‘ฉ = ๐‘จ๐‘ญ
๐‘จ๐‘ช = ๐‘จ๐‘ฌ
Given
๐ฆโˆ ๐‘จ๐‘ช๐‘ฌ = ๐ฆโˆ ๐‘จ๐‘ฌ๐‘ช
Base angles of an isosceles triangle are equal in measure
๐ฆโˆ ๐‘จ๐‘ช๐‘ฌ = ๐ฆโˆ ๐‘จ๐‘ฉ๐‘ญ
If parallel lines are cut by a transversal, then corresponding angles are equal in
measure
โ–ณ ๐‘จ๐‘ช๐‘ฌ is isosceles
Definition of isosceles triangle
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ€– ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
๐‘ฉ๐‘ญ
๐‘ช๐‘ฌ
๐ฆโˆ ๐‘จ๐‘ญ๐‘ฉ = ๐ฆโˆ ๐‘จ๐‘ฌ๐‘ช
Given
If parallel lines are cut by a transversal, then corresponding angles are equal in
measure
51T
๐’Žโˆ ๐‘จ๐‘ญ๐‘ฉ = ๐’Žโˆ ๐‘จ๐‘ฉ๐‘ญ
Transitive property
๐‘จ๐‘ฉ = ๐‘จ๐‘ญ
Definition of an isosceles triangle
โ–ณ ๐‘จ๐‘ฉ๐‘ญ is isosceles
3.
If the base angles of a triangle are equal in measure, the triangle is isosceles
๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ โ‰… ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ
In the diagram, โ–ณ ๐‘จ๐‘ฉ๐‘ช is isosceles with ๐‘จ๐‘ช
๐‘จ๐‘ฉ. In your own words, describe how transformations and the
properties of rigid motions can be used to show that โˆ ๐‘ช โ‰… โˆ ๐‘ฉ.
Answers will vary. A possible response would summarize the key elements
of the proof from the lesson, such as the response below.
It can be shown that โˆ ๐‘ช โ‰… โˆ ๐‘ฉ using a reflection across the bisector of โˆ ๐‘จ.
The two angles formed by the bisector of โˆ ๐‘จ would be mapped onto one
another since they share a ray, and rigid motions preserve angle measure.
Since segment length is also preserved, ๐‘ฉ is mapped onto ๐‘ช and vice versa.
Finally, since rays are taken to rays and rigid motions preserve angle
๐‘ฉ๐‘จ , ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ช๐‘ฉ is mapped onto ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ฉ๐‘ช, and โˆ ๐‘ช is
measure, ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
๐‘ช๐‘จ is mapped onto ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโƒ—
mapped onto โˆ ๐‘ฉ. From this, we see that โˆ ๐‘ช โ‰… โˆ ๐‘ฉ.
Lesson 23:
Date:
Base Angles of Isosceles Triangles
10/10/14
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
196
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.