Download Department of Natural Sciences

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of electromagnetic theory wikipedia , lookup

Neutron magnetic moment wikipedia , lookup

History of subatomic physics wikipedia , lookup

Condensed matter physics wikipedia , lookup

Magnetic monopole wikipedia , lookup

Electromagnetism wikipedia , lookup

Magnetic field wikipedia , lookup

Work (physics) wikipedia , lookup

Electrical resistance and conductance wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Nuclear physics wikipedia , lookup

Lorentz force wikipedia , lookup

Superconductivity wikipedia , lookup

Electromagnet wikipedia , lookup

Transcript
Clayton State University
Department of Natural Sciences
April 2, 2014
Physics 2212 – Quiz 7
Name ____________________________________
1. In a 1.32 T magnetic field directed vertically upward, a particle having a charge of
magnitude 8.50μC and initially moving northward at 4.72 km/s is deflected
toward the east.
a. Is the particle charged positively or negatively?
Positively – the particle obeys the right hand rule.
b. Find the magnitude of the magnetic force on the particle.
F | q | VB sin   0.0530 N
2. An electron is traveling horizontally toward the north in a uniform magnetic field
that is directed vertically downward. In what direction does the magnetic force act
on the electron?
a. Upward.
b. North.
c. East.
d. Downward.
e. West.
f. South.
Clayton State University
Department of Natural Sciences
April 9, 2014
Physics 2212 – Quiz 8
Name __SOLUTION__________________________________
A cyclotron is to accelerate protons to energy of 5.4 MeV. The superconducting
electromagnet of the cyclotron produces a 2.9-T magnetic field perpendicular to the
proton orbits. Note: the mass of a proton is 1.67262178 × 10-27 kg.
a. When the protons have achieved a kinetic energy of 2.7 MeV, what is the
radius of their circular orbit?
K  2.7  10 6 eV  4.32  10 13 J
V
2K
 2.27  10 7 m / s
m
b. What is their angular speed?
  V / r  2.775  10 7 rad / s where r  0.0818 m
c. When the protons have achieved a kinetic energy of 5.4MeV, what is the
radius of their circular orbit?
V
2K
 3.2110 7 m / s
m
r  0.116 m
d. What is their angular speed now?
  V / r  2.775  10 7 rad / s
e. What is the orbital period of these protons at this energy?
T
2

 0.227  10 7 s
Clayton State University
Department of Natural Sciences
April 23, 2014
Physics 2212 – Quiz 9
Name ____SOLUTION________________________________
1. A coil lies flat on a tabletop in a region where the magnetic field vector points
straight up. The magnetic field vanishes suddenly. When viewed from above,
what is the direction of the induced current in this coil as the field fades?
a.
Clockwise then counter-clockwise.
b.
Clockwise.
c.
Counter-clockwise then clockwise.
d.
Counter-clockwise.
e.
There is no current induced in the coil.
2. A circular metal ring is situated above a long straight wire, as shown in the figure.
The straight wire has a current flowing to the right, and the current is increasing in
time at a constant rate. Which statement is true?
a.
There is an induced current in the metal ring, flowing in a counter-clockwise
direction.
b. There is an induced current in the metal ring, flowing in a clockwise direction.
(Continued on the next page.)
c. There is no induced current in the metal ring because the current in the wire is
changing at a constant rate.
3. The figure shows a bar magnet moving vertically upward toward a horizontal coil.
The poles of the bar magnets are labeled X and Y. As the bar magnet approaches
the coil it induces an electric current in the direction indicated on the figure
(counter-clockwise as viewed from above). What are the correct polarities of the
magnet?
a.
X is a south pole, Y is a north pole.
b. Both X and Y are south poles.
c. X is a north pole, Y is a south pole.
d. Both X and Y are north poles.
e. The polarities of the magnet cannot be determined from the information given.
Department of Natural Sciences
Clayton State University
May 5, 2014
Physics 2212 – Quiz 10
Name __SOLUTION___________________________________
A series ac circuit contains a 50.0- resistor, a 15.0-F capacitor, a 0.200-H inductor,
and a 60.0-Hz generator that has an rms output of 90.0 V.
a. Find the impedance of the circuit.
X L  2fL  (2 )(60 Hz)(0.200 H )  75.4 
XC 
1
1

 176.8 
2fC (2 )(60 Hz)(15.0  10 6 F )
Z  R 2  ( X L  X C ) 2  113 
b. Find the maximum current that flows in the resistor.
Vm  I m Z
I m  Vm / Z  1.125 A
c. Find the maximum potential difference across the capacitor.
Vm  I m X C  199 V
d. Does the voltage lead the current in the circuit or the current leads the
voltage? EXPLAIN.
Current leads the voltage since the phase angle is negative.