Download RP 3P1 Force and Motion - NC Science Wiki

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Mass wikipedia , lookup

Coriolis force wikipedia , lookup

Time dilation wikipedia , lookup

Newton's theorem of revolving orbits wikipedia , lookup

Length contraction wikipedia , lookup

History of physics wikipedia , lookup

Lorentz force wikipedia , lookup

Classical mechanics wikipedia , lookup

Dialogue Concerning the Two Chief World Systems wikipedia , lookup

Equations of motion wikipedia , lookup

Artificial gravity wikipedia , lookup

Introduction to general relativity wikipedia , lookup

Centrifugal force wikipedia , lookup

Electromagnetism wikipedia , lookup

Fundamental interaction wikipedia , lookup

Centripetal force wikipedia , lookup

Work (physics) wikipedia , lookup

Mass versus weight wikipedia , lookup

Force wikipedia , lookup

Time in physics wikipedia , lookup

Speed of gravity wikipedia , lookup

Inertia wikipedia , lookup

Anti-gravity wikipedia , lookup

Weightlessness wikipedia , lookup

Free fall wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Aristotelian physics wikipedia , lookup

Gravity wikipedia , lookup

Transcript
North Carolina Science Essential Standards
Resource Pack for Unit planning
Essential Standard:
3.P.1 Understand motion and factors that affect motion.
3.P.1.1 Infer changes in speed or direction resulting from forces acting on an object.
3.P.1.2 Compare the relative speeds (faster or slower) of objects that travel the same distance in different amounts of
time.
3.P.1.3 Explain the effect of Earth’s gravity on the motion of any object on or near the Earth.
Vertical Strand Maps:
http://scnces.ncdpi.wikispaces.net/Strand+Maps
Online Atlas map http://strandmaps.dls.ucar.edu/?id=SMS-MAP-1357
http://strandmaps.dls.ucar.edu/?id=SMS-MAP-1372
North Carolina Unpacking:
http://scnces.ncdpi.wikispaces.net/Race+to+the+Top+Support+Tools
Framework for K-12 Science Education:
Core Idea PS2 Motion and Stability: Forces and Interactions
How can one explain and predict interactions between objects and within systems of objects?
Interactions between any two objects can cause changes in one or both of them. An understanding of the forces between objects
is important for describing how their motions change, as well as for predicting stability or instability in systems at any scale. All
forces between objects arise from a few types of interactions: gravity, electromagnetism, and the strong and weak nuclear
interactions.
PS2.A: FORCES AND MOTION
How can one predict an object’s continued motion, changes in motion, or stability?
Interactions of an object with another object can be explained and predicted using the concept of forces, which can cause a
change in motion of one or both of the interacting objects. An individual force acts on one particular object and is described by
its strength and direction. The strengths of forces can be measured and their values compared. What happens when a force is
applied to an object depends not only on that force but also on all the other forces acting on that object. A static object typically
has multiple forces acting on it, but they sum to zero. If the total (vector sum) force on an object is not zero, however, its motion
will change. Sometimes forces on an object can also change its shape or orientation. For any pair of interacting objects, the
force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first but
in the opposite direction (Newton’s third law). At the macroscale, the motion of an object subject to forces is governed by
Newton’s second law of motion. Under everyday circumstances, the mathematical expression of this law in the form F = ma
(total force = mass times acceleration) accurately predicts changes in the motion of a single macroscopic object of a given mass
due to the total force on it. But at speeds close to the speed of light, the second law is not applicable without modification. Nor
does it apply to objects at the molecular, atomic, and subatomic scales, or to an object whose mass is changing at the same time
as its speed.
An understanding of the forces between objects is important for describing how their motions change,
as well as for predicting stability or instability in systems at any scale.
For speeds that are small compared with the speed of light, the momentum of an object is defined as its mass times its velocity.
For any system of interacting objects, the total momentum within the system changes only due to transfer of momentum into or
out of the system, either because of external forces acting on the system or because of matter flows. Within an isolated system
of interacting objects, any change in momentum of one object is balanced by an equal and oppositely directed change in the
total momentum of the other objects. Thus total momentum is a conserved quantity.
Grade Band Endpoints for PS2.A
By the end of grade 2. Objects pull or push each other when they collide or are connected. Pushes and pulls can have different
strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or
stop it. An object sliding on a surface or sitting on a slope experiences a pull due to friction on the object due to the surface that
opposes the object’s motion.
By the end of grade 5. Each force acts on one particular object and has both a strength and a direction. An object at rest
typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can
cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition
of forces are used at this level.) The patterns of an object’s motion in various situations can be observed and measured; when
past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude,
velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size
and direction to be described is developed.)
PS2.B: TYPES OF INTERACTIONS
What underlying forces explain the variety of interactions observed?
All forces between objects arise from a few types of interactions: gravity, electromagnetism, and strong and weak nuclear
interactions. Collisions between objects involve forces between them that can change their motion. Any two objects in contact
also exert forces on each other that are electromagnetic in origin. These forces result from deformations of the objects’
substructures and the electric charges of the particles that form those substructures (e.g., a table supporting a book, friction
forces).
Gravitational, electric, and magnetic forces between a pair of objects do not require that they be in contact. These forces are
explained by force fields that contain energy and can transfer energy through space. These fields can be mapped by their effect
on a test object (mass, charge, or magnet, respectively).
Objects with mass are sources of gravitational fields and are affected by the gravitational fields of all other objects with mass.
Gravitational forces are always attractive. For two human-scale objects, these forces are too small to observe without sensitive
instrumentation. Gravitational interactions are nonnegligible, however, when very massive objects are involved. Thus the
gravitational force due to Earth, acting on an object near Earth’s surface, pulls that object toward the planet’s center. Newton’s
law of universal gravitation provides the mathematical model to describe and predict the effects of gravitational forces between
distant objects. These long-range gravitational interactions govern the evolution and maintenance of large-scale structures in the
universe (e.g., the solar system, galaxies) and the patterns of motion within them. Electric forces and magnetic forces are
different aspects of a single electromagnetic interaction. Such forces can be attractive or repulsive, depending on the relative
sign of the electric charges involved, the direction of current flow, and the orientation of magnets. The forces’ magnitudes
depend on the magnitudes of the charges, currents, and magnetic strengths as well as on the distances between the interacting
objects. All objects with electrical charge or magnetization are sources of electric or magnetic fields and can be affected by the
electric or magnetic fields of other such objects. Attraction and repulsion of electric charges at the atomic scale explain the
structure, properties, and transformations of matter and the contact forces between material objects (link to PS1.A and PS1.B).
Coulomb’s law provides the mathematical model to describe and predict the effects of electrostatic forces (relating to stationary
electric charges or fields) between distant objects. The strong and weak nuclear interactions are important inside atomic nuclei.
These short-range interactions determine nuclear sizes, stability, and rates of radioactive decay (see PS1.C).
Grade Band Endpoints for PS2.B
By the end of grade 2. When objects touch or collide, they push on one another and can change motion or shape.
By the end of grade 5. Objects in contact exert forces on each other (friction, elastic pushes and pulls). Electric, magnetic, and
gravitational forces between a pair of objects do not require that the objects be in contact—for example, magnets push or pull at
a distance. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for
forces between two magnets, on their orientation relative to each other. The gravitational force of Earth acting on an object near
Earth’s surface pulls that object toward the planet’s center.
PS2.C: STABILITY AND INSTABILITY IN PHYSICAL SYSTEMS
Why are some physical systems more stable than others?
Events and processes in a system typically involve multiple interactions occurring simultaneously or in sequence. The system’s
stability or instability and its rate of evolution depend on the balance or imbalance among these multiple effects. A stable
system is one in which the internal and external forces are such that any small change results in forces that return the system to
its prior state (e.g., a weight hanging from a string). A system can be static but unstable, with any small change leading to forces
that tend to increase that change (e.g., a ball at the top of a hill). A system can be changing but have a stable repeating cycle of
changes, with regular patterns of change that allow predictions about the system’s future
(e.g., Earth orbiting the sun). And a stable system can appear to be unchanging when flows or processes within it are going on at
opposite but equal rates (e.g., water in a dam at a constant height but with water flowing in that offsets the water flowing out; a
person maintaining steady weight but eating food, burning calories, and excreting waste). Stability and instability in any system
depend on the balance of competing effects. A steady state of a complex system can be maintained through a set of feedback
mechanisms, but changes in conditions can move the system out of its range of stability (e.g., homeostasis breaks down at too
high or too low a temperature).
With no energy inputs, a system starting out in an unstable state will continue to change until it reaches a stable configuration
(e.g., the temperatures of hot and cold objects in contact). Viewed at a given scale, stable systems may appear static or dynamic.
Conditions and properties of the objects within a system affect the rates of energy transfer and thus how fast or slowly a process
occurs (e.g., heat conduction, the diffusion of particles in a fluid).
When a system has a great number of component pieces, one may not be able to predict much about its precise future. For such
systems (e.g., with very many colliding molecules), one can often predict average but not detailed properties and behaviors
(e.g., average temperature, motion, and rates of chemical change but not the trajectories of particular molecules).
Grade Band Endpoints for PS2.C
By the end of grade 2. Whether an object stays still or moves often depends on the effects of multiple pushes and pulls on it
(e.g., multiple players trying to pull an object in different directions). It is useful to investigate what pushes and pulls keep
something in place (e.g., a ball on a slope, a ladder leaning on a wall) as well as what makes something change or move.
By the end of grade 5. A system can change as it moves in one direction (e.g., a ball rolling down a hill), shifts back and forth
(e.g., a swinging pendulum), or goes through cyclical patterns (e.g., day and night). Examining how the forces on and within the
system change as it moves can help to explain the system’s patterns of change.
Science for All Americans:
MOTION
Motion is as much a part of the physical world as matter and energy are. Everything moves—atoms and
molecules; the stars, planets, and moons; the earth and its surface and everything on its surface; all living things,
and every part of living things. Nothing in the universe is at rest.
Since everything is moving, there is no fixed reference point against which the motion of things can be
described. All motion is relative to whatever point or object we choose. Thus, a parked bus has no motion with
reference to the earth's surface; but since the earth spins on its axis, the bus is moving about 1,000 miles per
hour around the center of the earth. If the bus is moving down the highway, then a person walking up the aisle
of the bus has one speed with reference to the bus, another with respect to the highway, and yet another with
respect to the earth's center. There is no point in space that can serve as a reference for what is actually moving.
Changes in motion—speeding up, slowing down, changing direction—are due to the effects of forces. Any
object maintains a constant speed and direction of motion unless an unbalanced outside force acts on it. When
an unbalanced force does act on an object, the object's motion changes. Depending on the direction of the force
relative to the direction of motion, the object may change its speed (a falling apple) or its direction of motion
(the moon in its curved orbit), or both (a fly ball).
The greater the amount of the unbalanced force, the more rapidly a given object's speed or direction of motion
changes; the more massive an object is, the less rapidly its speed or direction changes in response to any given
force. And whenever some thing A exerts a force on some thing B, B exerts an equally strong force back on A.
For example, iron nail A pulls on magnet B with the same amount of force as magnet B pulls on iron nail A—
but in the opposite direction. In most familiar situations, friction between surfaces brings forces into play that
complicate the description of motion, although the basic principles still apply.
Some complicated motions can be described most conveniently not in terms of forces directly but in summary
descriptions of the pattern of motion, such as vibrations and waves. Vibration involves parts of a system moving
back and forth in much the same place, so the motion can be summarized by how frequently it is repeated and
by how far a particle is displaced during a cycle. Another summary characteristic is the rate at which the
vibration, when left to itself, dies down as its energy dissipates.
Vibrations may set up a traveling disturbance that spreads away from its source. Examples of such
disturbances are sound, light, and earthquakes, which show some behavior very like that of familiar surface
waves on water—changing direction at boundaries between media, diffracting around corners, and mutually
interfering with one another in predictable ways. We therefore speak of sound waves, light waves, and so on,
and the mathematics of wave behavior is useful in describing all these phenomena. Wave behavior can also be
described in terms of how fast the disturbance propagates, and in terms of the distance between successive
peaks of the disturbance (the wavelength).
The observed wavelength of a wave depends in part upon the relative motion of the source of the wave with
respect to the observer. If the source is moving toward the observer (or vice versa), the wave is in effect
compressed and perceived as shorter; if the source and observer are moving farther apart, the wave is in effect
stretched out and perceived as longer. Both effects are evident in the apparent change in pitch of an automobile
horn as it passes the observer. These apparent shifts in wavelength therefore provide information about relative
motion. A particularly significant example of this shift is the change in the wavelength of light from stars and
galaxies. Because the light emitted from most of them shifts toward longer wavelengths (that is, toward the red
end of the spectrum), astronomers conclude that galaxies are all moving away from one another—and hence
that we are in a generally expanding universe.
Wavelength can greatly influence how a wave interacts with matter—how well it is transmitted, absorbed,
reflected, or diffracted. For example, the ways in which shock waves of different wavelengths travel through
and reflect from layers of rock are an important clue as to what the interior of the earth is like. The interaction
of electromagnetic waves with matter varies greatly with wavelength, both in how they are produced and in
what their effects are. Different but somewhat overlapping ranges have been given distinctive names: radio
waves, microwaves, radiant heat or infrared radiation, visible light, ultraviolet radiation,x rays, and gamma rays.
Materials that allow one range of wavelengths to pass through them may completely absorb others. For
example, some gases in the atmosphere, including carbon dioxide and water vapor, are transparent to much of
the incoming sunlight but not to the infrared radiation from the warmed surface of the earth. Consequently, heat
energy is trapped in the atmosphere. The temperature of the earth rises until its radiation output reaches
equilibrium with the radiation input from the sun. Another atmospheric gas, ozone, absorbs some of the
ultraviolet radiation in sunlight—the wavelengths that produce burning, tanning, and cancer in the skin of
human beings.
Even within the named ranges of electromagnetic radiation, different wavelengths interact with matter in
different ways. The most familiar example is that different wavelengths of visible light interact with our eyes
differently, giving us the sensation of different colors. Things appear to have different colors because they
reflect or scatter visible light of some wavelengths more than others, as in the case of plants that absorb blue
and red wavelengths and reflect only green and yellow. When the atmosphere scatters sunlight—which is a
mixture of all wavelengths—short-wavelength light (which gives us the sensation of blue) is scattered much
more by air molecules than long-wavelength (red) light is. The atmosphere, therefore, appears blue and the sun
seen through it by unscattered light appears reddened.
FORCES OF NATURE
The two kinds of forces we are commonly aware of are gravitational and electromagnetic.
Everything in the universe exerts gravitational forces on everything else, although the effects are readily
noticeable only when at least one very large mass is involved (such as a star or planet). Gravity is the force
behind the fall of rain, the power of rivers, the pulse of tides; it pulls the matter of planets and stars toward their
centers to form spheres, holds planets in orbit, and gathers cosmic dust together to form stars. Gravitational
forces are thought of as involving a gravitational field that affects space around any mass. The strength of the
field around an object is proportional to its mass and diminishes with distance from its center. For example, the
earth's pull on an individual will depend on whether the person is, say, on the beach or far out in space.
The electromagnetic forces acting within and between atoms are immensely stronger than the gravitational
forces acting between them. On an atomic scale, electric forces between oppositely charged protons and
electrons hold atoms and molecules together and thus are involved in all chemical reactions. On a larger scale,
these forces hold solid and liquid materials together and act between objects when they are in contact (for
example, the friction between a towel and a person's back, the impact of a bat on a ball). We usually do not
notice the electrical nature of many familiar forces because the nearly equal densities of positive and negative
electric charges in materials approximately neutralize each other's effects outside the material. But even a tiny
imbalance in these opposite charges will produce phenomena that range from electric sparks and clinging
clothes to lightning.
Depending on how many of the electric charges in them are free to move, materials show great differences in
how much they respond to electric forces. At one extreme, an electrically insulating material such as glass or
rubber does not ordinarily allow any passage of charges through it. At the other extreme, an electrically
conducting material such as copper will offer very little resistance to the motion of charges, so electric forces
acting on it readily produce a current of charges. (Most electrical wires are a combination of extremes: a very
good conductor covered by a very good insulator.) In fact, at very low temperatures, certain materials can
become superconductors, which offer zero resistance. In between low- and high-resistance materials are
semiconducting materials in which the ease with which charges move may vary greatly with subtle changes in
composition or conditions; these materials are used in transistors and computer chips to control electrical
signals. Water usually contains charged molecular fragments of dissolved impurities that are mobile, and so it is
a fairly good conductor.
Magnetic forces are very closely related to electric forces—the two can be thought of as different aspects of a
single electromagnetic force. Both are thought of as acting by means of fields: an electric charge has an electric
field in the space around it that affects other charges, and a magnet has a magnetic field around it that affects
other magnets. What is more, moving electric charges produce magnetic fields and are affected by magnetic
fields. This influence is the basis of many natural phenomena. For example, electric currents circulating in the
earth's core give the earth an extensive magnetic field, which we detect from the orientation of our compass
needles.
The interplay of electric and magnetic forces is also the basis of much technological design, such as electric
motors (in which currents produce motion), generators (in which motion produces currents), and television
tubes (in which a beam of moving electric charges is bent back and forth by a periodically changing magnetic
field). More generally, a changing electric field induces a magnetic field, and vice versa.
Other types of forces operate only at the subatomic scale. For example, the nuclear force that holds particles
together within the atomic nucleus is much stronger than the electric force, as is evident in the relatively great
amounts of energy released by nuclear interactions.
Benchmarks for Science Literacy:
Kindergarten through Grade 2
From the outset, students should view, describe, and discuss all kinds of moving things—themselves,
insects, birds, trees, doors, rain, fans, swings, volleyballs, wagons, stars, etc.—keeping notes, drawing
pictures to suggest their motion, and raising questions: Do they move in a straight line? Is their motion
fast or slow? How can you tell? How many ways does a growing plant move? The questions count more
than the answers, at this stage. And students should gain varied experiences in getting things to move or
not to move and in changing the direction or speed of things that are already in motion.
Presumably students will start "making music" from the first day in school, and this provides an
opportunity to introduce vibrations as a phenomenon rather than a theory. With the drums, bells,
stringed and other instruments they use, including their own voices, they can feel the vibrations on the
instruments as they hear the sounds. These experiences are important for their own sake and at this
point do not need elaboration.
By the end of the 2nd grade, students should know that
 Things move in many different ways, such as straight, zigzag, round and round, back and forth, and
fast and slow. 4F/P1
 The way to change how something is moving is to give it a push or a pull. 4F/P2
 Things that make sound vibrate. 4F/P3
Grades 3 through 5
Students should continue describing motion. And they can be more experimental and more quantitative as their
measurement skills sharpen. Determining the speed of fast things and slow things can present a challenge that
students will readily respond to. They also can work out for themselves some of the general relationships
between force and change of motion and internalize the notion of force as a push or pull of one thing on
another—whether rubber bands, magnets, or explosions.
Students should also increase their inventory of examples of periodic motion and perhaps devise ways of
measuring different rates of vibration. And students should use prisms to see that white light produces a whole
"rainbow" of colors. (The idea that white light is "made up of" different colors is difficult and should be
postponed to later grades.) There is nothing to be gained at this stage, however, from linking light to wave
motion. By the end of the 5th grade, students should know that




Changes in speed or direction of motion are caused by forces. 4F/E1a
The greater the force is, the greater the change in motion will be. The more massive an object is, the less
effect a given force will have. 4F/E1bc
How fast things move differs greatly. Some things are so slow that their journey takes a long time;
others move too fast for people to even see them. 4F/E2
Light travels and tends to maintain its direction of motion until it interacts with an object or material.
Light can be absorbed, redirected, bounced back, or allowed to pass through. 4F/E3** (ASL)
Gravity and other forces: The main notion to convey here is that forces can act at a distance. Students
should carry out investigations to become familiar with the pushes and pulls of magnets and static
electricity. The term gravity may interfere with students' understanding because it often is used as an
empty label for the common (and ancient) notion of "natural motion" toward the earth. The important
point is that the earth pulls on objects.
 The earth's gravity pulls any object on or near the earth toward it without touching it. 4G/E1*
 Without touching them, a magnet pulls on all things made of iron and either pushes or pulls on other magnets.
4G/E2
 Without touching them, an object that has been electrically charged pulls on all other uncharged objects and
may either push or pull other charged objects. 4G/E3*
Big Ideas:
Nothing in the universe is at rest. (stability and change)
All motion is governed by the same basic rules. (systems and system models)
Gravity is an attractive interaction. The earth's gravity pulls any object on or near the earth toward it
without touching it. A gravitational field is caused by an object with mass.
Essential Questions:
What is a force?
How do forces affect objects?
How do objects move? What affects motion?
Why do objects move, change direction, or stop?
What is speed? Why do we say that “speed is relative”?
How can we model the relationship of distance and time in motion?
What is gravity? How does gravity ‘work’?
How does gravity affect things on or near the earth?
How are motion and gravity connected?
Why do objects fall? How is gravity related to mass?
What would happen if there were no force of gravity?
Enduring Understandings:
A force is a push or pull (usually on an object).
Forces can cause objects to start moving, stop moving, or change direction.
Mass and force affect motion.
Changes in speed or direction of motion are caused by forces.
The relative speed of objects can be compared.
There are fundamental forces of nature that influence the universe.
Gravity is a fundamental force.
Gravity is the earth’s pull on things. Things on or near the earth are pulled toward it by the earth's
gravity.
Identify Misconceptions:

















(these are some common misconceptions)
An object stops moving because “the push wore off.”
If an object is moving there must be a force acting on it.
If an object is stationary there are no forces acting on it.
If a force acts on an object it will inevitably move.
Force is a property of an object; an object has force and, when the force ‘runs out’, it stops moving
An object that moves has that ability to do so by itself (in-built ability to move).
“People move because they have legs” or “Bikes move because they have wheels.”- a part of an object
creates the motion.
Things fall because you let them go, but to go UP you have to push them up.
An object stops because of the lack of action to keep the object going.
The only "natural" motion is for an object to be at rest.
Force is a property of an object. An object has force and when it runs out of force it stops moving.
The motion of an object is always in the direction of the net force applied to the object.
A force is needed to keep an object moving with a constant speed.
Gravity stops acting when an object hits the ground.
Gravity only affects heavy things
Falling objects stay at the same speed as they fall.
When dropped in a vacuum, heavier objects will reach the ground first.
Annotated TEACHING Resources:
Science in Focus: Force and Motion Workshops for Teachers
http://www.learner.org/workshops/force/
These eight free professional development workshops for K-8 teachers present science concepts in force
and motion. They are designed so that teachers come away with an understanding that will help them
engage their students in their own explorations. The workshops cover gravity, friction, air resistance,
magnetism, and tension through activities, discussions, and demonstrations.
Teaching Mass, Weight, and gravity.
https://www.teachingchannel.org/videos/teaching-mass-weight-gravity
Students explore mass, weight, and gravity with simple experiments.
Distance Time Graph Activity
http://graphs.mathwarehouse.com/distance-time-graph-activity.php
Students explore the relationship between distance and time as they move a space ship across the screen.
Fast Cars
http://www.upd8.org.uk/activity/213/Fast-car.html
Fast cars fire up interest even for those who can't afford them. Fast talking TV presenters tempt us with
terminology and hype. But does it make any sense? Here's a chance for students to turn Top Gear
researcher and refine their skills in interpreting graphs in order to write a car review for TV.
Real World Physics Problems
http://www.real-world-physics-problems.com/physics-for-kids.html
For kids, the objects which are naturally the most interesting to them are toys.
Toys often involve a lot of physics just by how they work. Working with toys students can start to get a
feel for how it works, and learn all the tricks to get the maximum entertainment out of it. And if the toy
demonstrates a principle (or two) of physics then it will be these principles that they get a feel for.
Catapult Creations
http://www.uen.org/Lessonplan/preview.cgi?LPid=21632
Students build their own catapult and explore how it works.
Teachers' Domain: Virtual Pendulum
http://www.teachersdomain.org/resource/phy03.sci.phys.mfw.zpendulumint/
This interactive Shockwave simulation, produced by PBS Zoom, lets users explore pendulum motion in a
unique game-like format. Swing it back and forth from different heights and change the length of the
string. But now it gets more complicated: the user can jump to another planet to see how changing
gravity affects the motion of the pendulum.
Raceway to Science
http://www.cape.k12.mo.us/blanchard/hicks/news%20pages/Force%20pdf%20files/Raceway%20to%
20Science.pdf
Students work with toy cars and identify what causes them to move shorter and longer distances.
Falling Dominoes
https://www.google.com/?gws_rd=ssl#q=3rd+grade+motion+and+gravity+unit
Students investigate whether one or more dominoes fall to the ground in the same amount of time.
Dragon’s Den Force and Motion
http://dragonsdencurriculum.blogspot.com/2015/02/give-me-some-force-and-motion.html
If you need activities to grab those reluctant learners and "Power" them up, this site can help to provide
enrichment and reinforcement. It's filled with experiments, plus lots of movement and action.
Design Squad Force and Motion STEM activities
http://pbskids.org/designsquad/parentseducators/resources/index.html?category=forceenergy
Activities are hands-on challenges that focus on the engineering design process. They use simple
materials, allow for multiple solutions, and are ideal for ages 9-12.
Zoom Forces and Energy
http://pbskids.org/zoom/activities/sci/
A collection of activities from which teachers can select individual activities for student exploration.
Gravity Games for kids
http://www.wartgames.com/themes/science/gravity.html
An assortment of online games that help students to learn about gravity.
Gravity Launch
http://sciencenetlinks.com/lessons/gravity-launch/
Students explore how the earth’s and moon’s gravity affects the path of a rocket launched into space.
Position and Motion of Objects Flash Interactives
http://www.learningscience.org/psc1bpositionmotionobjects.htm
Flash learning tools focused on fundamental concepts and principles of force and motion.
NASA’ BEST – Beginning Engineering, Science and Technology
http://www.nasa.gov/audience/foreducators/best/activities.html
NASA's BEST activities focus on teaching the engineering design process. Each activity features
objectives, a list of materials, educator information, procedures and student worksheets. All activities are
intended for student teams. Ideally, each team would consist of three or four students. The content in the
guides can be used to supplement curricula during the school day or as activities for after-school clubs.
Educators may use the materials as a set or as individual activities. The activities keep material costs to a
reasonable limit by using materials often found in the classroom or at home. Many of the activities
provided here are relevant to teaching force and motion.
http://www.nasa.gov/audience/foreducators/best/edp.html
NASA’s BEST video series.
Project Based Engineering for Kids
http://www.instructables.com/id/Project-Based-Engineering-for-Kids/
These project-based lessons focus on basic principles of physics, structural, and mechanical engineering.
Physical models are built from a similar set of materials that can be easily sourced online (links are
provided in-lesson).
Single Runner
http://illuminations.nctm.org/Lesson.aspx?id=1160
In this activity, students use a software simulation of one runner along a track. Students control the speed
and starting point of the runner, watch the race, examine a graph, and analyze the time-versus-distance
relationship.
Change in Motion
http://betterlesson.com/lesson/617199/change-in-motion
Students will be placed into groups with an assigned change in motion. They must use materials and tools
to create a device that changes the ball's motion based on their group's assigned change.
How Fast Can you Get there?
http://betterlesson.com/lesson/630800/how-fast-can-you-get-there
Students will use the Elementary Engineering Design Process to design an object that can travel a
distance.
How Fast Can you Get there? Part 2
http://betterlesson.com/lesson/631278/how-fast-can-you-get-there-part-2
Utah Education Network Grade 3
http://www.uen.org/core/displayLessonPlans.do?courseNumber=3030&standardId=1192&objectiveId
=1194
Copy and paste this url in order to view a collection of USOE approved lesson plans for grade 3 force and
motion. This site features lessons that are relevant to grade 3, many can be adapted for use in the
NCSCOS.
Interactive Sites for Education: Force and Motion
http://interactivesites.weebly.com/physics-and-motion.html
http://www.bbc.co.uk/schools/scienceclips/ages/10_11/forces_action.shtml
Gizmos for Motion and Force
https://www.explorelearning.com/index.cfm?method=cResource.dspResourceExplorer&browse=Scienc
e/Grade+3-5/Physical+Science/Motion+and+Force
BBC Interactive Forces and Movement
http://www.bbc.co.uk/schools/scienceclips/ages/6_7/forces_movement.shtml
In this online activity, students observe the relationship between force, mass, and motion.
Marshmallow Shooters
http://owlwaysbeinspired.blogspot.com/2014/10/marshmallow-shooters-force-motion.html
Video Resources:
Calculating Speed
http://www.pbslearningmedia.org/resource/vtl07.math.measure.rate.calcspeed/calculating-speed/
Thank Goodness for Gravity
http://www.teachersdomain.org/resource/ket09.sci.ess.gravity/
The boy featured in this video has concerns about spinning through space on Earth until he is introduced
to a Foucault pendulum.
Bill Nye – Gravity
http://www.schooltube.com/video/9d2282cbc5684091a143/Bill%20Nye%20Gravity
Bill Nye – Motion
https://www.schooltube.com/video/c74a9a495e7544dba30a/bill%20nye%20-%20motion
Brainpop –Gravity
https://www.brainpop.com/science/motionsforcesandtime/gravity/
Speed is Distance over Time (song)
http://www.watchknowlearn.org/Video.aspx?VideoID=34332&CategoryID=2515
Richard Scarry Gravity
http://www.watchknowlearn.org/Video.aspx?VideoID=27544&CategoryID=13968
A Victim of Gravity
http://www.gamequarium.org/cgi-bin/search/linfo.cgi?id=3760
Text Resources:
Physics4Kids
http://www.physics4kids.com/files/motion_intro.html
Rader’s site that explains force, motion, gravity and more to kids in simple language.
Color Me Physics
http://www.aps.org/programs/education/k8/
Coloring and activity books featuring physics and physicists.
Ducksters Physics for Kids
http://www.ducksters.com/science/physics/
This site has readings that explore many physics topics. It also includes diagrams that help younger
students to grasp basic concepts.
Terminology:
gravity
direction
mass
friction
position distance
axis
force
push
pull
motion
speed
position
Writing Prompts:
We see cars and trucks around us everywhere. There are so many cars and trucks that sometimes we
forget how important they are and how they make our lives more comfortable. Write an essay
explaining how cars and trucks make life more comfortable. Give reasons why you think as you do.
2. Pretend you work for a newspaper. Write one positive headline and one negative headline about how
speed is affecting our lives. Write a paragraph explaining each headline.
3. There are many kinds of rides in the amusement park, and they move in many different ways
depending on their speed and the force of gravity. Create a pamphlet that describes your favorite
amusement park ride, and explain how the experience of it is affected by speed and gravity. Draw a
picture and use captions on it to show the things you have written about.
1.