Download Particle Accelerators - Institute of Particle and Nuclear Physics

Document related concepts

Aharonov–Bohm effect wikipedia , lookup

Radiation wikipedia , lookup

Introduction to gauge theory wikipedia , lookup

Nuclear physics wikipedia , lookup

Thomas Young (scientist) wikipedia , lookup

Time in physics wikipedia , lookup

Standard Model wikipedia , lookup

T-symmetry wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Elementary particle wikipedia , lookup

History of subatomic physics wikipedia , lookup

Lepton wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
Experimental Methods of Particle Physics
Particle Accelerators
Andreas Streun, PSI
[email protected]
http://people.web.psi.ch/streun/empp
Andreas Streun, PSI
1
Particle Accelerators
1.
2.
3.
4.
5.
6.
7.
8.
Andreas Streun, PSI
Introduction
Accelerator basics and types
Transverse beam dynamics
Longitudinal beam dynamics
Emittance
Synchrotron radiation
Luminosity
Muons and neutrinos
2
1. Introduction
Books & webs
Why accelerators?
Particles
Particles of interest
Particle wavelength and momentum
Particles to accelerate
Particle production
A beam of particles
Beam quality
Accelerator peformance
Particle Physics experiments
Center-of-mass energy
Luminosity
Andreas Streun, PSI
3
Books & Webs
K. Wille, Physik der Teilchenbeschleuniger und
Synchrotronstrahlungsquellen,
Teubner Studienbücher, Stuttgart 1992.
K. Wille, The physics of particle accelerators,
Oxford university press, 2005.
S. Y. Lee, Accelerator Physics, World Scientific, Singapore 1999
H. Wiedemann, Particle Accelerator Physics I+II,
Springer, Berlin Heidelberg New York 2007.
Proceedings of The CERN Accelerator School
http://cas.werb.cern.ch/cas/
A. W. Chao and M.Tigner, Handbook of Accelerator Physics and
Engineering, World Scientific, Singapore 1998.
Proceedings of the Accelerator Conferences
http://www.jacow.org/
Andreas Streun, PSI
4
Why accelerators? →
I. Applications
length scale
10-10 m = 1 Å / atomic
10-15 m / nuclear
Nuclear
Physics (NP)
Materials
Research (MR)
Physics
Chemistry
Biology
10-18 m / electroweak
Particle
Physics (PP)
Energy frontier
Particle
Accelerators
Particle factories
Exotic particles
Pharmacy
Medical applications
Andreas Streun, PSI
Industrial applications
5
Why accelerators? →
II. Connections
Classical Physics
Hamiltonian Mechanics
Electrodynamics
Engineering
Radio-frequency
Magnet technology
Ultra high vacuum
Mechanical engineering
Alignment & Survey
Electronics
Control systems
Particle
Accelerators
Modern Physics
Quantum mechanics
Computing
Particle Physics
High performance computing
Accelerator design codes
Digital signal processing s/w
Application programming
Andreas Streun, PSI
6
Why accelerators? → III. common PP & MR interests
Particle Physics (PP)
High energy
colliders
Linear
colliders
Particle
factories
Circular
colliders
Materials Research (MR)
Neutrino
factories
High power proton
accelerators
Spallation
neutron sources
Storage
rings
Photon
sources
Free electron
lasers (FEL)
A c c e l e r a t o r s
Linear accelerators
PP & MR scientists:
Andreas Streun, PSI
Cyclotrons
Synchrotrons
understand potential and limitations of accelerators
help to specify future machines
7
Particles of interest (PP)
Particle Physics: interested in all particles!
presently: particular interest in
new and unknown particles:
W± (80.4 GeV), Z (91.2 GeV), Ho (>115 GeV), ...?
produced in e+e− or pp or pp collision
highest energies: e.g. LEP, LHC
meson pairs (e.g. KSKL, BoBo) at high rate
meson factories: e.g. KEK-B, DAΦ
ΦNE.
muons (µ± ) and neutrinos (νe ,νµ)
long baseline experiments: e.g. CNGS, JPARC
muon accelerator and neutrino factory projects
Andreas Streun, PSI
8
Particles of interest (MR)
Materials Research: neutral particles
high penetration depth in materials
Neutrons (n)
penetrate high Z materials
depth not a steep function of Z
have a magnetic moment and a spin
explore structure and dynamics of materials
rather low flux (= particles per time and area)
Photons (γγ)
available at (very!) high flux
penetrate well low Z materials
have polarization
complementary to neutrons (“surface vs. bulk”)
Andreas Streun, PSI
9
Particle wavelength
Size of probe
Size of structure
λ ~ 10-10 m
MR
λ ~ 10-15 m
NP
De-Broglie wavelength
Planck constant
h=
6.63·10-34
Js =
4.14·10-15
Particle momentum
p = m·v = moc·βγ
Andreas Streun, PSI
PP
λ ~ 10-18 m
h
λ=
p
eV·s
c
<
v<
v≈c
non – relativistic
p = mov
high relativistic
p= moc·γ = Ε
/c
10
Recall: momentum & energy
Momentum
p = m·v = moc·βγ
non-relativistic
high relativistic
Total energy
norm. velocity β = v / c
Lorentz factor γ = E / moc2
p = mov
p = moc·γ = Ε/c
Eo = moc2
rest energy
E = mc 2 = mo c 2γ = ( mo c 2 ) 2 + ( pc ) 2 = E kin + mo c 2
Kinetic energy
Ekin= moc2 (γ−1) = q·U = charge × voltage.
Ekin in units of eV is equivalent to the accelerating voltage
for a particle with charge q = 1e (p, e+, Na+, µ+...)
non-relativistic
Ekin = ½ mov2
useful relations:
1
1
high relativistic Ekin = pc
β = 1−
γ =
βγ =
γ
Andreas Streun, PSI
2
1− β
2
γ 2 −1
11
Examples: momentum and wavelength
MR: 1Å neutron (moc2 = 940.8 MeV, mo =1.68·10-27 kg)
p = 12.4 keV/c
v = 3960 m/s << c
Ekin = 0.08 eV <Ekin> = kT
temperature equivalent T = 930 K
MR: 1Å photon (no rest mass)
v = c, Eγ = pc = 12.4 keV
NP: 10-15 m electron (moc2 = 511 keV)
p = 1.24 GeV/c
v = 0.999’999’915 c = c – 90 km/h !
Ekin = pc = 1.24 GeV
PP: 10-18 m proton (moc2 = 938.3 MeV)
p = 1.24 TeV/c
v = 0.999’999’7 c
Ekin = pc = 1.24 TeV (→ LHC 7 TeV)
Andreas Streun, PSI
12
Particles to accelerate
Requirements for acceleration:
charge q ≠ 0 and lifetime τ ≥ ≈1 µs
standard:
electron e− and proton p
antiparticles: positron e+ and antiproton p
ions:
muons: µ+ , µ− (τ = 2.2 µs – hurry up! )
pion π± (τ = 26 ns), neutron n, neutrino ν, photon γ ...
Andreas Streun, PSI
13
Particle Production
how to get the particles of interest
from the particles that can be accelerated
Principle
Beam on target
electrons e−
protons p
spallation target
Andreas Streun, PSI
Products
how many ?
Performance
Flux
pairs e+e−, pp
mesons π → µ → ν
neutrons n
chapter 8
Colliding beams anything...
leptonic e+e−
mesons KK, BB...
hadronic pp
Higgs Ho ?
Luminosity
Synchrotron
radiation
electrons e−
Brightness
chapter 7
photons γ
chapter 6
14
A beam of particles
Particle beam (n , µ , γ , e−, p ...)
= ensemble of N particles in 6-dimensional
phase space ( x, y, z; px, py, pz )
1st order
Beam centroid
mean values < ri >
beam momenta px, py, pz
moving along “z”
→ pz ≈ p >> px, py
beam location z (t)
beam positions x, y
beam angles x’ ≈ px/p, y’
Andreas Streun, PSI
2nd order
Beam distribution
rms values σi2 = < ri2 >
and correlations < ri rj >
momentum spread σ∆p/p
“bunch length” σ∆z
beam sizes σx , σy
beam divergences σx’ , σy’
... correlations ...
15
Beam quality → I. phase space density
Criterion for beam quality (n , µ , γ , e−, p ...) :
density in 6-d phase space
performance of experiment
→ flux, luminosity, brightness,
threshold phenomena
→ coherence, non-linearity...
Theorem of Liouville:
(holds under several conditions....
chapter 5 )
”The 6-d phase space density is an invariant.” or
“The 6-d phase space occupied by a beam
behaves like an incompressible liquid.”
Andreas Streun, PSI
16
Beam quality → II. Emittance
Decoupling of 6-d phase space density
into 3 × 2 dimensions (this is often ≈ possible):
longitudinal
×
∆p/p, ∆z
momentum
spread
pulse (bunch*)
length
* beams are usually
“bunched”, not continuous
chapter 2
Andreas Streun, PSI
horizontal × vertical
x, px (or x’)
y, py (or y’)
transverse emittances εx, εy
2-d phase space area:
εx2 = < x2>< x’ 2> − < xx’>2
invariant along
beam transport line
chapter 5
17
Beam quality → III. Accelerator performance
Momentum
p
( high relativistic: energy E = pc )
6-d phase
space density
Momentum spread
σ∆p/p
Bunch length
σ ∆z
Experiment
Emittances
εx , εy
performance:
Beam current
I = q·dN/dt
Luminosity (PP)
Higher orders...
Brightness (MR)
( non-Gaussian, halo, tails etc. )
Polarization (spin orientation)
Time structure: [continuous or] “bunched” → repetition rate
Stability: position, angle, momentum, timing...
jitter as function of frequency
Andreas Streun, PSI
18
PP-experiment → I. Center-of-mass energy
p~2 = 0 E1 = E Ecm
√
Ecm ≈ 2E m2c2
p
= (E1 + E2)2 − (~
p1c + p~2c)2
~=
β
Beam on target
~2 c
p
~1 c+p
E1 +E2
γ=
E1 +E2
Ecm
p~2 = −~
p1
E1 = E 2 = E
Ecm = 2E
Colliding beams
• Antiparticles: e+, p̄
• possibility of pure leptonic production e+ →← e−
• Mesons for experiments: π, K . . .
• highest energies (e.g. LHC Ecm = 14 TeV)
• Muons and neutrinos: µ [ → νµ]
• high luminosity particle factories: Φ, B . . .
• Spallation neutrons: n
~ from E1 6= E2 (→ B-factories)
• variable boost β
Andreas Streun, PSI
19
PP-experiment → II. Luminosity
Layout of experiment
~]
• Required energy Ecm [ and boost β
• Required precision p
−→
−→
Events N ≈
1
p2
E1, E2
p = ∆NN
√ ∆N ≈ N
• Efficiency of experiment ǫ (Observation inside detector, branching ratio etc.)
• Scheduled time of measurement T [s]
=⇒ Particle production rate R [s−1] =
N
ǫT
• Production cross section σ [cm2, or barn = 10−24 cm2]
=⇒
R = σL
Andreas Streun, PSI
Luminosity L [cm−2s−1]
20
Luminosity = sum of all possible encounters per time and area
N1 N2
× ∗
L=
T
A
(A∗ common interaction area)
L = particle current of beam 1
× particle density of beam 2
Requirements for PP-machines
• high beam currents: N1, N2, T
• focus at collision: A∗
• (highest ↔ given) beam energies: E1, E2
−→
~
Ecm [,β]
=⇒ challenges for accelerators.
Andreas Streun, PSI
21
“Livingston plot”
Progress of center of mass energy
Andreas Streun, PSI
Luminosities of e+e−-colliders
22
2. Accelerator basics and types
Particle sources
Electric and magnetic fields
Electrostatic accelerators
Marx
Cockcroft-Walton
van der Graaff
Radio-frequency acceleration
Linear accelerators
Linac
Buncher
Linear collider
FEL
Recirculation 1: fixed magnetic field and variable orbit
Recirculated linac
Microtron
Cyclotron
FFAG
Recirculation 2: variable magnetic field and fixed orbit
Betatron
Synchrotron and storage ring
Light sources
Circular colliders The LHC
Andreas Streun, PSI
23
Particle sources
→ I. Electron sources
thermionic cathode
laser cathode (photo effect)
field emission
gated field emitter (MIT)
field emitter array
with a damage
Andreas Streun, PSI
24
Particle sources → II. Proton [ion] sources
plasma ion source
laser ion source
electron beam
ion source
Andreas Streun, PSI
25
2.Accelerator basics and types
Electric and magnetic fields
How to accelerate ?
Lorentz Force:
d~s
~v =
dt
~ + E),
~
F~ = q (~v × B
path
Kinetic energy gain ∆T = work on the particle:
∆T = W =
Z
F~ · d~s = q
Z d~s ~
×B
dt
|
{z
=0
Z
~ · d~s
· d~s +q E
| {z }
}
=U
=⇒ Electric field to accelerate particles:
Kinetic energy gain = charge × voltage: ∆T = qU
Andreas Streun, PSI
26
2.Accelerator basics and types
Electric and magnetic fields
The most simple electron accelerator
color-TV tube: 27 kV
X-ray tube: ≈ 100 kV
Andreas Streun, PSI
27
2.Accelerator basics and types
Electric and magnetic fields
What are magnetic fields good for?
~ = F~ = p~˙ = m~v˙
q ~v × B
~ = Bz e~z
assume B
−→
since
ṁ = 0 (no energy gain).
q
v̇x = vy Bz
m
q
v̇y = − vxBz
m
v̇z = 0
=⇒ [d/dt . . .] Oscillation of velocities
vx(t) = vxo cos(ωt) + vyo sin(ωt)
vy (t) = vyo cos(ωt) − vxo sin(ωt)
vz (t) = vzo
q
Cyclotron frequency ω = m Bz
=⇒ Helical trajectories (closed circles for vzo = 0)
x(t) = xo + ρ cos(ωt − φ)
y(t) = yo + ρ sin(ωt − φ)
z(t) = zo + vzot
Andreas Streun, PSI
Radius of curvature ρ =
tan φ =
√
m
2 +v 2
vxo
yo
qBz
vyo
vxo
28
2.Accelerator basics and types
Electric and magnetic fields
Magnetic vs. electric deflection
~ ⊥ ~v
B
v→c
~ → F = q(vB + E)
k E
→ F ≈ q(cB + E) [1 MeV e− : v = 0.86c]
Technical limitations:
electric fields:
Emax ≈ 107 V/m (10 kV/mm)
magnetic fields: Bmax ≈ 2 T (normalconducting)/10 T (superconducting)
−→
cBmax ≈ 100 × Emax
=⇒ Magnetic fields for deflection (bending and focussing)
=⇒ Electric fields for acceleration.
(In special cases, electric fields too are used for deflection).
Andreas Streun, PSI
29
2.Accelerator basics and types
Electrostatic Accelerators
Cathode ray tubes (<1900)
−→ DC (”direct current”) electron guns
Example:
100 keV Teststand for LEG
(”Low Emittance Gun”)
Characterization of field
emitter array type cathodes
for SwissFEL project.
Andreas Streun, PSI
=⇒ Increase voltage ! =⇒
30
2.Accelerator basics and types
Electrostatic accelerators
Cascaded high voltage generators
Marx Generator (1920)
Principle
first arc trigger fires
all arcs and connects
capacitors in series.
Un = nUo
• high voltage
• high current
• short pulses
• low duty cycle
Umax ∼ 6 MV
Andreas Streun, PSI
Cockcroft Walton (1930)
Principle
diodes shift up voltage
offset on capacitor
chain.
Un(t) = 2nUo
+Uo sin(ωt)
• quasi DC HV
• with AC ripple
Umax ∼ 4 MV
31
2.Accelerator basics and types
Electrostatic accelerators
PSI Cockcroft Walton 870 keV proton source
Andreas Streun, PSI
32
2.Accelerator basics and types
Electrostatic accelerators
Van der Graaff Generator (1930)
Principle
corona discharge sprays charge on belt.
charge is accumulated on high voltage dome.
current through resistor chain stabilizes voltage.
accelerator: resistor column = beam tube
Umax ∼ 10 MV
Andreas Streun, PSI
33
2.Accelerator basics and types
Electrostatic accelerators
Tandem van der Graaff
Principle
inversion of ion charge by stripper foil =⇒
double (H − → H +) or multiple (ions) energy.
6 MV ion tandem van der Graaff at ETHZ
Andreas Streun, PSI
34
2.Accelerator basics and types
Electrostatic accelerators
Voltage limitations
Maximum DC voltage U ∼ 10 MV
technical limitations: discharge, insulation etc.
=⇒ maximum particle [kinetic] energy T = qU < 10 MeV
for protons and electrons (q = ±e).
(multiply charged ions: |q/e| > 1 −→ some 10 MeV)
PP requirements
W ± and Z production: 100 GeV e+ ↔ e−
Higgs and unknowns: > TeV protons!
how to accelerate further ?
Andreas Streun, PSI
35
2.Accelerator basics and types
Radio-frequency (RF) acceleration
AC/RF acceleration (Ising 1925, Wideröe 1928)
RF (”Radio Frequency”) = high frequency AC (“Alternating Current”): MHz . . . GHz
Drift tube length (v ≪ c): Ln =
U = Uo sin(ωt + φ)
−→
τ
2v
=
τ
2
q
2T
mo
=
τ
2
q
2nqUo sin φ
mo
T = nqUo[sin φ]
basically unlimited!
Phase φ: maximum acceleration for φ = π2 , but . . .
Andreas Streun, PSI
36
2.Accelerator basics and types
RF-acceleration
Phase focussing
Kinetic energy gain for synchronous particle (t̂ = 0)
T̂ → T̂ + qUo sin φ
Consider particles arriving too early (t < 0) or too late (t > 0):
T → T + qUo sin(φ + ωt) ≈ T + qUo sin φ + ωqUo cos φ · t;
0 < φ < π/2
→
|t| ≪ τ
acceleration and cos φ > 0:
late particles get more energy
early particles get less energy
−→
−→
faster; catch up with synchronous particle
slower; wait for synchronous particle
=⇒ Stability – within some interval [tmin, tmax] = the bucket
=⇒ Bunched beam:
In RF accelerators, the beam is not continuous but distributed on separate bunches.
v→c
Temporal spacing τ = 2π/ω, longitudinal spacing vτ −→ λrf .
Andreas Streun, PSI
37
2.Accelerator basics and types
RF-acceleration
Phase focussing: a simple tracking
sub-relativistic linac: cell length adjusted
to reference particle velocity v̂:
q
Ln = τ2 v̂n, v̂n = 2mT̂on , T̂n = nUo sin φ.
Tracking recursion:
Tn = p
Tn−1 + Uo sin(φ + ωtn−1)
vn = 2Tn/mo
tn = tn−1 + Ln(v̂n − vn)
Parameters:
Uo = 0.1, τ = 1, mo = 1
Starting conditions:
to = (−0.1 . . . +0.1)τ
Phase φ → π/2: maximum energy but small bucket: large beam loss
Lower phase, larger bucket: particles perform stable oscillations during acceleration.
Andreas Streun, PSI
38
2.Accelerator basics and types
RF-acceleration
Linear accelerator (``Linac'')
Electromagnetic wave travelling through disk loaded wave guide:
!
phase velocity of wave = particle velocity
cell radius R given by frequency (first zero of radial Bessel function)
cell length ∆z determines phase velocity: phase advance per cell
disk iris: aperture for wave and beam propagation
Andreas Streun, PSI
39
2.Accelerator basics and types
RF-acceleration
Accelerating structures
Drift tube linacs
⊲ for v ≪ c (protons, ions)
⊲ frequency ∼ 100 MHz
⊲ gradient 1 . . . 10 MV/m
Travelling wave linac
⊲
⊲
⊲
⊲
for v ≈ c (electrons)
frequency ∼ 3 GHz
pulsed (few µs, 10 . . . 100 Hz repetition)
gradient 10 . . . 50 MV/m
Standing wave structures / RF cavities
⊲ continuous operation possible:
−→ circular machines
⊲ frequency ∼ 100 MHz . . . 3 GHz
⊲ gradients ∼ 1 MV/m
Andreas Streun, PSI
40
2.Accelerator basics and types
Linear accelerators
Linacs
Stanford 100 GeV electron/positron linac collider SLC
Argonne National Lab 50 MeV proton linac of drift
tube type
Andreas Streun, PSI
Superconducing linac structure from Accel company
41
2.Accelerator basics and types
Linear accelerators
Bunching
Buncher: short linac or cavity at φ ≈ 0
Andreas Streun, PSI
→
∆T = qU sin(ω∆t) ≈ ωqU ∆t
42
2.Accelerator basics and types
Linear accelerators
SLS 100 MeV electron linac
Andreas Streun, PSI
43
2.Accelerator basics and types
Linear accelerators
Linear colliders
why? • e+e− collisions complementary to pp or pp̄ (LHC)
• energy limit for circular e+e− colliders reached (LEP)
=⇒ ILC (“International Linear Collider”) Ecm = 500 GeV [ → 1 TeV]
=⇒ GDE (“Global Design Effort”): merge NLC(USA), GLC(J), TESLA(EU)
Costs are main design criterion!
A linear collider’s maximum energy is not physically limited but just
by costs (and earth’s surface curvature . . .)
← ILC with superconducting linacs, gradient ≈ 35 MV/m.
Future: CLIC at CERN: Ecm → 3 TeV in L < 30 km
based on new accelerator concept for > 100 MV/m gradient.
Andreas Streun, PSI
44
2.Accelerator basics and types
Linear accelerators
Free electron laser
prepare electron beam of very high phase space density :
low transverse emittances, very short pulse, low energy spread
=⇒
coherent emission of synchrotron light and self-amplification (−→ ch.6)
1 Å X-ray pulses:
pulse length t < 100 fs, power > 10 GW
In operation:
LCLS (SLAC/USA), FLASH (DESY/DE).
Planned: SwissFEL (PSI/CH) !
LCLS undulator line
−→
=⇒ Linac development is common PP and MR interest.
Andreas Streun, PSI
45
2.Accelerator basics and types
Recirculation 1
Recirculated Linacs
Economic re-use of linac
Constraints:
time of flight for recirculation track
!
∆ta→a = nτrf
n∈N
linac pulse > total travel time ∆Ta→a→b
−→ or c.w. (“continuous wave”) operation.
Andreas Streun, PSI
46
2.Accelerator basics and types
Recirculation 1
S-DALINAC (Darmstadt, D)
130 MeV 2× recirculated s.c. linac for free electron laser and nuclear physics
CEBAF (“Continuous Electron Beam Accelerator Facility”)
6 GeV 5× recirculated double s.c. linac for nuclear physics (Newport News, USA)
Andreas Streun, PSI
47
2.Accelerator basics and types
Recirculation 1
The Microtron / racetrack microtron
Electrons
only!
(β → 1)
Original microtron
Time of flight for track k
Lorentz force
mv 2
R
= evB
tk =
v≈c
−→
Racetrack microtron
2πRk +2L
c
Rk =
(Rk bending radius)
mo γk c
eB
=
Ek
eBc
−→ tk =
Time difference from one turn to next: ∆t = tk+1 − tk =
Microtron condition:
Andreas Streun, PSI
2π
eBc2
2πEk
eBc2
+ 2cL
!
(E
− E ) = nτrf
| k+1{z k}
=∆Elinac
∆E/e [MeV] × frf [GHz] = 14.3 n B [T]
48
2.Accelerator basics and types
Recirculation 1
MAMI (”MAinz MIcrotron”) (Mainz, D)
Cascade of 3 racetrack microtrons and 1 double sided microtron:
3.5 MeV −→ 14 MeV −→ 180 MeV −→ 850 MeV −→ 1.5 GeV
MAMI-RTM3 (850 MeV): n = 1, frf = 2.5 GHz, B = 1.3 T, ∆E = 7.5 MeV
Andreas Streun, PSI
49
2.Accelerator basics and types
Recirculation 1
The Cyclotron
(Lawrence/Livingston 1932)
protons
and ions
only!
(β ≪ 1)
Original cyclotron
Sector cyclotron (PSI)
Lorentz force:
mo v 2
R
= evB
−→ recirculation time
t=
2πR
v
=
2πmo
eB
t no function of energy (for β ≪ 1) −→ isochronous machine
cyclotron frequency
Andreas Streun, PSI
ωc =
2π
t
=
e
mo B
!
Constraint: ωrf = nωc
50
2.Accelerator basics and types
Recirculation 1
Cyclotrons
←
Lawrence’s first 80 keV
cyclotron from 1932
(≈ 15 cm diameter)
→
Livingston and Lawrence
at the 70 cm cyclotron,
Berkeley
590 MeV proton cyclotron
cw operation at 2 mA proton current
=⇒ > 1 MW proton beam power!
world's most powerful accelerator!
Driver for SINQ
(Swiss Spallation Neutron Source)
Andreas Streun, PSI
51
2.Accelerator basics and types
Recirculation 2
The Betatron
(Kerst 1940)
⇐= Recirculation =⇒
fixed B-field, variable radius
variable B-field, fixed radius
microtron and cyclotron
betatron and synchrotron
~˙
~ = −B
(Maxwell)
The Betatron: rotE
~ = B(r, t)~ez
B-field varies in radius and time: B
H
RR ˙
~
~ t) · ~ez rdrdφ
Stokes:
E(t) · ~eφ ds = −
B(r,
2
~˙
2πRE(t) = −hB(t)iπR
→ E = Eφ = − 12 RhḂi
Lorentz force bends:
Electric force accelerates:
mv = p = eRB(r=R)
ṗ = F = eE = 12 eRhḂi
=⇒ Betatron equation:
Ḃ = 21 hḂi
or
B(t) = 12 hB(r, t)i + Bo
acceleration on a circle of constant R (given by Bo)
[ gradient dBdr(r) |R provides vertical focussing ]
Kerst at his betatron.
Andreas Streun, PSI
inductive acceleration without RF!
52
2.Accelerator basics and types
Synchrotrons
The Synchrotron
mv 2
R
= qvB
−→ p = qRB
(Veksler, McMillan 1945)
−→ p(t) = qRB(t)
Momentum follows magnet field variation
due to RF phase focussing:
• inject beam into ring at Bo with momentum po = qRBo
• increase B-field −→ B + ∆B
• bending radius shrinks by ∆R < 0
• path becomes shorter by 2π∆R
• particles arrive earlier by ∆t =
2π
βc ∆R
<0
• RF cavity: U (∆t) = qUo sin(ω∆t + φ) > 0
for ∆t < 0 if φ ≈ π
• acceleration by ∆p = βqU (∆t)
=⇒ self-synchronisation of p(t) with B(t) !
Constraints: φ ≈ π and 2πR = nβλrf
• extract beam at Bmax with momentum pmax = qRBmax
Andreas Streun, PSI
53
2.Accelerator basics and types
Synchrotrons
The storage ring
storage ring = synchrotron
at constant energy (momentum)
accumulate and store beam for long time (hours)
−→ synchrotron photon source −→
∆E = qUo sin φ − ∆Eloss = 0.
only∗) for compensation of losses due to
synchrotron radiation, wake fields etc.
∗) Electron storage ring: radiated power:
(E [GeV])4 × I [mA]
P [W] = 88.5
R [m]
E
I
R
= beam energy
= beam current
= radius of path in dipoles
e.g. LEP (“Large Electron Positron collider”):
Beam energy E = 100 GeV, beam current I ≈ 2 × 5 mA
B = 0.11 T → R = 3 km; ≈ 70% magnet filling → circumference 27 km!
Synchrotron radiation power ≈ 30 MW, requires > 60 MW electric.
=⇒ upper energy limit for electron rings. No problem with protons −→ LHC
Andreas Streun, PSI
54
2.Accelerator basics and types
Synchrotrons
Circular collider
circular collider = one or two storage rings
with opposite beams of particles • ↔ • and energies E, E
single ring
2n interaction points
2 × n bunches
• = ¯• E = E
Andreas Streun, PSI
double rings
1 or 2n IPs, > 2n bunches
avoid parasitic collisions
or close encounteres
allows • 6= ¯
• E 6= E
”brezel” scheme
1 or few IPs
orbit oscillations to
avoid parasitic
collisions.
• = ¯• E = E
55
2.Accelerator basics and types
Synchrotrons
Synchrotrons
• Pure synchrotrons: [accumulation], acceleration and extraction
⊲ booster synchrotrons to fill storage rings: SPS→LHC.
⊲ beam on target for experiments (pulsed): SPS→CNGS.
• Damping rings: accumulation, damping and extraction
⊲ damping rings for linear colliders: SLC, ILC.
• Storage rings: accumulation, [acceleration], damping and storage
⊲ antiproton accumulator: AD, AA at CERN.
⊲ light sources: store beam and use radiation: AURORA, SLS, ESRF.
• Circular colliders: accumulation, [acceleration], storage and collision
⊲ classic single ring AdA or double ring VEP-1.
⊲ high energy frontier: LEP e+ ↔ e−, LHC p ↔ p.
⊲ particle factories: DAΦNE, KEK-B, LEP.
+
+
⊲ special: HERA e− ↔ p, RHIC Au ↔ Au , muon colliders µ+ ↔ µ−.
Andreas Streun, PSI
56
2.Accelerator basics and types
Synchrotrons
Synchrotron light sources
AURORA 0.65 GeV, π m
SLS 2.4 GeV, 288 m
SPRING-8 8 GeV, 1436 m
first synchrotron
light from the
SLS, 15.12.2000
Andreas Streun, PSI
57
2.Accelerator basics and types
Synchrotrons
Circular colliders
← AdA
Frascati, 1962
First e+e− collisions
VEP-1 →
Novosibirsk, 1964
First double ring collider
e−e−
Tevatron
(FNAL, USA)
2× 1 TeV pp̄
ւ
† SSC (Texas, USA)
2× 20 TeV pp̄
87 km circumference
1988 approval
1989 construction start
1993 cancelled
Andreas Streun, PSI
58
2.Accelerator basics and types
Synchrotrons
Particle factories
Particle factory = collider for maximum luminosity at fixed energy.
+ −
DAΦNE (Frascati, Italy). 2×510 MeV e e .
KEK-B (Tsukuba, Japan), 8 GeV e− ↔ 3.5 GeV e+ .
PEP-B (SLAC, USA), 9 GeV e− ↔ 3.1 GeV e+ .
Andreas Streun, PSI
59
2.Accelerator basics and types
Synchrotrons
CERN accelerators
Andreas Streun, PSI
60
2.Accelerator basics and types
Synchrotrons
previous slide:
right/top: LEP/LHC aerial view
right/bottom: LEIR (”Low Energy Ion Ring”)
LEP “Z-factory” (1989-2000) copper cavities →
SPS tunnel ց
CNGS
(”Cern Neutrinos to Gran Sasso”)
↓ Experiment at the SPS
Andreas Streun, PSI
61
2.Accelerator basics and types
Synchrotrons
LHC the Large Hadron Collider
synchrotron & storage ring
26′658.883 m circumference.
1232 superconducting dipole magnets:
current 12 kA, temperature 1.9 K
Operating cycle:
1. Injection & accumulation (∼minutes)
450 GeV protons from SPS
2. Acceleration (≈ 15 minutes)
E = 450 → 7000 GeV
B = 0.535 → 8.33 Tesla
3. Collider operation: p =⇒ ⋆ ⇐= p
Data acquisition (∼ hours)
4. Deceleration =⇒ 1.
First operation August 2008 =⇒ accident!
Restart Nov.2009 at 3500 GeV.
Luminosity Oct.2011 L = 3.4 × 1033 cm2 s−1
Andreas Streun, PSI
62
Beam Dynamics Overview
Andreas Streun, PSI
63
3. Transverse Beam Dynamics
⊲ Foundations
Coordinate system. The Hamiltonian. Approximations.
Field expansion. Magnet rigidity. Transfer matrix. Examples.
⊲ Magnets
Iron magnets: Dipole. Bending magnet. Quadrupole.
Superconducting magnets: LHC-dipole.
Focusing in both planes: Solenoid. Quadrupole doublet.
⊲ The Lattice
Concatenation. Composition. Components. Space.
⊲ Betatron oscillations
Twiss parameters. Normalized coordinates. Periodicity.
Applications: FODO cell. Circular test collider.
⊲ Imperfections
Resonances: the tune diagram. Orbit distortion. Chromaticity.
Andreas Streun, PSI
64
3. Transverse beam dynamics
Foundations
How to proceed:
[Usually] only magnetostatic fields are used for deflection:
¨ = q~x˙ × B(~
~ x)
Lorentz-force F~ = m~x
with m = moγ = const., resp. p = |~
p| = const.
in principle:
~ x) , ~xo , p~o
B(~
=⇒
~x(t) , p~(t)
−→
done.
Transverse beam dynamics
• Formalism for discrete magnets: (~
x ; p~)in → (~x ; p~)out
• Concatenation of magnets: M1 ◦ M2 ◦ . . . =⇒ the Lattice
• Formalism for an ensemble of particles { (~
x ; p~)i }
Andreas Streun, PSI
i = 1...N
65
3. Transverse beam dynamics
Foundations
Theoretical foundations (outline)
A. Define a curvilinear coordinate system:
the curve is the reference orbit of the accelerator.
B. Transform the Hamiltonian to the curvilinear system.
C. Introduce approximations for simplification:
e.g. particle stays always close to the curve.
D. Use expansion of the magnetic field near curve.
E. Arrive at a simplified Hamiltonian.
multipoles can be treated separatedly.
F. Derive transfer matrices for linear magnets:
analogy to ray optics.
Andreas Streun, PSI
66
3. Transverse beam dynamics
Foundations
A. Coordinate system
Curve in space:
position ~ro(s)
curvature ~h(s) h =
1
ρ
torsion τ (s)
path length s from arbitrary point

ˆ
~s = d~ro(s)/ds
tangent unit vector 
ˆ = −~h(s)/h(s) curvature unit vector
~x

ˆ
ˆ
ˆ
~y = ~s × ~x
ˆ ; ~ˆs; ~yˆ}
{~x
orthogonal curvilinear system
ˆ + y~yˆ
Points close to the curve: ~r(x, s, y) = ~ro(s) + x~x
Transformation of vector ~a from cartesian to curvilinear:
ˆ]
ˆ
as = ~a · [(1 + hx)~ˆs + τ x~yˆ − τ y~x
ax = ~a · ~x
ay = ~a · ~yˆ
[in most cases τ = 0 (planar curve) and h = const. or h = 0 (cylindric resp. cartesian geometry) ]
Ref.: E.D.Courant & H.S.Snyder, Theory of the alternating gradient synchrotron, Ann. Phys. 3 (1958) 1
Andreas Streun, PSI
67
3. Transverse beam dynamics
Foundations
B. The Hamiltonian
H =T +U
sum of kinetic and potential energy [usually].
=⇒ equations of motion
ẋ =
∂H
∂px
ṗx = − ∂H
∂x
in canonical variables ~x, p~
relativistic Hamiltonian of a particle in electromagnetic fields
q
~ 2
H = qV + c (moc)2 + (~
p − q A)
~ the canonical momentum
with p~ = m~v + q A
~ = −grad V − ∂ A~ ,
E
∂t
~ = rot A
~ −→
B
˙ v ) = q (E
~ + ~v × B)
~
(m~
Ref.: H.Goldstein, Classical mechanics
−→
transformation of H into curvilinear {x; s; y}system
Andreas Streun, PSI
68
3. Transverse beam dynamics
Foundations
C. Approximations
Approximations valid for large high-energy machines, e.g. LHC, SLS
• paraxial
• adiabatic
x, y “small”
−→
~
expansion of B-field
near curve.
T (t) slowly varying
• small curvature
• planar curve
−→ ≈ constant.
x ≪ ρ or xh ≪ 1.
torsion τ = 0.
• piecewise constant fields no fringes: Ax = Ay = 0 → px;y = mvx;y .
• arcs & straights
• ultrarelativistic
piecewise constant or zero curvature h(s).
β = 1, E = pc
−→
s = ct.
. . . continue with simple model, but stay aware of the approximations!
Andreas Streun, PSI
69
3. Transverse beam dynamics
Foundations
D. Field expansion
~ = rotA
~ → By + iBx =
B
∂ +i ∂
− ∂x
∂y
As
P 1
q
iφn
A
=
−ℜ
s
p
n (ian + bn )re
By (x, y) + iBx(x, y) = (Bρ)
X
reiφ = x + iy
(ian + bn)(x + iy)n−1
n
2n-pole magnets:
n = 1, 2, 3 . . . = dipole, quadrupole, sextupole. . .
multipole moments: bn regular, an skew (rotated by 90◦/n)
e.g. quadrupole (n = 2): By (x) = (Bρ) b2 x Bx(y) = (Bρ) b2 y
Magnetic rigidity:
Regular multipole:
Poletip field:
Bρ =
bn =
p
q
=
βE/e
ne c
1 ∂
1
Bρ (n−1)!
=
β
ne 3.3356
By (x,y ) ∂xn−1
(n−1)
Bpt = (Bρ)bnR
n−1
=
y =0
Rn−1 ∂
(n−1)!
R = pole inscribed radius
Andreas Streun, PSI
E[GeV]
By (x,y ) ∂xn−1
(n−1)
y =0
70
3. Transverse beam dynamics
Foundations
Magnetic rigidity (Bρ)
ρ = bending radius
v = velocity
Lorentz force = centrifugal force: qvB =
p
q
p = mv =⇒
(Bρ) =
p = mocβγ,
E = moc2γ
B = magnetic field
q = nee = charge
mv 2
ρ
(relativistically valid)
−→
p=
βE
c
=⇒
(Bρ) =
βE
ne ec
E is given in eV units: 1 eV = 1.6 · 10−19 |As{z· V}
Joule
(Bρ) =
β
ne c
· E[ J]/e =
β
ne c E
[eV] =
β
ne
· 109/c ·E [GeV]
| {z }
3.3356 s/m
s · V = Vs · m = T · m
Units: [ (Bρ) ] = m
m2
Andreas Streun, PSI
71
3. Transverse beam dynamics
Foundations
E. The simplified Hamiltonian
p2x + p2y
b21(s) 2 b2(s) 2 2 b3(s) 3
−b1(s)xδ+
x+
(x −y )+
(x −3xy 2)+. . .
H(x, px, y, py ; s) =
2(1 + δ)
2
2
3
δ :=
p−po
po .
[H] = [p] = 1.
sin x′ =
px
p
=
px
(1+δ )po
≈ x′ (paraxial).
Linear equations of motion with nonlinear sextupole term
px
dx ∂H
=
=
x =
ds
∂px 1 + δ
′
p′x =
∂H
dpx
=−
= b1δ − (b21 + b2)x −b3(x2 − y 2)
ds
∂x
p′y
Andreas Streun, PSI
py
y =
1+δ
′
∂H
dpy
=−
= b2y +2b3xy
=
ds
∂y
72
3. Transverse beam dynamics
Transfermatrix
F. Transfermatrix
Example: Drift space, bi = 0 ∀ i
p′x = 0 x′ =
px
1+δ
=
px
p
−→ x′(s) = x′o, x(s) = xo + x′os
Write as a matrix:
x
x′
=
xo
1 s
·
0 1
x′o
Example: Quadrupole, b2 6= 0, assume b2 > 0 and δ = 0
x′ = px −→ x′′ = −b2x −→ harmonic oscillator:
√
√
√
√
√
x′o
′
′
√
x(s) = xo cos( b2s) + b sin( b2s)
x (s) = −xo b2 sin( b2s) + xo cos( b2s)
p′x = −b2x
2
Matrix notation:
p′y
= +b2y
Andreas Streun, PSI
′
x
x′
y = py
=
−→
cos φ
√
− b2 sin φ
y
y′
=
sin φ
x
· xo′
o
cos φ
√1
b2
√
cosh φ
b2 sinh φ
φ :=
p
b2 s
sinh φ
y
· yo′
o
cosh φ
√1
b2
73
3. Transverse beam dynamics
Transfermatrix
Quadrupole in thin lens approximation:
√
Length s = L ”small”, but
b2L = const. =
x
x′
y
y′
=
=
1
− f1
1
1
f
0
1
x =
b1
1+δ δ
−
b21
1+δ x
Dispersion:
dx D(s) = dδ o =
D′(s) = sin φo
1
b1 (1
f
= focal length.
x
· xo′
o
0
yo
·
1
yo′
Example: Dipole sector, b1 6= 0, δ 6= 0
′′
1
f,
b1 = h
δ
−→ x(s) = xo cos φ + x′o sin φ + 1+
b1 (1 − cos φ) δ
φ :=
√b1 s
1+δ
− cos φo)
φo = b1s
p′y = 0 −→ y(s) = yo + yo′ s (like drift space)
Andreas Streun, PSI
74
3. Transverse beam dynamics
Transfermatrix
Bending magnet transfer matrix
General regular (ai = 0 ∀ i), linear (ai = bi = 0 for i ≥ 3) magnet:
Dipole with gradient: b1 6= 0, b2 6= 0; δ 6= 0

√1 sx


c
0
x
x
K
 √
′
cx
0
− K sx
 x  

 y = 
0
0
cy
 ′  
√
y

0
0
− −b2 sy
δ
out
0
0
0
√
with: cx[sx] = cos [sin]( K L),
cos ix = cosh x
sin ix = i sinh x
b1
K
0
0
√1
−b2
sy
cy
0
(1 − cx)
√b1 sx
K
0
0
1
√
cy [sy ] = cos [sin]( −b2 L),
−→


x

  x′ 
  y 
·
′ 

y

δ
in

K = b21 + b2
can be focussing or defocussing
Special cases:
b2 = 0 → Dipole
b1 = 0 → Quadrupole
b1 = 0 and b2 = 0 → Drift
0 < −b2 < b21 → synchrotron magnet, focussing in x and y
[ Alternative namings and conventions:
Andreas Streun, PSI
h=
1
ρ
= b1
k = +b2 or k = −b2 ]
75
3. Transverse beam dynamics
Magnets
Magnet design: I. Iron magnets
~ = ~j
rotH
no conductors in beam area: j = 0
~ =
rot grad = 0 → define magnetostatic scalar potential Φ: H
1
µo gradΦ
consider iron/air boundary:
~ = 0 → Biron = Bair → Hiron = 1 Hair
divB
µr
H
Rb
Ra
Rb
0 = H ds = a Hair ds + b Hiron ds ≈ a Hair ds = 0 −→ Φa = Φb
=⇒ iron surfaces are magnetic equipotentials.
~ = div gradΦ = ∆Φ =
0 = divB
∂ 2Φ
∂x2
+
∂ 2Φ
∂y 2
for long magnet, i.e.
∂Φ
∂s
=0
~
B(x,
0) = By (x, 0)~ˆey due to symmetry. Design requirement: By (x, 0) = f (x)
R
R
Ansatz: By (x, y) = f (x) + g(y) −→ Φ = By dy = f (x)y + g(y) dy
∆Φ =
∂ 2 f (x)
y
∂x2
+
∂g (y )
∂y
=0
=⇒ Φ(x, y) = f (x)y −
Andreas Streun, PSI
−→
2
1 ∂ f (x) 3
6 ∂x2 y
g(y) = −
R
∂ 2 f (x)
y dy
∂x2
~
−→ B(x,
y) =
=
2
1 ∂ f (x) 2
− 2 ∂x2 y
∂ Φ(x,y ) ˆ
ex
∂x ~
+ ∂ Φ(∂yx,y)~ˆey
76
3. Transverse beam dynamics
Magnets
Iron dominated dipole magnet
By (x, 0) = Bo = f (x)
−→
Φ = Boy,
Bx = 0
equipotentials parallel to x-axis → flat poles.
H
Hds =
RR
A=
jc da
B
2jc
=⇒
g
Siron
+
µoµr µo
Coil cross section A
µr ≫1
−→ A ≈
Bg
2jcµo
jc [A/m2] current density, g [m] gap, µo = 4π · 10−7 Vs/Am, µr permeability.
Andreas Streun, PSI
77
3. Transverse beam dynamics
Magnets
Bending magnet
Basic parameters:
Field B on reference arc
p
B
with
(Bρ)
=
→ curvature h = ρ1 = (Bρ
)
q
for a certain momentum, resp. energy pc = βE
Length L along reference arc
→ bending angle φ = hL = Lρ
8◦ rectangular bending magnet of the
SLS for electrons of max. 2.7 GeV.
Further parameters:
Edge angles ζ1, ζ2
ζ = 0, edge ⊥ beam: sector bend
ζ = φ2 : rectangular bend
(most common type, made from stacked laminates)
∂B
∂B
y
1
Gradient ∂xy → quadrupole moment b2 = (Bρ
) ∂x
→ synchrotron magnet
focusing in both x and y for field index n = − bb22 ∈]0, 1[
1
Andreas Streun, PSI
Gradient bending magnet of the SLS
booster synchrotron for bending and
horizontal focussing.
78
3. Transverse beam dynamics
Magnets
Quadrupole
linear field: By (x, 0) = gx, with g =
∂By
∂x
the field gradient.
Magnetostatic potential Φ = gxy =⇒ equipotentials are hyperbolas
By (x, y) = gx,
Ideal hyperbolic poles
Bx(x, y) = gy
approximation by hyperbolic sections
SLS storage ring quadrupole
Quadrupole is focusing in one plane, defocusing in the other plane.
Andreas Streun, PSI
79
3. Transverse beam dynamics
Magnets
Magnet Design: II. superconducting magnets
Dipole
Quadrupole
B>2T
−→ iron saturated.
=⇒ Field from current distribution:
I ∼ cos φ −→ dipole field
I ∼ cos 2φ −→ quadrupole field
etc.
Ideal current shells
=⇒ iron yoke only for return flux
s.c. magnets vs. iron magnets:
Approximation by discrete coils
• Field strength: ≈10 T vs. ≈2 T
• Field homogeneity:
∆B/B ≈ 10−3 vs. ≈ 10−4
• Cryogenics (LHC: T = 1.9 K)
Figures taken from: S.Russenschuck,
Design of accelerator magnets, CERN-2005-004
Andreas Streun, PSI
80
3. Transverse beam dynamics
Andreas Streun, PSI
Magnets
81
3. Transverse beam dynamics
Magnets
How to focus in both planes
H
Quadrupole:
H ds = 0
Homogenous current density
both planes:
j(x, y) = j
−→ By =
H
H ds = j 6= 0 at beam.
µo j
2 x,
Bx = − µ2oj y
Lithium lens
Liquid lithium (Z = 3) in beryllium (Z = 4) cylinder, used for
focussing of antiprotons or positrons at pair production target.
Focusing by the beam’s self-field
coasting beam with homogeneous current, resp. charge density ~j = v̺~ˆes
~ = ̺,
divD
~ = ~j,
rotH
~ + ~v × B)
~
F~ = q(E
Focusing by colliding beam of antiparticles
−→ Fr = + q 2µβo2vγj2 r > 0
̺ → −̺, ~v = −~v → ~j = ~j
strong but nonlinear “lens”:
Bx(y) vs. y →
beam-beam focusing → luminosity limitation for circular colliders
Andreas Streun, PSI
82
3. Transverse beam dynamics
Magnets
Solenoid
~ = Bo~ˆes k ~v
main field: B
→ basically no focusing
~ ≈ Br~ˆer ⊥ ~v
fringe field: B
→ azimuthal kick
→ ~v ≈ vo~ˆes + vφ~ˆeφ
→ Fr ∼ vφ × Bo~ˆes < 0
~ = 0 and
Use divB
0=−
−→
R r R 2π
0
0
R s1
so
R
V
~ dV =
divB
Bs(so) r dr dφ +
| {z }
=0
R r R 2π
0
0
Br (s) ds = − B2or
R
∂V
~ · d~a
B
(Gauss)
Bs(s1) r dr dφ +
| {z }
=Bo
in fringe field:
R s 1 R 2π
so
0
Br (s) r ds dφ
Azimuthal kick on particle when passing the fringe field with po = mvo
p~ = q
Z
t1
to
Andreas Streun, PSI
~ dt = q
~vo × B
Z
s1
so
ds
Br dt ~ˆeφ
dt
qBo
−→ vφ = −
r
2m
83
3. Transverse beam dynamics
vφ = rφ̇ = rφ′vo
Magnets
o
−→ φ′ = − 2qB
mvo
−→ φ(s) = −κs
with κ :=
qBo
2mvo
=
ωc
2v o
Radial force = Lorentz force − centrifugal force:
F~ = (qvφBo − mvφ2 /r) ~ˆer
−→ Fr = −
qBo
2m
2
r
2
qBo
r −→ r(s) = ro cos κs + ro′ sin κs
2mvo
=⇒ Solenoid provides beam rotation and linear focusing in both planes.
Fr = mr̈ = mr′′vo2
−→ r′′ = −
Transfermatrix for x = r cos φ, x′ = r′ cos φ, y = r sin φ, y ′ = r′ sin φ:



x
C
′
 0
 x 
=
 −S
 y 
0
y ′ out
|
0 S
C
0
0 C
−S 0
{z
Rotation
with C = cos φ(s), S = sin φ(s).
Andreas Streun, PSI
 
 
0
C
S/κ
0
0
S   −S · κ C
0
0  
·
·
0  
0
0
C
S/κ  
C
0
0
−S · κ C
} |
{z
}
Focusing

x
x′ 
y 
y ′ in
84
3. Transverse beam dynamics
Magnets
Quadrupole doublet
alternating gradient (AG) focussing
a quadrupole focusses in one plane and defocusses in the other plane.
→ add another quadrupole of opposite polarity [and same strength]:
Mx,y =
1
± f1
x, y
x′, y ′
= Mx,y
out
x, y
x′, y ′
in
Mx,y = quad.(±) · drift(L) · quad.(∓)
!
L
L
1∓ f
0
1 0
1 L
1 · 0 1 · ∓ f1 1 =
− fL2 1 ± L
f
=⇒ −L/f 2 provides focusing in both planes.
1 dx,y
0
1
Distances dx,y to foci:
2
L f
!
xo, yo
0
· Mx,y ·
=
−→
d
=
1
∓
x,y
0
∗
f L
Constraint L < f for double focus: dx > 0 and dy > 0
Andreas Streun, PSI
85
3. Transverse beam dynamics
Lattice
Concatenation of elements
element → element transformation:
translation and rotation
~xn,in = T~ + R~x(n−1),out
Ideal lattice: T~ = ~0, R = {1}
Edge focussing
Laminated magnets:
edges rotated by ζ = Φ/2.
Horizontal: geometry effect
Vertical: Bx in fringe field
Andreas Streun, PSI



x
 x′  
 y = 

y ′ out
1
tan ζ
R
0
0
0
0
1
0
0
1
ζ−Ψ)
0 − tan(R


0
x
′
0 


x
·
0 
y 
y ′ in
1
Ψ depends on fringe field shape.
86
3. Transverse beam dynamics
Lattice
Lattice composition
Andreas Streun, PSI
87
3. Transverse beam dynamics
Lattice
The Lattice
Lattice = [closed] connection of accelerator components
Component
Drift space
Dipole
Quadrupole
Sextupole
Solenoid
Corrector dipole
Kicker magnet
RF cavity
Undulator
Parameters
Length L
L field By . . .
L, field gradient ∂By /∂x
L, field curvature ∂ 2By /∂x2
L, field Bs
R
R
int. fields By ds (CH), Bx ds (CV)
R
int. field pulse B(t) ds
wavelength λrf , voltage Vrf
period length, peak field, gap
Purpose
free space
bending
focussing
chromaticity correction
focussing [+rotation]
beam steering
injection & extraction
acceleration
synchrotron light
+ diagnostic elements: beam position monitors, current transformers etc.
+ vacuum elements: flanges, bellows, radiation absorbers etc.
Andreas Streun, PSI
88
3. Transverse beam dynamics
Lattice
Synchrotron light source components
Andreas Streun, PSI
89
3. Transverse beam dynamics
Andreas Streun, PSI
Lattice
90
3. Transverse beam dynamics
Lattice
Space requirements
A lattice section . . .
↑↑ as seen by the lattice designer,
↑ as seen by the design engineer,
and how it looks in reality ր
Andreas Streun, PSI
91
3. Transverse beam dynamics
Betatron oscillations
Betatron oscillations
x′′ + kx = 0
constant focusing channel (e.g. long quadrupole, k = b2):
Harmonic oscillator solutions:
x(s) = xo cos
√
ks + x′o sin
with
√
√
ks = a cos( ks + φo)
x′o
φo = arctan − √
kxo
√
√
x (s) = −a k sin( ks + φo)
and a =
′
s
x2o +
x′o
√
k
2
Phase space plot / Poincaré plot: equidistant√observations spaced by ∆s
Phase advance of betatron oscillation ∆φ = k∆s
ellipse ascpect ratio given by k
Andreas Streun, PSI
√
=⇒ Transformation to circle: x′ → x′ / k
92
3. Transverse beam dynamics
Variable focusing channel (beam transport line):
Betatron oscillations
x′′ + k(s)x = 0
high k
variable k(s)
fast oscillation
p
x(s) = A β(s) cos(φ(s) + φo) + [D(s)δ]
Formalism
(
A = Ao
invariant betatron amplitude
φo
betatron phase
=⇒ Particle properties
δ = ∆p/p relative momentum deviation
(
β(s) beta-function
φ(s) betatron phase advance
=⇒ Lattice properties
D(s) dispersion function
low k
slow oscillation
Andreas Streun, PSI
93
3. Transverse beam dynamics
Goal: Description of the whole beam.
p
Particle i: xi(s) = Ai β(s) cos(φ(s) + φio) + [D(s)δi]
Betatron oscillations
(i = 1 . . . N )
Particle distributions:
Initial Betatron phase φio: typically uniform
Invariant amplitude Ai and momentum δi: any distribution (e.g. Gaussian).
=⇒ statistical definition of beam size:
q P
p
N
Define rms (root mean square) beam size: σx = hx2i = N1 i=1 x2i
p
=⇒ σx = ǫβ(s) + [D(s)σδ ]2
( because hcosi = 0, hcos2 i = 12 for uniformly distributed angles)
p
A2
with ǫ = h 2 i the beam emittance and σδ = hδ 2i the rms rel. momentum spread.
=⇒ Decoupling:
invariant beam parameters ǫ, σδ ⇐⇒ beam-independent lattice functions β(s), D(s)
−→ redefine betatron amplitude: J := A2/2, so that ǫ = hJi =⇒ chapter 5.
Andreas Streun, PSI
94
3. Transverse beam dynamics
Betatron oscillations
Twiss parameters
Ansatz: harmonic oscillator with envelope function β(s) and variable phase φ(s):
p
x(s) = A β(s) cos(φ(s) + φo)
p
√
[ a → A β(s)
ks → φ(s)
]
→ insert into DE, separate sin and cos terms → 2 DE for φ, β → solve for φ(s) → insert into β -DE:
R
R
=⇒ βφ + β φ = 0 −→ φ(s) = ds
phase equation
β
1 ′2
1 ′′
2
=⇒
β
β
−
β
+
k(s)
β
= 1 beta equation
2
4
′′
′ ′
→ insert β, β ′ , φ, φ′ into x(s), x′ (s) and eliminate sin and cos →
βx′2 + 2αxx′ + γx2 = A2
[tilted] ellipse equation
with the Twiss parameters:
− 21 β ′
Beam envelope
=⇒
′′
α :=
p
R(s) := A β(s) = maxφo (x(s))
R + k(s)R −
Andreas Streun, PSI
β
A4
R3
=0
γ :=
1+α2
β
φ=
R
1
β
ds
envelope equation
95
3. Transverse beam dynamics
Betatron oscillations
Twiss parameter transformation
=⇒β(s), α(s), γ(s)
βx′(s)2 + 2αx(s)x′(s) + γx(s)2 = A2
Transfermatrix:
or inverse:
∀ s since A is constant.
m12x′o
m22x′o
x
x
m11xo +
=
=
M
·
′
′
x
x
x
m x +
1
o 21 o
′
x
x
m22x1 − m12x1
−1
·
=
M
=
′
x
x′
x′
−m
21 x1 + m11 x1
o
1
→ insert for so , s1 into ellipse equation, extract coefficients for β, α, γ and combine into vector →
β
α
γ
!
1
=
m211
−2m12m11
m212
−m11m21 m22m11 + m12m21 −m12m22
m221
−2m22m21
m222
Alternative writing:
Andreas Streun, PSI
β −α
−α γ
1
= Mx
!
β −α
−α γ
·
β
α
γ
MxT
0
!
o
96
3. Transverse beam dynamics
Betatron oscillations
Example: Drift space
k = 0,
−→
Mx =
1 s
0 1
β(s) = βo − 2sαo + s2γo
α(s) =
αo − sγo
γ(s) =
γo
single particles: xi(s) = xio + s x′io
p
envelope: R(s) = A βo − 2sαo + s2γo
4
equivalent: solve k = 0 envelope equation R′′ = A3
R
s
2 2
A
→ R(s) = Ro2 + 2sRo Ro′ + s2 Ro′2 + R
o
Gain: Description of the beam:
• Transformation of all particles irrespective of individual initial conditions.
• Decoupling of magnet structure (k(s) → β, α, γ)
from beam properties (ǫ, σδ ).
Andreas Streun, PSI
97
3. Transverse beam dynamics
Betatron oscillations
Normalized coordinates
Particle in phase space moves on
a tilted ellipse of area πA2:
√
x(s) = A β cos(φ + φo)
x′(s) = − √Aβ (sin(φ + φo)
+α cos(φ + φo))
Transformation to a circle:
~x =
x
x′
√
β
0
A cos φo
cos φ − sin φ
· A sin φ
= − √α − √1
· sin φ
cos
φ
o
β
β
{z
}
{z
}
|
|
|
{z
}
R(φ)
T
χ
~o
Normalized coordinates: χ
~ 1 = R(φ) χ
~ o, transformation = rotation in phase space.

 q
√
β1
(cos ∆φ + αosin ∆φ)
βoβ1sin ∆φ
β
o
−1

M0→1 = T1R(∆φ)To =  (α −α )cos ∆φ−(1+α α )sin ∆φ q
β
o
o 1
1
o
√
(cos ∆φ − α1sin ∆φ)
β
β β
1
o 1
Andreas Streun, PSI
98
3. Transverse beam dynamics
Betatron oscillations
Periodicity
Circular lattice (0 = 1):
One turn matrix with µ = ∆φo→o =: 2πQ, and Q the betatron tune:
M=
cos µ + αsin µ
βsin µ
−γsin µ
cos µ − αsin µ
symmetry point
−→
cos µ
βsin µ
1
− β sin µ cos µ
m11 − λ
m12
M
=λ
−→ m21
m22 − λ
s
Tr(M ) 2
Tr(M )
2
0 = m11 m22 − m12 m21 − (m11 + m22 ) λ + λ = 0 −→ λ1/2 =
±
−1 =
|
{z
} |
{z
}
2
2
Stability condition:
calculate eigenvalues of linear system
=|M |=1
x
x′
x
x′
=0
e
±iµ
=Tr(M )
with cos µ := Tr(M )/2 → stability requires real µ for oscillating (elliptic) solution.
=⇒ Periodicity condition:
| cos µ| < 1
with cos µ = 12 Tr(M )
otherwise no periodic solutions exists and β, α, γ are undefined.
Gain: The complete transformation 0→1 is contained in the Twiss parameters
α, β, γ at s0, s1 and the phase advance ∆φ0→1.
Andreas Streun, PSI
99
3. Transverse beam dynamics
Betatron oscillations
Twiss parameters and the Hamiltonian
H = 12 p2x + 21 k(s)x2 (k = b2) −→ x′ = px, p′x = −kx → x′′ = −kx
√
√ √
x = 2J β cos(φ + φo), with 2J := A
2
Canonic transformation with generating function F (x, φ) = − 2xβ (tan φ + α)
′
proof: x = p =
∂F
∂x
=−
New Hamiltonian: H̃ =
′
φ =
∂ H̃
∂J
=
1
β
√
2J
β
J
β (s)
−→ φ =
R
(sin φ + α cos φ)
J = − ∂F
∂φ = J
→ new equations of motion:
1
β
ds
H̃
J ′ = − ∂∂φ
= 0 −→ J is invariant.
(J; φ) are action-angle variables. 2J = betatron amplitude
Gain:
⊲ Amplitude J proven to be an invariant.
⊲ Simple Hamiltonian → useful for perturbation studies (nonlinearities)
Andreas Streun, PSI
100
3. Transverse beam dynamics
Betatron oscillations
Application: the FODO cell
FODO = Focusing - space - Defocusing - space
= repetition of the quadrupole doublet
choose symmetry point (α = 0)and define r :=
L
f
1
0
1
0
1
1 L
1 L
·
M =
·
·
·
0 1
0 1
−2/f 1
1/f
1/f 1
!
1 − 2r2
2L(1 − r)
cos µ + α sin µ
β sin µ
=
−γ sin µ
cos µ − α sin µ
−2r(1 + r)/f
1 − 2r2
0
1
=
cos µ = m11+2 m22 = 1 − 2r2
−→ stability for 0 < |r| < 1
√
sin µ = 2r 1 − r2
q
m12
1−r
−→ β = sin
=
|f
|
µ
1+r
α=
m11 −m22
2 sin µ
Andreas Streun, PSI
=0→γ=
1+α2
β
=
1
β
101
3. Transverse beam dynamics
Betatron oscillations
FODO cell beta functions
horizontal and vertical beta functions in a FODO-cell.
L/F = 0.06 → Qx = Qy = 0.02
L/F = 0.99 → Qx = Qy = 0.46
L/F = 0.5 → Qx = Qy = 0.17
L/F = −0.5 → Qx = Qy = 0.17
Andreas Streun, PSI
102
3. Transverse beam dynamics
Andreas Streun, PSI
Betatron oscillations
103
3. Transverse beam dynamics
Imperfections
Resonances
Dipole error → kick on beam:
R
R
By ds
∆x′ = b1ds = (Bρ
)
→ Increase of betatron amplitude if tune
Qx near integer number → beam loss!
(stability near half integer,
alternating kicks + − + − . . . )
R
′
Quadrupole error: ∆x = x · b2ds
−→ unstable if tune Q near half integer!
Multipoles drive any resonance:
AQx + BQy = C (A, B, C integers)
Resonance order n = |A| + |B|
B even / odd ←→ regular (bn ) / skew (an ) multipoles
Tune diagram:
Andreas Streun, PSI
1
2
3
4
Dipole
Quadrupole
Sextupole
Octupole
104
3. Transverse beam dynamics
Imperfections
Orbit distortion
Dipole kick ∆x′ and non-integer tune
→ perturbation of periodic orbit
use normalized coordinates: √
∆χ′ /2
′
′
1
∆χ = β ∆x −→ sin π − 2 2πQ = a :
√
β ∆x′
Orbit amplitude a =
2 sin πQ
Kick at location k, observation at location i −→ closed orbit equation:
x
0
x
+
M
=
M
i→k
k→i
x′
∆x′
x′
i
k
i
→ use normalized coordinates (transformations are just rotations)
→ generalize to m kicks (superposition of linear solutions)
m √
X
βiβk
xi =
cos(φki) ∆x′k
2 sin πQ
k=1
Andreas Streun, PSI
φki =
φi − φk + πQ
φi − φk − πQ
(i < k)
(i > k)
105
3. Transverse beam dynamics
Imperfections
Orbit correction
Orbit correction system:
m corrector magnets (small dipoles) and n beam position monitors (BPM).
Calculate (or measure) the (m × n) Response Matrix A:
element Aki contains orbit at BPM i for single kick from corrector k:
(Example for n = m = 72,
Ref.: M.Böge, Orbit Feedback at SLS, Cern Accelerator School Brunnen 2003)
Corrector settings for zero orbit obtained by {∆x′k } = −R−1 · {xi},
with vectors {xi} of n BPM orbit measurements, {∆x′k } of m corrector kicks.
Andreas Streun, PSI
106
3. Transverse beam dynamics
Imperfections
Chromaticity
Quadrupole:
Length
L
Strength b2 =
1 d By
(B ρ) d x
Kicks on particle: ∆x′ = −b2Lx ∆y ′ = b2Ly
(B ρ) :=
p
= 3.3356 Tm · E [GeV]
e
(b2 > 0 → horiz.foc.)
b2
Chromatic aberration: b2(δ) =
≈ b2 (1 − δ)
(1 + δ)
∆p
δ :=
p
δ>0
δ=0
δ<0
Andreas Streun, PSI
107
3. Transverse beam dynamics
Imperfections
Impact of chromatic focussing errors on the lattice tunes:
(Gradient error ∆b2 ds) × (one turn matrix M) = (new one turn matrix M̃)
Gradient error due to chromatic aberration: ±∆b2 = ∓b2δ
(hor./vert.)
1
0
cos 2π Q̃
β sin 2π Q̃
cos 2πQ
β sin 2πQ
×
=
±b2δ ds 1
−γ sin 2πQ cos 2πQ
−γ sin 2π Q̃ cos 2π Q̃
1
2 Tr(M̃)
= cos 2π Q̃ = cos 2π(Q + ∆Q) = cos 2πQ ± 21 b2δ β sin 2πQ ds
∆Q ≪ 1 −→ ∆Q = ∓ 41π b2δ β ds
Chromaticity = variation of tune with momentum:
1
∆Q
ξ :=
=∓
δ
4π
=⇒ Head tail instability
−→
b2(s) β(s) ds
C
very low limit for stored current.
=⇒ off-energy tune meets resonances
Andreas Streun, PSI
I
−→
Low energy acceptance
108
3. Transverse beam dynamics
Imperfections
Chromaticity correction
Sextupole: By (x) = 21 B ′′ x2
local gradient: By′ (x) = B ′′ x
“Order” by momentum: x (δ) = Dδ
Andreas Streun, PSI
109
3. Transverse beam dynamics
Imperfections
b2 =
Quadrupole:
1 d By
(B ρ) d x
∆x′ = −b2Lx
∆y ′ = b2Ly
Chromatic aberrations:
Quadrupole:
Sextupole:
••
=⇒
⌣
=⇒
⌢
∞
Andreas Streun, PSI
b3 =
∆x′ = −b3L(x2 − y 2)
∆y ′ = 2b3Lxy
bn(δ) = bn/(1 + δ) ≈ bn(1 − δ)
Sextupoles in dispersive regions:
Kicks on a particle
Sextupole:
2
1 1 d By
2 (B ρ) d x2
x → Dδ + x y → y
(keep up to second order in products of x, y, δ )
:
∆y ′ = +b2Ly −[b2L] δ y
∆x′ = −b2Lx +[b2L] δ x
∆x′ = −[2b3LD] δ x −b3L(x2 − y 2) −b3LD2δ 2
∆y ′ = +[2b3LD] δ y +2b3L xy
!
Chromaticity correction for (2b3LD = b2L):
I
1
!
ξx/y = ±
2b3(s)D(s) − b2(s) βx/y (s) ds = 0
4π C
nonlinear kicks. . . →
Chaos, restriction of dynamic acceptance
110
3. Transverse beam dynamics
Imperfections
Chromaticity correction in the SLS
Horizontal betatron tune
Qx vs. ∆p/p for one
period (=1/3 of the SLS lattice)
before →, and after →→
chromaticity correction.
Motion in horizontal phase space:
Linear oscillation before correction
(no sextupoles).
Andreas Streun, PSI
Dynamic aperture breakdown due to
sextupole non-linearity after straightforward correction.
Partial restoration of dynamic aperture after careful distribution of sextupoles.
111
4. Longitudinal dynamics
⊲ Synchrotron oscillations
Momentum compaction. Phase stability. Synchrotron tune.
⊲ Longitudinal acceptance
The bucket. Phase acceptance. Momentum acceptance.
Andreas Streun, PSI
112
4. Longitudinal dynamics
Synchrotron oscillations
Synchrotron oscillations
Circular machines (synchrotrons and storage rings):
⊲ time dependant energy gain in RF cavity
⊲ energy dependant time of recirculation
=⇒ Synchrotron oscillation of energy vs. time
Tune = number of oscillations per recirculation:
synchrotron tune Qs, betatron tunes Qx, Qy
Synchrotrons: Qs ≈ 10−4 . . . 10−2 ≪ Qx,y ≈ 1 . . . 100
(but e.g. microtron: Qs > Qx,y !)
(t)
=⇒ E(t), resp. δ(t) = ∆ppo(t) = β12 ∆E
Eo
treated as constant for betatron oscillations (adiabatic approximation)
Andreas Streun, PSI
113
4. Longitudinal dynamics
Synchrotron oscillations
Momentum compaction and transition
Time of flight T =
C (δ )
cβ (δ ) ,
C = lattice circumference, δ =
∆p
po .
dT
∂T dC ∂T dβ
1 dC
Co dβ
=
+
=
− 2
dδ
∂C dδ
∂β dδ
cβo dδ
cβo dδ
dC
dδ
H
Dispersion: x(s) = D(s) · δ → path length C(δ) = (ρo + Dδ) dφ
Dipole magnets: dφ = ds/ρo
H
1
dC dδ o = α Co with α := Co
dβ
dδ
β=√
−→ C(δ) = Co +
D
ρo
ds · δ
βγ
1+(βγ )2
o
Andreas Streun, PSI
D
ρo
ds the momentum compaction factor.
p = mocβγ = po(1 + δ)
−
1
/
2
dβ
−→ dδ =
β = 1 + [βoγo (1 + δ)]−2
=⇒
H
Co
dT
=
dδ
cβo
α−
1
γo2
βo
γo2
−→ ∆T = Toηδ with η := α −
1
γo2
114
4. Longitudinal dynamics
Synchrotron oscillations
Competitive effects:
α
−1/γo2
−→ high momentum particles have longer path due to dispersion
−→ high velocity particles are faster
Electron synchrotrons:
γo ≫ 1, β ≈ 1
−→ η = α
Proton synchrotrons:
√
isochronous (i.e. η = 0) at transition energy Etr = moc / α
2
. . . use RF phase instead of time:
ψ = 2π τT
rf
with τrf =
∆ψ = 2πhη δ or ∆ψ =
1
frf
=
To
h,
h ∈ N the harmonic number and To =
Co
cβo .
2πh ∆E
η Eo
βo2
. . . use path length (longitudinal driftspace) instead of time:
∆s = −βoc∆T = −Coηδ
Andreas Streun, PSI
115
4. Longitudinal dynamics
Synchrotron oscillations
Phase stability
Energy change of particle at phase ψ for one turn: ∆tE(ψ) = qV sin ψ − U (E)
Note:
∆t E = E (t + To ) − E (t),
but ∆E = E − Eo .
Eo = reference particle’s energy
V = peak voltage of RF cavity. U (E) = [energy dependant] energy loss per turn =
Uo + U ′∆E with U ′ = dU/dE (e.g. synchrotron radiation: U ∼ E 4!).
Synchronous phase: ∆tE = 0 = qV sin ψs − Uo
−→
sin ψs =
Uo
qV
Use phase shift relative to synchronous particle ∆ψ = ψ − ψs
and relative momentum deviation δ =
1 ∆E
βo2 Eo
Synchrotron oscillation is ”slow” → δ̇ ≈
∆t δ
To
= change per turn.
=⇒ longitudinal non-linear equations of motion in δ and ∆ψ:
δ̇ =
qV
βo2 Eo To
· (sin(ψs + ∆ψ) − sin ψs) − U ′ Tδo
֒→ ∆ψ = 2πhη · δ
Andreas Streun, PSI
−→
˙ =
(∆ψ)
2πhη
To
δ
116
4. Longitudinal dynamics
Synchrotron oscillations
Synchrotron Tune
∆ψ ≪ 1
−→ δ̇ =
qV
βo2 Eo To
cos ψs · ∆ψ − U ′ Tδo
−→ d/dt again and introduce (∆˙ψ ) −→
damped oscillator equation: δ̈ + 2Λδ̇ + Ω2δ = 0
with 2Λ =
′
U
To
q
and Ω = βo1To −(η cos ψs) 2πhqV
Eo
Solution δ(t) = δoeωt with ω 2 + 2Λω + Ω2 = 0
ω = −Λ ±
√
Λ2 − Ω2 ≈ −Λ + iΩ for Λ ≪ Ω
Stability requires real Ω
η<0→
η>0→
−90◦
◦
90
Synchrotron tune Qs =
Andreas Streun, PSI
−→ η cos ψs < 0 :
90◦
◦
< ψs <
< ψs < 270
synchrotron frequency
revolution frequency
=
√
below transition, i.e. γ < α
above transition (electrons always)
Ω/2π
1/To
=
1
βo
q
−(η cos ψs) 2hqV
πEo
117
4. Longitudinal dynamics
Longitudinal acceptance
The bucket
back to full non-linear equations of synchrotron motion:
δ̇ =
qV
(sin(ψs + ∆ψ) − sin ψs)
2
βoEoTo
2δ =
To ˙
(∆ψ)
πhη
[U ′ ≈ 0]
d δ 2 = 2δ δ̇ and d cos(ψ + ∆ψ ) = − sin(ψ + ∆ψ ) (∆˙ψ ) and integrate →
→ cross-wise multiplication, use dt
s
s
dt
δ2 +
qV
(cos(ψs + ∆ψ) + sin ψs ∆ψ) = constant := H
2
|
{z
}
πβoEohη
:=W (∆φ)
δ 2 ∼ p2 = kinetic energy, W = potential, H = Hamiltonian of the oscillation:
harmonic for small amplitudes: ∆ψ ≪ 1 −→ cos(ψs + ∆ψ ) ≈ cos ψs − sin ψs · ∆ψ − 12 cos ψs (∆ψ )2
−→ δ 2 − k · (∆ψ )2 = H − 2k
(k = const.)
−→ ellipses in (∆ψ, δ ) phase space for η cos ψs < 0
Potential W (∆ψ ) for acceleration above transition →
η > 0 and 90◦ < ψs < 180◦
−→ sin ψs > 0, cos ψs < 0.
Formation of 2π-periodic regions of stable
synchrotron oscillations, called buckets.
Andreas Streun, PSI
118
4. Longitudinal dynamics
Longitudinal acceptance
Phase acceptance
Separatrix = curve in phase space separating stable from unstable regions.
Phase acceptance = interval of stable phase [∆ψ1, ∆ψ2] for δ = 0:
!
1. one limit given by bucket wall: ddW
−→ sin(ψs + ∆ψ) = sin ψs
∆ψ = 0
−→ ∆ψo = 0 (bucket bottom) and (since sin x = sin(±π − x)), ∆ψ1 = ±π − 2ψs
2. other limit given by separatrix equipotential: W (∆ψ2) = W (∆ψ1)
−→ solve numerically to get ∆ψ2. (for small buckets ∆ψ2 ≈ − 21 ∆ψ1).
=⇒ Phase acceptance above and below transition energy:
• ψs → 90◦:
maximum acceleration: ∆tE → qV
minimum acceptance: ∆ψ1,2 → 0
• ψs = 180◦ or ψs = 0◦
no acceleration: ∆tE = 0
full acceptance: ∆ψ1,2 = ±180◦
Andreas Streun, PSI
119
4. Longitudinal dynamics
Longitudinal acceptance
Momentum acceptance
Insert separatrix point (∆ψ1, 0) into the Hamiltonian equation to get H.
−→ Separatrix equation:
δ2 +
∆ψ = 0
qV
[cos(ψs + ∆ψ) + sin ψs · (∆ψ + 2ψs − π) + cos ψs] = 0
2
πβoEohη
−→ momentum acceptance (or energy acceptance) of the machine:
2
δac
=
qV
[2 cos ψs + (2ψs − π) sin ψs]
2
πβoEohη
for electrons use Uo = V sin ψs, η = α and βo = 1:
h
i
π
2U
o
2
cot ψs + ψs −
=
δac
πEohα
2
Andreas Streun, PSI
120
5. Emittance
⊲ Liouville’s theorem
Hamiltonian system. The Vlasov equation.
Invariance of phase space volume. Symplecticity.
⊲ Excursion into chaos
Non integrable systems. KAM-tori and resonance islands.
⊲ Transverse emittance
Geometric emittance. Normalized emittance.
⊲ Liouville applications
Acceleration. Chromaticity and slice emittance.
Space charge. Synchrotron radiation.
⊲ Particle distributions
Statistical emittance definition. The Gaussian distribution.
Energy spread and bunch length.
Andreas Streun, PSI
121
Emittance
Introduction
Complete beam description
Transverse and longitudinal dynamics:
→ propagate single particle with amplitude A in 6-d-phase space.
Choose ”representative” amplitude A to describe the whole beam:
√
⊲ homogeneous current density, sharp edge: A√ β = xmax (envelope)
⊲ Gaussian distributed current density:
A β = σx (r.m.s. size)
"bones"
magnets and RF structures → beta functions, tunes and
transfer matrices, independant of individual coordinates
and particle distributions.
"flesh"
6-d-phase space volume of the beam, independant of the
magnets and RF structures.
"body"
complete beam description
Andreas Streun, PSI
122
Emittance
Liouville’s theorem
Liouville's theorem
A foundation of accelerator physics and celestial mechanics
”The beam’s phase space volume is constant.”
Hamiltonian system:
1. no velocity dependant forces
~
except Lorentz force, since F~ ⊥ ~v (~
p → p~ − q A)
no dissipation (friction)
2. no individual forces on particles
~
all forces derived from potentials (e.g. Φ, A)
no scattering (between particles or with residual gas atoms)
3. no (or very slow) time dependance, ∂H/∂t = 0
=⇒ Hamiltonian equations: q̇i = ∂H/∂pi, ṗi = −∂H/∂qi
p, q canonical positions and momenta, i = 1 . . . 3N , N number of particles.
Andreas Streun, PSI
123
Emittance
Liouville’s theorem
Description of beam status:
single particle status is 1 point in 6-d-space
is N points in 6-d-space
N particle status
or 1 point in 6N -d-space } equivalent,
if particles do not interact (i.e. each particle moves independant from the others).
P3N ˆ
ˆ~
Status vector in 6N -d-space: ~r = i=1 qi~qi + pip
i
P3N ˆ
ˆ~
Evolution of status: velocity ~v = i=1 q̇i~qi + ṗip
i
If all forces are derived from potentials, there exists a velocity field
guiding evolution of all possible vectors in 6N -d-space:
Divergence
3N
3N
X
X
∂ ∂H
∂
∂ ∂H
∂
q̇i +
ṗi =
−
=0
div ~v =
∂q
∂p
∂q
∂p
∂p
∂q
i
i
i
i
i
i
i=1
i=1
−→ Property of an incompressible liquid
Andreas Streun, PSI
124
Emittance
Liouville’s theorem
Vlasov equation (continuity equation from fluid dynamics, ̺ density):
∂̺
∂̺
0=
+ div(̺~v ) =
+ ~v grad̺ +̺ div~v
∂t
∂t
{z
}
|
=d̺/dt
No divergence =⇒ constant [phase space] density:
⊲ all density changes are due to flux, no sources or drains
⊲ causality (same cause → same effect): trajectories never cross or merge
−→ this result obtained in 6N -d-space is valid in 6-d-space too
−→
The 6-d-volume enclosing N particles in phase space is invariant.
Accelerators:
decoupling of sub-spaces:
horizontal (x, px), vertical (y, py ), longitudinal (∆ψ, δ)
Emittance = invariant 2-d phase space area
Andreas Streun, PSI
125
Emittance
Liouville’s theorem
Symplecticity
Linear beam transformation with transfermatrix: ~x1 = M · ~xo
symplectic matrix, i.e |M | = 1
2-d phase space vectors ~x1, ~x2 enclose area a = 21 |~x1 × ~x2|
Linear transformation ~x = M~xo
−→
Area a = 12 |(M~x1o) × (M~x2o)| = 12 |M | |~x1o × ~x2o| = |M |ao
General transformation with non-linear map: ~x1 = M(~xo)
dM Symplectic map: local Jacobian d~x = 1
Filamentation
Area a is conserved, but area ã to
accept the beam is increased.
→ irreversibility!
Andreas Streun, PSI
126
Emittance
Liouville’s theorem
Example: symplectic mapping
Nonlinear Hamiltonian:
(s)
p2
H(x, p; s) = 2 − Fm
cos(mx)
Equations of motion:
x′ = ∂H
∂p = p
p′ = − ∂H
∂x = −F (s) sin(mx)
Assume: cell length d,
F 6= 0 in small region ∆s at s = d/2
One-turn mapping:
x ← x + d2 p
p ← p − F ∆s sin(mx)
x ← x + d2 p
∂ ∆x; ∆p Symplectic: ∂ x; p = 1 → prove!
Test (10 recursions): initial / final area: Filamentation, but conservation of area.
(area measurements by IDL function poly area: 1.41107e-06 1.41089e-06 )
Andreas Streun, PSI
127
Emittance
Chaos
Excursion: Chaos
Solution of equations of motions = canonic transformation of Hamiltonian to
harmonic oscillator (amplitude J, frequency ω)
−→ elliptic orbits in 2-d space, resp. tori in higher dimensional spaces.
Hamiltonian with non-linear perturbation:
Siegel’s theorem:
All tori to rational frequencies (ω = r/s; r, s ∈ N ) are unstable
(non-integrable, i.e. no solution/transformation can be found).
KAM (Kolmogorff-Arnold-Moser) theorem:
Tori are deformed, but stable, if
• there is a twist ∂ω/∂J 6= 0 (amplitude dependant
frequency),
• the frequency is “sufficiently irrational”, ω − rs > sab ∀s; a, b > 0,
• and the perturbation is “small”.
Moser’s twist theorem
Any KAM orbit (projection of torus to 2-d space → Poincaré plot)
can be transformed into a circle, where each point is fixpoint.
Poincaré and Birkhoff’s fixpoint theorem
Unstable orbits for ω = r/s split into s elliptic and s hyperbolic fixpoints
−→ resonances appear as “island chains”.
Andreas Streun, PSI
128
Emittance
Chaos
Inside the islands (elliptic fixpoints): Mapping (local Jacobian) has imaginary
eigenvalues: |J − λ| = 0 → λ = e±iφ → harmonic oscillations.
Outside the islands (hyperbolic fixpoints):
real eigenvalues: λ1 = a, λ2 = 1/a
Filamentation of phase space areas due
to area conservation and rapid increase
of enclosing curve length.
−→ inflation of constraints !
Deterministic Chaos:
weak causality still valid,
same causes −→ same effects.
strong causality violated,
similar causes −→
× similar effects.
Islands become new centers of [modulo-s] motion → self similarity
G.Eilenberger, Reguläres und chaotisches Verhalten Hamiltonscher Systeme,
in: 14.Ferienkurs Nichtlineare Dynamik in kondensierter Materie, KFA Jülich, 1983
Andreas Streun, PSI
129
Emittance
Transverse emittances
Transverse emittances
Linear motion
−→ beam ellipse in 2-d-space
Ellipse area: a = πǫ.
Geometric emittance ǫ in (x, x′)-plane:
Define emittance by a contour confining some fraction
of particles depending on distribution (e.g. homogenous,
Gaussian, etc.)
Emittance units:
[rad·]m or mm·mrad or nm[·rad]
Alternative emittance definition: a = ǫ, unit π mm·mrad
Normalized emittance
ǭ ≈ hβγiǫ
Andreas Streun, PSI
( → light source community)
( → linac community)
ǭ measured in (x, px) plane in units of moc mm·mrad
if x′ ≈ px/ps (paraxial approximation)
and |p − hpi| ≪ 1 (monochromatic approximation)
130
Emittance
Liouville applications
Emittance invariance
In which cases is emittance an invariant (i.e. Liouville theorem holds)?
⊲
⊲
⊲
⊲
⊲
Non-linearity −→ ok
Acceleration
Chromaticity
Space charge
Synchrotron radiation
(see above)
Acceleration
∆ps > 0,
∆px = 0
−→
∆x′ ≈
∆px
ps
<0
=⇒ geometric emittance ǫ in {x, x′} shrinks: ǫ ∼ 1/ps.
=⇒ normalized emittance ǭ in {x, px} is invariant.
adiabatic damping or pseudo-damping: no violation of Liouville’s theorem.
Andreas Streun, PSI
131
Emittance
Liouville applications
Chromaticity and slice emittance
Example: chromatic aberration of a quadrupole
Beam ellipses to different momenta δ transform differently.
Increase of projected emittance enclosing all ellipses in (x, x′)-space.
Volume in (x, x′, δ)-space: torsion but no increase: slice emittance ǫ(δ) constant.
=⇒ no violation of Liouville’s theorem!
−→ important for free electron lasers, performance depends on slice emittance.
Andreas Streun, PSI
132
Emittance
Liouville applications
Space charge
Cylindrical, homogenous, unbunched beam
R
linear force Fsc ∼ r, potential Φsc = Er dr
o
·r =0
add to linear transformation: r′′ + k − 2mqjµ
3
o c(βγ )
linear defocusing – but check for convergence: j =
=⇒ Liouville’s theorem valid.
I
2
πrmax
!
Bunched beam with non-homogeneous current density
Potential Φsc exists, but non-linear radial and longitudinal
forces cause filamentation and coupling.
Increase of projected and slice emittances.
=⇒ Liouville’s theorem still valid.
Coulomb scattering, e.g.
− intra-beam scattering in low energy synchrotrons,
− beam-beam scattering in circular colliders
− scattering on residual gas atoms
Stochastic events, acting individually on each particle.
True emittance blow-up.
=⇒ Liouville’s theorem violated.
Andreas Streun, PSI
133
Emittance
Liouville applications
Synchrotron radiation
1. Electron emits radiation along its momentum
−→ both px and ps decrease.
2. RF cavity supplements ps and does not change px.
Damping of transverse momentum px = pxoe−iΛt
Decrease (cooling) of normalized emittance ǭ in (x, px)-space.
=⇒ Liouville’s theorem violated.
Quantized radiation → individual recoil and excitation of transverse oscillations.
Increase (heating) of emittance due to stochastic events.
=⇒ Liouville’s theorem violated again.
Electron storage rings: emittances given by cooling/heating equilibrium.
(independant of injected beam properties, damping time < 1 s).
Slow process compared to betatron and synchrotron oscillations, e.g. SLS:
Λx,y ≈ 100 Hz
Betatron frequency
Qx,y /To ≈ 100 MHz
Synchrotron frequency
Qs /To ≈ 5 kHz
Λs ≈ 200 Hz
=⇒ Liouville violation due to radiation can be neglected in many calculations.
Andreas Streun, PSI
134
Emittance
Distributions
Statistical emittance definition
Particle distribution ̺(x, x′)
−→ r.m.s. beam size and divergence
Reference orbit (origin): hxi = 0, hx′i = 0.
RR 2
x ̺(x, x′) dx dx′
2
2
σx = hx i = R R
̺(x, x′) dx dx′
σx2 ′
′2
= hx i,
′
(σx) =
hxx′ i
σx
√ √
Ellipse parameters: σx = ǫ β,
2
2
βγ − α = 1 −→ ǫ =
Normalized coordinates
σx2 (σx2 ′
′
√ √
σx′ = ǫ γ,
′
(σx) =
√
α√ ǫ
− β
p
− ((σx) ) ) =⇒ ǫ = hx2ihx′2i − hxx′i2
(χ, χ ):
′ 2
x=
√
β χ,
x′ = − √αβ χ − √1β χ′
ǫ2 = hχ2ihχ′2i,
since hχχ′i = 0 (uncorrelated) by transformation
√
2
2
′2
2
hχ i = hχ i = σχ = σχ′ = ǫ → circle with radius ǫ.
Andreas Streun, PSI
135
Emittance
Distributions
Emittance is average betatron amplitude for any particle
distribution isotropic in phase angle.
ǫ = hJi
Individual particle betatron amplitude (2J) and initial phase φo:
p
d
x(s) = 2J β(s) cos(φ(s) + φo) −→ ds
φ′ = β1 β ′ = −2α
q
x′(s) = − β2(Js) (sin(φ(s) + φo) + α(s) cos(φ(s) + φo))
a) easy wasy to prove: transformation to action-angle variables:
√
√
∂χ∂χ′ ′
′
∂x∂x
χ = 2J cos φ, χ = 2J sin φ
∂J∂φ = 1, ∂χ∂χ′ = 1
hχ2i
ǫ=
=
hχ′2i
RR
cos2 φ
2J
̺(J, φ) dJ dφ
sin2 φ
RR
̺(J, φ) dJ dφ
b) lengthy way to prove: ǫ =
Andreas Streun, PSI
p
hx2ihx′2i − hxx′i2
̺ 6= ̺(φ)
−→
R
dφ
R
J ̺(J) dJ
R
= hJi
̺(J) dJ
etc. . .
136
Emittance
Distributions
Gaussian distribution
• natural in many cases
→ Maxwell distribution of momenta at thermionic cathode
→ synchrotron radiation equilibrium
• fair approximation in other cases
e.g. parabolic beam profile with halo
• convenient to handle (r.m.s. quantities)
2
′2
1
1
− χ2ǫ
− χ2ǫ
·√ √ e
̺(χ, χ ) = √ √ e
2π ǫ
2π ǫ
′
RR
̺(χ, χ′) dχ dχ′ = 1
1 − γx2+2αxx′+βx′2
2ǫ
e
̺(x, x ) =
2π ǫ
′
Andreas Streun, PSI
137
Emittance
Distributions
̺(x) =
Z
+∞
−∞
2
− x2
1
′
′
̺(x, x ) dx = √
e 2σx ,
2π σx
1 −J
̺(J, φ) =
e ǫ
2πǫ
−→
with σx =
p
ǫβ
− Jǫ
̺(J) = e
Particles contained in distributions:
A(x) =
Z
+x
̺(x) dx = erf
−x
B(J) =
Z
0
J
x
√
2
J
̺(J) dJ = 1 − e− ǫ
x/σx
2J/ǫ
A
B
1
2
3
1
4
9
0.683
0.956
0.997
0.393
0.865
0.989
Andreas Streun, PSI
138
Emittance
Distributions
Energy spread and bunchlength
Longitudinal emittance ǫs may be defined in (∆ψ, δ)-space, but uncommon:
Synchrotrons: Qs ≪ 1 → αs ≈ 0 → little coupling ∆ψ ↔ δ
→ Use [relative] r.m.s. energy/momentum spread σδ2 = hδ 2i.
→ Use spatial or temporal r.m.s. bunchlength σs2 = h(∆s)2i or σt2 = h(∆t)2i.
ψ
(∆t = ∆
2π τrf , ∆s = βc∆t).
Electron storage rings: σδ given by synchrotron radiation equilibrium
σs follows from RF and magnet parameters (Vrf , α, C etc.)
Peak current Iˆ = ̺(∆t = 0)
Gaussian beam: ̺(∆t) =
−
√Q e
2πσt
(∆t)2
2σt2
→ Iˆ =
√Q
2π σ t
Bunch charge = average current × recirculation time.
R
Q = ̺(∆t) d(∆t) = I · To
Andreas Streun, PSI
Bunchlength measurement at SLS
139
6. Synchrotron Radiation
⊲ Synchrotron radiation
Power. Collimation. Time structure. Spectrum. Brightness.
⊲ Radiation equilibrium
Radiation damping. Quantum excitation. The equilibrium.
⊲ Light Sources
Example: SLS. Minimum emittance. Free electron laser.
Andreas Streun, PSI
140
Lorentz transformation
Transformation from lab sytem K to system K ′ moving at speed βc in z-direction:

x′
y′
z′
′




1
 0
ML =  0
0
0
0
1
0
0
γ
0 −βγ



px

 py 

=
M
·



L  p
z
E/c
E /c
x


 y 
=
M
·


L  z 
ct
ct

p′x
p′y
p′z
′

0
0 
−βγ 
γ
ML−1

1
 0
= 0
0
0
0
1
0
0
γ
0 +βγ

0
0 
+βγ 
γ
Moving particle: z ′ = 0 → z = βγct′ and ct = γct′ → lab system: z = βct
4-vectors: space-time S̃ = (x, y, z, ict) and momentum-energy P̃ = (px, py , pz , iE/c)
p
Length of 4-vectors is Lorentz-invariant. |P̃ | = P̃ · P̃ = imoc
Andreas Streun, PSI
141
6. Synchrotron radiation
Radiation properties
Synchrotron radiation power
Radiation of an accelerated charged particle (Hertz dipole characteristics):
P =
e
moc2
2
c
6πεo
d2 P
Angular distribution dφ dθ
Maximum power ⊥ to acceleration
d~
p
dt
2
[SI]
∼ sin2 θ
Relativistic invariant formulation using 4-momentum P̃ = [~
p, iE/c]
4-D scalar product:
d~
p 2
dt
consider
−→
P̃a · P̃b = p
~a · p
~b − Ea Eb /c2
dP̃
dt′
d~
p/dt′ k p
~
d~
p/dt′ ⊥ p
~
Andreas Streun, PSI
!2
=
−→ P̃ 2 = −mo c
dE 2
1
d~
p 2
− 2
dt′
c
dt′
linear acceleration
circular acceleration
with
′
t =
1
t
γ
time in moving system.
→ linac
→ synchrotron
142
6. Synchrotron radiation
Radiation properties
Linear acceleration
Radiation cannot separate from the Coulomb field.
E 2 = (mo c2 )2 + (pc)2 → dE′ = β dp′ (1 − β 2 ) = 1/γ 2
dt
dt
2 2
d~
p
dP̃
~ 2 (electric field)
=
(e
E)
=
′
dt
dt
~ = 25 MV/m −→ P = 10−16 W
Example: acceleration with gradient |E|
per 1 m linac: electron energy increase 25 MeV, radiation loss 2 µeV → negligible!
Circular acceleration
Radiation separates fast from the Coulomb field.
d~
p
p
= γ d~
dt
dt′
2
mv 2 = pv = βpc = β E
centrifugal acceleration dp
=
R
R
R
R
dt
2
2
βγE
dP̃
E
e2 c
′
dt
R
6πεo
mo c2
dE/dt′ = 0 −→
=
−→ P =
Uo [keV] =
β2
R2
[SI]
2πR
only in bending magnets)
c (radiation
4
e
e
(E [GeV])4
33
10
R [m]
3εo moc2
Energy loss per turn Uo = P
β ≈ 1 −→
4
|
{z
88.5
}
Example: SLS at 2.4 GeV, R = 5.7 m −→ Uo = 512 keV per electron.
max. current I = 400 mA → P = Uo · I = 205 kW! → supplied by RF.
Andreas Streun, PSI
143
6. Synchrotron radiation
Radiation properties
Collimation
Acceleration in x-direction
−→ max. emission in y and z directions.
Assume photon (β = 1!) momentum in y direction:
Lorentz transformation to lab system:
Collimation angle tan Θ =
py
pz
=
py =
p′y
p′y
=
pz =
E′
c ,
pz = 0
E′
γc
= γp′y
1
γ
Example: ESRF at 6 GeV −→ Θ = 85 µrad.
Beam spot 1 cm diameter in 60 m distance.
ESRF (European Synchrotron Radiation Facility) (Grenoble, France)
Andreas Streun, PSI
−→
144
6. Synchrotron radiation
Radiation properties
Time structure and photon energy
Collimation → Observation from narrow sector
(small depth of field)
pulse duration = time delay (electron − photon)
2RΘ 2R sin Θ
∆t =
−
cβ
c
−→
sin Θ ≈ Θ −
Θ3 ,
6
=⇒ typical frequency νtyp =
1
q
β =
1
∆t
1
1−1/γ 2
≈
1
1−1/(2γ 2 )
≈
1 + 12
2γ
−→
and energy Ẽtyp = hνtyp =
4R
∆t =
3cγ 3
3hc 3
4R γ .
Example: ESRF at 6 GeV, R = 23 m −→ Ẽtyp = 65 keV – like X-ray tube
Andreas Streun, PSI
145
6. Synchrotron radiation
Radiation properties
Radiation spectrum
dP
dω
=
P
ωc S
ω
ωc
(Ẽ = h̄ω)
Define critical energy (frequency)
Ẽc (ωc) :
Z
0
ωc
dP
!
dω =
dω
Z
Ẽc = h̄ωc =
∞
ωc
1
π
dP
dω
dω
Ẽtyp
(figure from: H.Wiedemann,Particle accelerator physics 2)
2
−→ use BR = p/e
−→
3
e
3hc
2
Ẽc [keV] = 1015
(B
[T]
E
[GeV])
4πe
moc2
|
{z
}
0.665
Andreas Streun, PSI
146
6. Synchrotron radiation
Radiation properties
Brightness and Undulators
Brightness B = 6-d phase space photon density = spatial and angular flux density
[B] =
B∼
photons
s mm2 mrad2 0.1% BW
1
ǫ x ǫy
BW = bandwidth
∆Ẽ
Ẽ
(usually 0.1%)
−→ Light sources require low transverse emittances.
Example SLS ǫx = 5 · 10−9 rad m, ǫy ≈ 5 . . . 10 · 10−12 rad m
−→
source size σx = 45 . . . 160 µm, σy = 2 . . . 8 µm (for different locations)
Undulator magnet
→ coherent superposition of radiation
→ line spectrum
→ very high brightness
Andreas Streun, PSI
147
6. Synchrotron radiation
Radiation properties
SLS brightness
Bending magnet brightness in comparison to
light bulb, sun and X-ray tube
Andreas Streun, PSI
Undulator brightness in comparison to
bending magnet brightness
148
6. Synchrotron radiation
Radiation equilibrium
Equilibrium beam parameters
References:
M. Sands, The physics of electron storage rings, SLAC-report SLAC-121, 1970
corresponding chapters in books by K.Wille, S.Y.Lee and H.Wiedemann
1. Radiation damping
Photon emission ∆px < 0 ∆py < 0 ∆ps < 0
Acceleration
∆px = 0 ∆py = 0 ∆ps > 0
∆p ∼ p
−→
exponential decay: u = uoe−t/τu
pu = puoe−t/τu
u = x; y; ∆s
∂B
Calculate dU
dδ , include dispersive orbits x = Dδ and magnetic field in gradient bends By (x) = Byo + ∂x x.
Simple scaling U ∼ E 4 is only valid on axis!
=⇒ Damping times τu = 2UToJEo
o u
u = x; y; s
Damping partition numbers (for a flat lattice, i.e. D = Dx, Dy = 0)
H
hD(h2 − 2b2) ds
C
H
Jx = 1 − D
Jy = 1
Js = 2 + D
with D =
2 ds
h
C
By (0)
∂By 1
=
orbit
curvature,
b
=
h = b1 = (Bρ
2
)
(Bρ) ∂x = quadrupole component.
o
Andreas Streun, PSI
149
6. Synchrotron radiation
Radiation equilibrium
Stability (i.e all Ju > 0) for −2 < D < 1.
P
Ju = 4
(Robinson theorem).
→ separate function lattice: bending magnets are pure dipoles (b2 = 0) → D ≈ 1
→ combined function lattice: b2 < 0 (vertical focusing gradient) → D < 1, Jx > 1
2. Quantum excitation
Photon recoil
−→ stochastic excitation of synchrotron and betatron oscillations
Calculation: Growth rate hδ˙2 i ∼ Ṅ hẼ 2 i = number of photons per turn × variance of photon energy
longitudinal: ”noise” on energy
−→ increase of beam energy spread.
horizontal: Betatron oscillation around dispersive
orbit corresponding to changed energy.
Amplitude
of oscillation:
−1
Dδ ′2
′
2
2
a = T
=
(βD
+
2αDD
+
γD
)
·δ
′
Dδ
|
{z
}
H
H = dispersion’s emittance or lattice invariant.
vertical: no excitation since emission k p~ and py → 0 due to radiation damping.
Andreas Streun, PSI
150
6. Synchrotron radiation
Radiation equilibrium
3. Equilibrium
Radiation damping rate = quantum excitation growth rate
=⇒ energy spread
and bunch length
σδ2
3
55 h̄c
2 h|h| i
√
=
γ
2
moc
hh2i
32
3
|
{z
}
σs2 = −
αCEoλrf
tan ψs · σδ2
2πUo
Cq =3.84·10−13 m
Bunch length follows from σδ through synchrotron oscillation:
One turn longitudinal drift ∆s = αCδ, → ∆δs = αC = m12 -element of longitudinal transfer matrix in (∆s, δ )-space.
m12 = βs sin 2πQs , Qs synchrotron tune and βs longitudinal ”beta function”.
sin 2πQs ≈ 2πQs .
Qs ≪ 1 −→ αs ≈ 0, γs = β1 ;
s
q
√
√
ǫs
αC σ .
Longitudinal phase ellipse parameters: σδ = ǫs γs ≈
,
σ
=
ǫs βs −→ σs = βs σδ = 2πQ
s
δ
β
s
s
=⇒ [natural] horizontal emittance
ǫxo
h|h|3 Hi
= Cq γ
hh2i Jx
2
vertical emittance: flat lattice, H = 0 everywhere → ǫyo ≈ 0
(h = 0 outside bending magnets)
(direct recoil)
misalignments (e.g. quadrupole rotation error, sextupole position errors)
−→ emittance coupling
Andreas Streun, PSI
g :=
ǫy
ǫx
≪1
−→ ǫx =
ǫxo
1+g
ǫy =
g ǫxo
1+g
151
6. Synchrotron radiation
Radiation equilibrium
Swiss Light Source SLS
Andreas Streun, PSI
152
6. Synchrotron radiation
Light Sources
Beam size in the SLS
↓ Beta functions and dispersions of the SLS storage ring:
Zoom in on one of the bending magnets −→
Bending magnet center: βx = 0.45 m, βy = 14.8 m, D = 4 cm
Natural emittance ǫxo = 5.5 nm rad, g = 0.1 %
−→ ǫx = 5.5 nm rad
ǫy = 5.5 pm rad
Beam sizes (r.m.s energy spread σδ = 9 · 10−4 ):
p
p
σy = ǫy βy = 9µm
σx = ǫx βx + (Dσδ )2 = 61 µm
Measurement: beam image from X-ray pinhole camera =⇒
Pinhole resolution (blur) 13 µm, to be subtracted quadratically
p
→ measured σx = p (64.6 µm)2 − (13 µm)2 = 63 µm
→ measured σy = (15.9 µm)2 − (13 µm)2 = 9 µm
Andreas Streun, PSI
153
6. Synchrotron radiation
Light Sources
Minimum emittance
Emittance in isomagnetic lattice (i.e. same h = 1/ρ for all bends):
2 hHimag
ǫxo [nm·rad] = 1470 (E [GeV])
Minimum emittance:
ǫxo
ρJx
!
dhH(αxc, βxc, Dc, Dc′ )imag = 0
(E[GeV])2 Φ3F
√
[nm·rad] = 1470
Jx
12 15
−→
Φ [rad] magnet deflection angle ≪ 1
=⇒ Light sources
have many small bending
magnets: ǫ ∼ Φ3,
require sharp horizontal
focus in bending magnets,
βxc
F =1
= 2√115 L Dc =
Andreas Streun, PSI
2
1
24ρ L
F =3 q
3
sf = 38 L βxf =
320 L
operate usually at
ǫ ≈ 3 . . . 5 × ǫmin .
154
6. Synchrotron radiation
Light Sources
Free Electron Laser
Undulator radiation travels with beam,
acts like accelerating RF field.
=⇒ microbunching :
bucket formation at radiation wavelength:
⊲ coherent radiation:
bunch < wavelength → radiates like
one super-particle. Radiated power:
incoherent P ∼ N e2
coherent: P ∼ (N e)2 !
⊲ self amplification:
exponential increase of power with
path length P ∼ es/Lg .
Lg =gain length
Power saturation at ≈ 22 Lg .
Peak brightness of FELs
=⇒
compared to storage ring undulators
Andreas Streun, PSI
155
6. Synchrotron radiation
Light Sources
FEL schemes
Oscillator
not for X-rays
(no mirrors available)
SASE
(Self Amplified Spontaneous Emission)
start-up from noise → unstable
Seeded FEL
microbunching initialization
by external laser
pictures taken from: S. Werin, Tutorial on FEL,
http://cas.web.cern.ch/cas/BRUNNEN/Presentations/PDF/tutorial-on-fel-011005.pdf
Andreas Streun, PSI
156
6. Synchrotron radiation
Wavelength λ ∼
Light Sources
λu = undulator period [∼ cm]
λu
2γ 2
◦
λ = radiated wavelength [∼A]
1
√
Gain Length Lg ∼
3
B
u
| {z λu} |
undulator
Diffraction limit: ǫ <
λ
4π
4
→ E ≈ 2 . . . 10 GeV
13
E ǫ
→ high peak current Iˆ > 1 kA! σs < 1 mm
ˆ
I{z
}
beam
−→ ǫ ∼ 10−11 rad m
σs, ǫx out of reach for storage rings
−→ use linac: ǫ ∼
1
E
by pseudo-damping
→ Low emittance electron source developments (laser RF, nano field emitter etc.)
DESY X-FEL pilot project FLASH (Free electron LASer at Hamburg)
Andreas Streun, PSI
157
6. Synchrotron radiation
Light Sources
SwissFEL at
Andreas Streun, PSI
158
7. Luminosity
⊲ Luminosity
Gaussian beams. Hourglass effect. Space charge limit.
Luminosity optimization. Tune spread. Beam-beam limit.
Beam separation: Crab crossing and crab-waist. Beam disruption
Andreas Streun, PSI
159
7. Luminosity
Gaussian distribution
Luminosity with Gaussian beams
Luminosity = particles/time × particle/area
L=
N+
T
−
× NA∗
(A∗ common interaction area)
Luminosity = 4-d overlap of particle distributions ̺±
L = fc
Z Z Z Z
(β = 1):
+∞
−∞
̺+(x, y, s + ct) ̺−(x, y, s − ct) 2cdt ds dx dy
2c = relative velocity of bunches in laboratory system,
fc = c/b = collison frequency, b distance between successive bunches.
Gaussian distributions ̺±, also include [horizontal] crossing angle 2θ ≪ 1:
2
2
2
(x±sθ )
(s±ct)
y
±
−
−
−
N
2
2
2
2σx (s)
2σy (s)
2σs
e
.
̺±(x, y, s ± ct) =
(2π)3/2σx(s)σy (s)σs
Andreas Streun, PSI
160
7. Luminosity
Hourglass effect
Focus at collision point (∗) : σu(s) = σu∗
Z
=⇒
fcN +N −
·S
L=
∗
∗
4π σxσy
r
1+
2
s
∗
βu
,
−→ A∗ = 4πσx∗ σy∗
u = x; y
for Gaussian beams
Luminosity suppression factor
hourglass effect
2
S=√
π σs
Z∞
0
2
− σss
x
e ( ) e
r
2 r
2 ds
1 + βs∗
1 + βs∗
x
Limit on focus: β ∗ > σs
Andreas Streun, PSI
2
θs
− σ (s)
y
−→ S ≈ 0.8 . . . 0.95
161
7. Luminosity
Space charge limit
Space charge limit
Lens formed by oncoming Gaussian bunch with integrated strength
Z
2re
N∓
∆u′
fu(x, y)
=− ± ∗ ∗
k ds =
u
γ σu(σx + σy∗)
u = x, y
µoc2
re =
4πmo
Form factors fu, non-linear and coupling. fu = 1 for x, y ≈ 0 (beam core).
Calculate maximum distortion of machine tune
1
±
∆Qu =
4π
Z
1 ∗
k βu(s) ds ≈ βu
4π
Z
(like in chromaticity derivation):
N ∓βu∗
re
±
=:
ζ
k ds =
u
2πγ ± σu∗ (σx∗ + σy∗)
ζ = space charge parameter or linear tune shift parameter.
Empirical limit: ζ < 0.05 in e+e−, ζ < 0.005 in pp̄ collision.
=⇒ phase space current saturation: ζ ∼
N
ǫxo
Assume N + = N − and match beam parameters to reach current limit in x and y
Andreas Streun, PSI
162
7. Luminosity
−→
Luminosity optimization
βy∗
βx∗
=
ζy
ζx
V
g=
ǫy
ǫx
=⇒
=
ζx
ζy
V
with beam aspect ratio V =
σy∗
∗
σx
cπ 2 (1 + V )2 ǫxo
ζxζy S
L= 2γ
re
1 + g b βy∗
Limiting cases: round beam V = g = 1, ideal flat beam V = g = 0.
How to optimize luminosity:
• large natural emittance ǫxo → ”fill the aperture”:
p
!
2
nσx(s) = n ǫxβx(s) + (σδ D(s)) ≤ ax(s)
with ax the horizontal aperture and n sigma stay clear.
• sharp focus – but . . .
⊲ βy∗ > σs for S ≈ 1.
⊲ longitudinal beam beam effect: energy modulations for large x′∗ , y ′∗
⊲ tune shift aggravation: ∆Q > ζ for ∆s 6= 0.
• short distance b between successive bunches. Limit b = λrf .
Avoid parasitic crossings (approx. criterion for encounters: ∆y > 2.5σx.)
Andreas Streun, PSI
163
7. Luminosity
Tune spread
Tune spread
Non-linearity of beam-beam lens =⇒ Tune spread (beam’s footprint)
Force vs. position:
Ref.: W.T.Weng,Space charge effects, tune shifts and resonances, SLAC-PUB-4058, Aug.1986
Andreas Streun, PSI
164
7. Luminosity
Beam-beam limit
Beam-beam limit
Saturation current
Coupling of betatron oscillations due to beam beam lens
=⇒ vertical blow-up of flat beam, increase of interaction area
=⇒ saturation of space charge parameter, only linear luminosity increase
from: R.Talman, Specific luminosity limits of e+ e− colliders, PRST AB 5, 081001 (2002)
Andreas Streun, PSI
165
7. Luminosity
Beam separation
Beam separation
Magnetic separation for head-on collision of
identical particles (e− e− or pp) at same
energy
Asymmetric magnetic separation for head-on collision of particleantiparticle at different energies to boost the center-of-mass system.
Electrostatic separation for head-on collision
of particle-antiparticle at same energy.
Crossing angle (∼ 10 mrad) for fast separation. Allows high bunch frequency, but luminosity is reduced due to incomplete overlap.
Also risk of instabilities.
(note: bunch height ≪ width ≪ length)
Andreas Streun, PSI
Crab-crossing for head-on collision of bunches of crossing beams. A pair of
transverse deflecting cavities applies time dependant transverse momentum
to the bunches of both beams, causing a tilt (“crab walk”). Focusing
lenses invert the momentum, and another pair of cavities compensates the
modulation.
Particle factories work with crossing beams to achieve high bunch frequency.
Some use crab-crossing or crab waist to increase luminosity.
166
7. Luminosity
Beam separation
Crab crossing
Crossing at angle 2θ
+ high bunch frequency
− reduced overlap / luminosity
=⇒ restore head-on collision:
transverse deflecting cavities at ∆φx = ±90◦ before/after interaction point.
(in use at KEK B-factory, reached L > 1034cm−2s−1.)
Andreas Streun, PSI
167
7. Luminosity
Beam separation
Crab waist
Crossing at angle 2θ ≪ 1
+ reduced interaction length for σx ≪ σs
σx
=⇒ criterion βy∗ > σs → βy∗ > [sin]2
θ ≪ σs
p
eff. beam width σ̄x = σx2 + (σs tan θ)2 ≈ σsθ
L∝
N2
N2
σy σ̄x −→ σy (σs θ )
ζx ∝
N βx∗
N βx∗
σ̄x (σ̄x +σy ) −→ (σs θ )2
ζy ∝
N βy∗
N βy∗
σy (σ̄x +σy ) −→ σy (σs θ )
1. θ ↑, N ↑ (N p
∝ θ) → ζy const., ζx ∝ 1/N ↓, L ∝ N ↑
Luminosity increase
2. βy∗ ↓, (σy ∝ βy∗) → ζy ∝ σy ↓, L ∝ σ1y ↑
Problem: coupling resonances → adjust s-position of focus to coincide with
oncoming bunch centre by means of sextupoles:
crab sextupoles OFF
Andreas Streun, PSI
crab sextupoles ON
168
7. Luminosity
Beam separation
↑ Horizontal variation of focal length
↓ Suppression of vertical blow-up
Expected luminosity increase
P.Raimondi, M.Zobov, R.Shatilov, Suppression of beam-beam resonances in crab waist collisions, Proc.EPAC 2008, p.2620
Andreas Streun, PSI
169
7. Luminosity
Beam disruption
Beam disruption
Linear colliders: no re-use of beam
−→ no limit on ζ-parameters
−→ beam-beam lens: focal length < bunch length, f < σs
−→ self-focussing (pinch-effect)
−→ luminosity enhancement
−→ beam disruption, parameter du =
σs
f
=
2re
N σs
∗
∗ +σ ∗ )
γ σu (σx
y
= −4πζu βσ∗s
u
u = x; y
Linear collider luminosity limitations:
• sub-µm alignment of final focus
• beamstrahlung = synchrotron radiation in
magnetic field of oncoming bunch
⊲ photon recoil
→ undefined center-of-mass energy
⊲ direct gamma-background
⊲ pair production background
Andreas Streun, PSI
170
8. Muon accelerators
and neutrino factories
⊲ Physics
Muons and neutrinos
⊲ Neutrino factories
Beta decay. Pion and muon decay. Muon decay in storage ring.
⊲ Muon accelerator challenges
Proton drivers. High power targets.
Pion capture in magnetic horn. Muon cooling by ionization.
FFAG (fixed field alternating gradient cyclotron)
⊲ Spallation neutron sources
Andreas Streun, PSI
171
Muon accelerators and neutrino factories
Physics
Muons and neutrinos
Muon = ”heavy electron”, mµ = 207 me
Muon circular collider
γ 207 times lower at same center of mass energy,
synchrotron radiation loss P ∼ γ 4 only 10−9 of electrons.
=⇒ leptonic collisions at large Ecm (TeV) with ”compact” collider.
Neutrino factory
Physics interest in high energy neutrinos (cross section ∼ energy).
→ how to create high energy neutrino beams of reasonable luminosity?
Neutrino oscillation studies → long baseline experiments (> 1000 km)
Andreas Streun, PSI
172
Muon accelerators and neutrino factories
Neutrino factories
Neutrino production
1. Electron neutrinos from beta decay
Decay of radioactive ions stored in ring, e.g.
6
2 He
−→
6
3 Li
+ e− + ν̄e
or
18
10 Ne
−→
18
9F
+ e+ + νe
Project BetaBeam at CERN →
Components:
⊲ proton driver
⊲ ion production
⊲ ion accelerators
⊲ storage and decay ring
storage ring with long straights to
obtain collimated neutrino beam
Andreas Streun, PSI
173
Muon accelerators and neutrino factories
Neutrino factories
2. Neutrinos from pion and muon decay
High energy proton beam on target:
p → π +, π −, π o . . .
Muon-neutrinos from pion decay:
π + → µ+ + νµ and π − → µ− + ν̄µ
Muon- and electron neutrinos
from muon decay:
µ+ → e+ + ν̄µ + νe
µ− → e− + νµ + ν̄e
Neutrino factory components:
⊲ high intensity proton driver
⊲ high power production target
⊲ muon capture and focussing
In operation:
ν
CNGS CERN =⇒ Gran Sasso
T2K
ν
J-PARC =⇒ Kamioka
Andreas Streun, PSI
ր
174
Muon accelerators and neutrino factories
Neutrino factories
3. Neutrino beams from muon decay in storage ring
Additional components of neutrino factory:
⊲ muon ionization cooler or damping ring,
⊲ rapid muon acceleration,
⊲ inclined muon storage ring
Neutrino beam apex towards
distant detectors.
Projects at
JAERI, CERN, BNL, FNAL, RAL
Andreas Streun, PSI
175
Muon accelerators and neutrino factories
Muon accelerators
Muon accelerator challenges
Proton drivers∗
−→
cyclotrons and linacs
Megawatt targets∗ (π/µ production)
liquid metal [jet]
−→
Muon capture (focus muons after target)
−→
magnetic horn
Muon cooling (compress 6d-phase space)
−→
ionization cooling
Muon acceleration (very fast acceleration)
−→
• recirculated linacs
• VRCS (very rapid cycling synchrotron)
• FFAG (fixed field alternating gradient cyclotron)
∗
common interest with spallation neutron sources for materials research and energy production
Andreas Streun, PSI
176
Muon accelerators and neutrino factories
Proton drivers
Proton drivers
Beam power > 1 MW !
Cyclotrons
PSI: P = 1.3 MW (operating)
Linacs
CERN SPL
(Superconducting Proton Linac)
P = 4 MW (>2010)
Andreas Streun, PSI
177
Muon accelerators and neutrino factories
Targets
High power targets
Problems: Thermal stress (P > 1 MW in small volume) and nuclear activation
← PSI rotating graphite wheel target for
pion production (≈ 100 kW, operating
temperature 1700◦C, lifetime ∼ 1 year)
PSI MegaPie liquid metal (Pb/Bi) target
→
for SINQ neutron source (1.0 MW)
↓ BNL prototype for liquid metal jet target
Andreas Streun, PSI
178
Muon accelerators and neutrino factories
Pion capture
Magnetic horn
Pion focusing at production target:
Andreas Streun, PSI
179
Muon accelerators and neutrino factories
Muon cooling
Ionization cooling
Electrons: radiation cooling
decrease of total momentum due to radiation
increase of ps only by acceleration −→ damping of transverse momenta
but: increase of momentum spread due to stochastic photon emission
−→ minimize by focus in bending magnets
Muons: ionization cooling = friction
decrease of total momentum due to multiple ionization of atoms
increase of ps only by acceleration −→ damping of transverse momenta
but: increase of momentum spread due to stochastic scattering events
−→ minimize by focus in medium
Andreas Streun, PSI
180
Muon accelerators and neutrino factories
Muon cooling
MICE
Muon Ionization Cooling Experiment
Andreas Streun, PSI
181
Muon accelerators and neutrino factories
Muon cooling
MICE results
Simulations of emittance damping
Ref.: M.Appollonio & J.H.Cobb
Emittance measurement in MICE
J.Physics, Conf.Ser., 110(2008)122002
Andreas Streun, PSI
Measured damping of transverse
emittance
182
Muon accelerators and neutrino factories
Muon cooling
Muon cooling rings
R.Edgecock, RAL
Andreas Streun, PSI
183
8. Muons accelerators and neutrino factories
Muon cooling
Helical cooling channels
continuous focusing and dispersion along helical path
Ö exchange transverse ↔ longitudinal
Ö 6-D phase space cooling
Emittances as function of length
↓
Andreas Streun, PSI
Figures taken from Yonehara et al., PAC’05, p.3212 and Bross et al., Proc.COOL-2009
184
8. Muons accelerators and neutrino factories
Muon acceleration
FFAG (Fixed Field Alternating Gradient cyclotron)
Machine
Field
Radius
Frequency
Tunes Q(E)
Synchrotron & betatron variable
fixed
fixed
constant
Microtron & cyclotron
fixed
variable
fixed
~constant
FFAG (scaling)
fixed
variable
variable
constant
FFAG (non scaling)
fixed
variable
fixed
variable
FFAG: + fast acceleration + large momentum aperture Ö muons!
Scaling FFAG:
‹ fast acceleration
‹ avoid resonance
crossing
Ö tunes, betas etc.
constant on ramp
Ö wide orbit range
Ö complicated magnet
design
Andreas Streun, PSI
Non-scaling FFAG
‹ even faster acceleration:
few turns only
Ö ignore resonances
Ö keep RF constant
Ö asynchronous
acceleration (no bucket!)
Ö stability ?
Ref. M. Craddock, Proc. PAC’05, p.261
185
8. Muons accelerators and neutrino factories
Muon acceleration
PRISM FFAG for muon phase rotation
phase rotation = 90º rotation in (∆E,∆s) space to reduce energy spread on expense of bunch length
Challenging magnet design: wide aperture and achromatic, i.e. Q ≠ Q(E)
magnet field profiles →
Ref.: A. Sato, A Fixed Field Alternating Gradient Ring for a High
Intensity Monochromatic Muon Source
Andreas Streun, PSI
phase space motion
186
8. Muons accelerators and neutrino factories
Muon acceleration
Scaling FFAGs
150 MeV proton
FFAG at KEK
↓
↑
LAPTOP
1 MeV electron FFAG for
industrial and medical
applications (∅
∅ 10 cm ! )
Andreas Streun, PSI
187
8. Muons accelerators and neutrino factories
Muon acceleration
Non-scaling FFAG
Prototype EMMA
Electron Model for Muon
Accelerator (10...20 MeV)
Daresbury Laboratory (UK)
Ref.: R. Edgecock et al.,
Proc. EPAC’08, p.3380
Future plans: proton FFAG
10→20 GeV in 16 turns
Andreas Streun, PSI
188
8. Muons accelerators and neutrino factories
Neutron sources
Spallation neutron sources
Spallation: high energy proton excites nucleus
→ emission of several neutrons and protons.
Normalized yield neutrons/proton as
function of incident proton energy →
Ref.: A. Letourneau et al., Neutron production in bombardments of thin
and thick W, Hg, Pb targets by 0.4, 0.8, 1.2, 1.8 and 2.5 GeV protons,
Nucl. Instr. and Meth. in Phys. Res. B 170 (2000) 299-322
Ö requires GeV-proton beam of MW power
SINQ
Spallation neutron
source at PSI for
materials research
(includes MEGAPIE
liquid metal target)
Andreas Streun, PSI
189
SNS and ESS
Spallation
Neutron Source
Oakridge, USA
Power: 1.0 (1.4) MW
1 GeV protons
n.c linac → 200 MeV
s.c. linac → 1 GeV
liquid Hg target
start of operation 2006
budget 1.4 G$
Andreas Streun, PSI
­SNS liquid Hg target
¯ESS artist’s view
European
Spallation Source
Lund, Sweden
18 partner countries
Power 5.0 MW
1 GeV protons
n.c linac → 400 MeV
s.c. linac → 1 GeV
liquid Hg or Pb target
start of project 1993
decision on site 2009
start of operation 2019
fully operational 2025
budget 1.5 G€
190
8. Muons accelerators and neutrino factories
Neutron sources
ADS: accelerator driven “system”
= accelerator driven nuclear fission reactor
= spallation neutron source
Synergy with muon accelerators
‹ multi-MW proton accelerator
‹ multi-MW liquid metal target
ADS advantages (promises)
‹ sub-critical: inherent safety
‹ nuclear waste incineration
‹ little transuranic production (239Pu!)
‹ reduced risk of proliferation
‹ fuel breeding: 232Th → 233U
‹ more tolerant to bad maintenance
Andreas Streun, PSI
191
Summary
‹
Particle Physics...
„
„
„
‹
Synchrotrons and linacs...
„
„
„
‹
„
„
Dipole magnets are used for bending,
Quadrupoles are usually used for focusing,
Sextupoles compensate chromatic focusing errors.
Beam transformation...
„
„
‹
are the most important accelerators for particle physics,
are based on radio frequency (RF) acceleration,
and thus have “bunched” particle beams.
Magnets (iron or superconducting) shape the beam:
„
‹
depends on accelerators,
drives the development of new accelerators,
shares common accelerator needs with material research.
is described by concatenation of element matrices in the linear case,
decouples guide field (beta-function) and phase space (emittance).
Beam phase space density...
„
„
„
determines the performance of the experiments (luminosity)
is constant in many cases (Liouville theorem),
can be enhanced through cooling processes (synchrotron radiation, ionization).
Andreas Streun, PSI
192