Download Grade Eight Teacher Version - Science - Miami

Document related concepts

Timeline of astronomy wikipedia , lookup

Planetary habitability wikipedia , lookup

Astrobiology wikipedia , lookup

Extraterrestrial life wikipedia , lookup

Transcript
Miami-Dade County Public Schools
Division of Academics
Required
ESSENTIAL
Laboratory Activities
M/J Comprehensive Science 3
TEACHER EDITION
REVISED July 2016
THE SCHOOL BOARD OF MIAMI-DADE COUNTY, FLORIDA
Ms. Perla Tabares Hantman, Chair
Dr. Dorothy Bendross-Mindingall, Vice Chair
Ms. Susie V. Castillo
Dr. Lawrence S. Feldman
Dr. Wilbert “Tee” Holloway
Dr. Martin Karp
Ms. Lubby Navarro
Ms. Raquel A. Regalado
Dr. Marta Pérez Wurtz
Mr. Logan Schroeder-Stephens
Student Advisor
Mr. Alberto M. Carvalho
Superintendent of Schools
Ms. Maria L. Izquierdo
Chief Academic Officer
Office of Academics and Transformation
Ms. Lissette M. Alves
Assistant Superintendent
Division of Academics
Mr. Cristian Carranza
Administrative Director
Division of Academics
Department of Mathematics and Science
Dr. Ava D. Rosales
Executive Director
Department of Mathematics and Science
Teacher
Table of Contents
Introduction ................................................................................................................................... 6
Materials ........................................................................................................................................ 7
Next Generation Sunshine State Standards ............................................................................. 10
Lab Roles ..................................................................................................................................... 13
Lab Safety Information and Contract....................................................................................... 14
Pre-Lab Safety Worksheet and Approval Form ...................................................................... 15
Parts of a Lab Report ................................................................................................................. 16
Experimental Design Diagram and Hints ................................................................................ 19
Engineering Design Process ....................................................................................................... 21
Conclusion Writing (CER) ........................................................................................................ 22
Project Based STEM Activity (PBSA) Rubric ......................................................................... 23
Essential Labs and STEM Activities
Boat Challenge (STEM 4.0) (Topic 1) ....................................................................................... 25
What’s the Matter? Inquiry Lab (STEM 2.0) (Topic 2).......................................................... 28
Physical and Chemical Changes in Matter (STEM 3.0) (Topic 3) ........................................ 31
Conservation of Mass (STEM 2.0) (Topic 3) ............................................................................ 34
Air Bag Challenge(STEM 2.0) ................................................................................................... 37
Atomic Modeling (STEM 4.0) (Topic 4).................................................................................... 41
Periodic Table of Elements (STEM 2.0) (Topic 5) ................................................................... 44
Clay Elements, Compounds/Molecules (STEM 3.0) (Topic 6)................................................ 47
Separating Mixtures (STEM 3.0)............................................................................................... 51
Investigating the Effect of Light Intensity on Photosynthesis (Topic 7) ................................ 54
Maximizing Photosynthesis(STEM 3.0) ................................................................................... 57
Carbon Cycle Game (STEM 2.0) (Topic 8) ............................................................................ .60
Scale of the Universe Modeling Activity(STEM 4.0) (Topic 9) .............................................. 71
Star Bright Apparent Magnitude Lab (Topic 10) .................................................................... 73
Star Brightness(STEM 4.0) ........................................................................................................ 76
The Martian Sun-Times (STEM 4.0) (Topic 11) ..................................................................... .78
Space Travel Tour Agency(STEM 2.0) ..................................................................................... 85
What Causes the Seasons? (STEM 2.0) (Topic 12) .................................................................. 89
EL8_2016
M-DCPS Department of Science
4
Teacher
Additional Resources
Density of Blocks (STEM 2.0) ................................................................................................... 94
CSI: Following the Hard Evidence Density Lab(STEM 2.0) .................................................. 97
Mass, Volume, Density (STEM 2.0) ........................................................................................ 101
Precipitating Bubbles(STEM 2.0) .......................................................................................... 106
Greenhouse Gases in a Bottle (STEM 2.0) .............................................................................. 113
Imaginary Alien Life-forms(STEM 2.0) ................................................................................ 116
Planetary Exploration and Extreme Life Forms (STEM 4.0) .............................................. 133
EL8_2016
M-DCPS Department of Science
5
Teacher
Introduction
The purpose of this packet is to provide the M/J Comprehensive Science 3 and Grade 8 teachers with
a list of basic laboratory and hands-on activities that students should experience in class. Each
activity is aligned with the Next Generation Sunshine State Standards (NGSSS). Emphasis has been
placed on those hands-on activities that are aligned to the Annually Assessed Benchmarks, which are
assessed in the Statewide Science Assessment (SSA), formally known as the Florida Comprehensive
Assessment Test 2.0 (SSA 2.0), that is administered in eighth grade.
In most cases, the activities were designed as simple as possible without the use of advanced
technological equipment to make it possible for all teachers to use these activities. All activities and
supplements (i.e., Parts of a Lab Report) can be modified, if necessary, to fit the needs of an
individual class and/or student ability.
This document is intended to be used by science departments in M-DCPS so that all science teachers
can work together, plan together, and rotate lab materials among classrooms. Through this practice,
all students and teachers will have the same opportunities to participate in these experiences and
promote discourse among learners, forming the building blocks of authentic learning communities.
Acknowledgement
M-DCPS Department of Mathematics and Science would like to acknowledge the efforts of the
teachers who worked arduously and diligently on the preparation of this document.
EL8_2016
M-DCPS Department of Science
6
Teacher
Materials
Each list corresponds to the amount of materials needed per station (whether one student or a group of
students uses the station). Safety goggles should be assigned to each student as well as lab aprons on all
labs containing the possible use of sharp objects or requiring mixtures of chemicals.
Boat Challenge
 Plastic tub



Ruler
Masking Tape

Pennies
Substitutes: Paper clips, Washers
 oA sheet of Aluminum foil
Substitute: A sheet of paper
 Straws
 Electric Scale
Substitute: Triple beam balance,
Graduated cylinder
“What’s the Matter?” Inquiry Lab
 Mystery Mixture (sugar,
 Coffee Filter
sand, water, wood chips, and
iron fillings or staples)
 Hot Plate
 Beaker
 Triple Beam Balance
 Thermometer
Physical Change and Chemical Changes in Matter
(Per group)
 Beakers (2)
 Test tubes (6)

 Stirrers
 Water

 Cabbage Juice
 Baking Soda

(phenol red)

Magnet

Graduated Cylinder
Test tube rack
Milk
Calcium Chloride
(Damp Rid)



Thermometer
Vinegar
250ml Beaker
Conservation of Mass
 Graduated Cylinder
 Erlenmeyer Flask
 Balloon
 Baking Soda
 Triple Beam Balance
 Spoon
Air Bag Challenge
 Vinegar
 Baking soda
 Meter stick/measuring tape



Hard boiled eggs
Clear plastic cups
Graduated cylinders


Masking tape Optional: shoebox or plastic
container to hold air bag in place.
Plastic sandwich bags
Electronic scale/triple beam balance

EL8_2016
M-DCPS Department of Science
7
Teacher
Atomic Models
 Student handout: Periodic Table of Elements
 Coloring utensils
Periodic Table of Elements
 Student handout: Periodic Table of Elements
 Student Textbook
Clay Elements, Molecules and Compounds Materials:
 Paper Towel
 Toothpicks
 Modeling Clay
 Colored pencils
Investigating the Effect of Light intensity on Photosynthesis
 Test tube
 Source of bright light
 Sodium bicarbonate solution
 Watch or clock with second indicator
 400-mL beaker
 Plastic gloves
 Freshly cut sprig of an evergreen (such
 Hand lens
as yew) or elodea
 Forceps
Maximizing Photosynthesis
 6 Straws/Skewers
 3 Plastic Bags
 1 Pair of Scissors




1 Ruler
Carbon Cycle Game
 7 Dice
 7 Station Signs
 7 Station Movement Directions
Scale of the Universe Modeling Activity
 Modeling clay
 String
 Different sized balls
 Markers
Star Bight Apparent Magnitude Lab
Materials (per group):
 3 pencils
 1 meter stick
Star Brightness
 Flash light or other light source
 Black construction paper
 Cardboard (individual panels or box)
EL8_2016

1 Meter of Masking Tape
1 Sheet of Graph Paper
1 smartphone/tablet with a Thermal Cam
app (many free options are available)
Stand (2 liter soda bottle with skewer)



Carbon Cycle Passport for Each Student
Carbon Atom Model for Each Student
Blank Bar Graph for Each Student





Paper
Scissors

Tape



Balloons
Straws
2 flashlights
Tape/glue
Scissors
Colored plastic (clear plastic wrap and
markers may substitute)
M-DCPS Department of Science
8
Teacher
The Martian Sun-Times

Worksheets

Computer with Internet access

Meter stick

Markers or colored pencils

Metric ruler

Scissors



Adding machine tape or old VHS tape
Various spherical objects of different
sizes (basketball, marbles, softball, tiny
beads, soccer ball)
Construction paper
Space Travel Tour Agency




Computers with internet access
Construction paper
Crayons, markers, colored pencils, etc.
Scissors
What Causes the Seasons?
 Globe of the Earth
 Tape
 Metric ruler
 Thermometer
EL8_2016



Glue and/or tape
Student Page
Rubric



Lamp with 100-watt bulb
Ring stand and utility clamp
20-cm Length of string
M-DCPS Department of Science
9
Teacher
Annually Assessed Benchmarks
Next Generation Sunshine State Standard (NGSSS)
SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to
support scientific understanding, plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and organize data, interpret data in
charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (Also
assesses SC.6.N.1.1, SC.6.N.1.3, SC.7.N.1.1, SC.7.N.1.3, SC.7.N.1.4, SC.8.N.1.3, and SC.8.N.1.4.)
(Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)
SC.7.N.1.2 Differentiate replication (by others) from repetition (multiple trials). (Also assesses
SC.6.N.1.2, SC.6.N.1.4, and SC.8.N.1.2.) (Cognitive Complexity Level 2: Basic Application of Skills and
Concepts)
SC.7.N.1.5 Describe the methods used in the pursuit of a scientific explanation as seen in different fields
of science such as biology, geology, and physics. (Also assesses SC.7.N.3.2, SC.8.N.1.5, and
SC.8.E.5.10.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)
SC.6.N.2.2 Explain that scientific knowledge is durable because it is open to change as new evidence or
interpretations are encountered. (Also assesses SC.7.N.1.6, SC.7.N.1.7, SC.7.N.2.1, and SC.8.N.1.6.)
(Cognitive Complexity Level 2: Basic Application of Skills and Concepts)
SC.7.N.3.1 Recognize and explain the difference between theories and laws and give several examples of
scientific theories and the evidence that supports them. (Also assesses SC.6.N.3.1 and SC.8.N.3.2.)
(Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)
SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies
relative to solar system, galaxy, and universe, including distance, size, and composition. (Also assesses
SC.8.E.5.1 and SC.8.E.5.2.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)
SC.8.E.5.5 Describe and classify specific physical properties of stars: apparent magnitude (brightness),
temperature (color), size, and luminosity (absolute brightness). (Also assesses SC.8.E.5.6.) (Cognitive
Complexity Level 2: Basic Application of Skills and Concepts)
SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets,
and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement,
temperature, and atmospheric conditions. (Also assesses SC.8.E.5.4 and SC.8.E.5.8.) (Cognitive
Complexity Level 2: Basic Application of Skills and Concepts)
SC.8.E.5.9 Explain the impact of objects in space on each other including: 1. the Sun on the Earth
including seasons and gravitational attraction 2. the Moon on the Earth, including phases, tides, and
eclipses, and the relative position of each body. (Cognitive Complexity Level 3: Strategic Thinking and
Complex Reasoning)
SC.7.E.6.2 Identify the patterns within the rock cycle and events (plate tectonics and mountain building).
(Also assesses SC.6.E.6.1, SC.6.E.6.2, and SC.7.E.6.6.) relate them to surface events (weathering and
erosion) and subsurface events (plate tectonics and mountain building). (Also assesses SC.6.E.6.1,
SC.6.E.6.2, and SC.7.E.6.6.) (Cognitive Complexity Level 3: Strategic Thinking and Complex
Reasoning)
SC.7.E.6.4 Explain and give examples of how physical evidence supports scientific theories that Earth
has evolved over geologic time due to natural processes. (Also assesses SC.7.E.6.3.) (Cognitive
Complexity Level 3: Strategic Thinking and Complex Reasoning)
EL8_2016
M-DCPS Department of Science
10
Teacher
SC.7.E.6.5 Explore the scientific theory of plate tectonics by describing how the movement of Earth’s
crustal plates causes both slow and rapid changes in Earth’s surface, including volcanic eruptions,
Earthquakes, and mountain building. (Also assesses SC.7.E.6.1 and SC.7.E.6.7.) (Cognitive Complexity
Level 2: Basic Application of Skills and Concepts)
SC.6.E.7.4 Differentiate and show interactions among the geosphere, hydrosphere, cryosphere,
atmosphere, and biosphere. (Also assesses SC.6.E.7.2, SC.6.E.7.3, SC.6.E.7.6, and SC.6.E.7.9.)
(Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)
SC.6.E.7.5 Explain how energy provided by the Sun influences global patterns of atmospheric movement
and the temperature differences between air, water, and land. (Also assesses SC.6.E.7.1.) (Cognitive
Complexity: Level 3: Strategic Thinking & Complex Reasoning)
SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be
demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic
properties, melting and boiling points, and know that these properties are independent of the amount of
the sample. (Also assesses SC.8.P.8.3.) (Cognitive Complexity Level 2: Basic Application of Skills and
Concepts)
SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a
multitude of ways to produce compounds that make up all of the living and nonliving things that we
encounter. (Also assesses SC.8.P.8.1, SC.8.P.8.6, SC.8.P.8.7, SC.8.P.8.8, and SC.8.P.8.9.) (Cognitive
Complexity Level 1: Recall)
SC.8.P.9.2 Differentiate between physical changes and chemical changes. (Also assesses SC.8.P.9.1 and
SC.8.P.9.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)
SC.7.P.10.1 Illustrate that the Sun’s energy arrives as radiation with a wide range of wavelengths,
including infrared, visible, and ultraviolet, and that white light is made up of a spectrum of many different
colors. (Also assesses SC.8.E.5.11.) (Cognitive Complexity Level 1: Recall)
SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in
different materials. (Also assesses SC.7.P.10.2.) (Cognitive Complexity Level 1: Recall)
SC.7.P.11.2 Investigate and describe the transformation of energy from one form to another. (Also
assesses SC.6.P.11.1 and SC.7.P.11.3.) (Cognitive Complexity Level 2: Basic Application of Skills and
Concepts)
SC.7.P.11.4 Observe and describe that heat flows in predictable ways, moving from warmer objects to
cooler ones until they reach the same temperature. (Also assesses SC.7.P.11.1.) (Cognitive Complexity
Level 2: Basic Application of Skills and Concepts)
SC.6.P.13.1 Investigate and describe types of forces including contact forces and forces acting at a
distance, such as electrical, magnetic, and gravitational. (Also assesses SC.6.P.13.2 and SC.8.P.8.2.)
(Cognitive Complexity Level 2: Basic Application of Skills and Concepts)
SC.6.P.13.3 Investigate and describe that an unbalanced force acting on an object changes its speed, or
direction of motion, or both. (Also assesses SC.6.P.12.1.) (Cognitive Complexity Level 2: Basic
Application of Skills and Concepts)
SC.6.L.14.1 Describe and identify patterns in the hierarchical organization of organisms from atoms to
molecules and cells to tissues to organs to organ systems to organisms. (Cognitive Complexity Level 1:
Recall)
EL8_2016
M-DCPS Department of Science
11
Teacher
SC.6.L.14.2 Investigate and explain the components of the scientific theory of cells (cell theory): all
organisms are composed of cells (single-celled or multi-cellular), all cells come from preexisting cells,
and cells are the basic unit of life. (Also assesses SC.6.L.14.3.) (Cognitive Complexity Level 2: Basic
Application of Skills and Concepts)
SC.6.L.14.4 Compare and contrast the structure and function of major organelles of plant and animal
cells, including cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles.
(Cognitive Complexity Level 2: Basic Application of Skills and Concepts)
SC.6.L.14.5 Identify and investigate the general functions of the major systems of the human body
(digestive, respiratory, circulatory, reproductive, excretory, immune, nervous, and musculoskeletal) and
describe ways these systems interact with each other to maintain homeostasis. (Also assesses SC.6.14.6.)
(Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)
SC.6.L.15.1 Analyze and describe how and why organisms are classified according to shared
characteristics with emphasis on the Linnaean system combined with the concept of Domains. (Cognitive
Complexity: Level 3: Strategic Thinking & Complex Reasoning)
SC.7.L.15.2 Explore the scientific theory of evolution by recognizing and explaining ways in which
genetic variation and environmental factors contribute to evolution by natural selection and diversity of
organisms. (Also assesses SC.7.L.15.1 and SC.7.L.15.3.) (Cognitive Complexity: Level 3: Strategic
Thinking & Complex Reasoning)
SC.7.L.16.1 Understand and explain that every organism requires a set of instructions that specifies its
traits, that this hereditary information (DNA) contains genes located in the chromosomes of each cell, and
that heredity is the passage of these instructions from one generation to another. (Also assesses
SC.7.L.16.2 and SC.7.L.16.3.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex
Reasoning)
SC.7.L.17.2 Compare and contrast the relationships among organisms such as mutualism, predation,
parasitism, competition, and commensalism. (Also assesses SC.7.L.17.1 and SC.7.L.17.3.) (Cognitive
Complexity Level 2: Basic Application of Skills and Concepts)
SC.8.L.18.4 Cite evidence that living systems follow the Laws of Conservation of Mass and Energy.
(Also assesses SC.8.L.18.1, SC.8.L.18.2, and SC.8.L.18.3.) (Cognitive Complexity: Level 3: Strategic
Thinking & Complex Reasoning)
EL8_2016
M-DCPS Department of Science
12
Teacher
LAB ROLES AND THEIR DESCRIPTIONS
Cooperative learning activities are made up of four parts: group accountability, positive
interdependence, individual responsibility, and face-to-face interaction. The key to making
cooperative learning activities work successfully in the classroom is to have clearly defined tasks for
all members of the group. An individual science experiment can be transformed into a cooperative
learning activity by using these lab roles.
Project Director (PD)
The project director is responsible for the
group.
Roles and responsibilities:
 Reads directions to the group
 Keeps group on task
 Is the only group member allowed to
talk to the teacher
 Shares summary of group work and
results with the class
Materials Manager (MM)
The materials manager is responsible for
obtaining all necessary materials and/or
equipment for the lab.
Roles and responsibilities:
 The only person allowed to be out of
his/her seat to pick up needed
materials
 Organizes materials and/or
equipment in the work space
 Facilitates the use of materials
during the investigation
 Assists with conducting lab
procedures
 Returns all materials at the end of
the lab to the designated area
Technical Manager (TM)
The technical manager is in charge of
recording all data.
Roles and responsibilities:
 Records data in tables and/or graphs
 Operates digital devices (computer,
laptops, tablets)
 Completes conclusions and final
summaries
 Assists with conducting the lab
procedures
 Assists with the cleanup
Safety Director (SD)
The safety director is responsible for
enforcing all safety rules and conducting the
lab.
Roles and responsibilities:
 Assists the PD with keeping the
group on-task
 Conducts lab procedures
 Reports any accident to the teacher
 Keeps track of time
 Ensures group research using
electronic sources is done in a
productive and ethical manner
 Assists the MM as needed.
When assigning lab groups, various factors need to be taken in consideration;
1
Always assign the group members preferably trying to combine in each group a variety of skills.
2
Constantly evaluate the groups and observe if they are on task and if the members of the group
support each other in a positive way. Rotation of lab groups and members throughout the year is
encouraged.
EL8_2016
M-DCPS Department of Science
13
Teacher
LABORATORY SAFETY
Rules:

Know the primary and secondary exit routes from the classroom.

Know the location of and how to use the safety equipment in the classroom.

Work at your assigned seat unless obtaining equipment and chemicals.

Do not handle equipment or chemicals without the teacher’s permission.

Follow laboratory procedures as explained and do not perform unauthorized experiments.

Work as quietly as possible and cooperate with your lab partner.

Wear appropriate clothing, proper footwear, and eye protection.

Report all accidents and possible hazards to the teachers.

Remove all unnecessary materials from the work area and completely clean up the work area after
the experiment.

Always make safety your first consideration in the laboratory.
Safety Contract:
I will:






Follow all instructions given by the teacher.
Protect eyes, face and hands, and body while conducting class activities.
Carry out good housekeeping practices.
Know where to get help fast.
Know the location of the first aid and firefighting equipment.
Conduct myself in a responsible manner at all times in a laboratory situation.
I, _______________________, have read and agree to abide by the safety regulations as set forth above
and also any additional printed instructions provided by the teacher. I further agree to follow all other
written and verbal instructions given in class.
Student Signature: ____________________________
Date: ___________________
Parent Signature: _____________________________
Date: ___________________
EL8_2016
M-DCPS Department of Science
14
Teacher
Pre-Lab Safety Worksheet and Approval Form
This form must be completed with the teacher’s collaboration before the lab.
Name of Student Researcher: __________________________________________
Period: ______
Title of Experiment: ___________________________________________________________________
Place a check mark in front of each true statement below:
1.  I have reviewed the safety rules and guidelines.
2. This lab activity involves one or more of the following:
 Human subjects (Permission from participants required. Subjects must indicate willingness to
participate by signing this form below.)
 Vertebrate Animals (requires an additional form)
 Potentially Hazardous Biological Agents (Microorganisms, molds, rDNA, tissues, including
blood or blood products, all require an additional form.)
 Hazardous chemicals (such as: strong acids or bases)
 Hazardous devices (such as: sharp objects or electrical equipment)
 Potentially Hazardous Activities (such as: heating liquids or using flames)
3.  I understand the possible risks and ethical considerations/concerns involved in this experiment.
4.  I have completed an Experimental/Engineering Design Diagram.
Show that you understand the safety and ethical concerns related to this lab by responding to the
questions below. Then, sign and submit this form to your teacher before you proceed with the
experiment (if necessary, use the back of this form).
A. Describe what you will be doing during this lab.
B. What are the safety concerns with this lab that were explained by your teacher? How will you
address them?
C. What additional safety concerns or questions do you have?
D. What ethical concerns related to this lab do you have? How will you address them?
Student Researcher Signature: ____________________________
Date: ___________________
Teacher Approval Signature: _____________________________
Date: ___________________
Human Subjects’ Agreement to Participate:
Subject Name: ______________________ Signature: ____________________
Date: ________
PLEASE PRINT
Subject Name: ______________________ Signature: ____________________
Date: ________
PLEASE PRINT
Subject Name: ______________________ Signature: ____________________
Date: ________
PLEASE PRINT
EL8_2016
M-DCPS Department of Science
15
Teacher
PARTS OF A LAB REPORT
A Step-by-Step Checklist
Good scientists reflect on their work by writing a lab report. A lab report is a recap of what a scientist
investigated. It is made up of the following parts.
Title (underlined and on the top center of the page)
Benchmarks Covered:
 Your teacher should provide this information for you. It is a summary of the main concepts
that you will learn about by carrying out the experiment.
Problem Statement:
 Identify the research question/problem and state it clearly.
Variables and Control Test:
 Identify the variables in the experiment. State those over which you have control. There are
three types of variables.
1. Test Variable (Independent Variable): (also known as the tested variable) the factor that
can be changed by the investigator (the cause).
2. Outcome Variable (Dependent Variable): (also known as the outcome variable) the
observable factor of an investigation which is the result or what happened when the
independent variable was changed.
3. Controlled variables (Constants): the other identified independent variables in the
investigation that are kept constant or remain the same during the investigation.
 Identify the control test. A control lest is the separate experiment that serves as the standard
for comparison to identify experimental effects, changes of the dependent variable resulting
from changes made to the independent variable.
Potential Hypothesis (e.g.):
 State the hypothesis carefully. Do not just guess but try to arrive at the hypothesis logically
and, if appropriate, with a calculation.
 Write down your prediction as to how the test variable (independent variable) will affect the
outcome variable (dependent variable) using an “if” and “then” statement.
 If (state the test variable) is (choose an action), then (state the outcome variable) will (choose
an action).
Materials:
 Record precise details of all equipment used
For example: a balance weighing to +/- 0.001 g, a thermometer measuring from -10 to
+110oC to an accuracy of +/- 0.1oC, etc.
 Record precise details of any chemicals used
For example: 5 g of copper (II) sulfate pentahydrate CuSO4.5H2O(s).
Procedure:
 Do not copy the procedures from the lab manual or handout.
 Summarize the procedures; be sure to include critical steps.
 Give accurate and concise details about the apparatus and materials used.
Data:
 Ensure that all data is recorded.
- Pay particular attention to significant figures and make sure that all units are stated.
 Present your results clearly. Often it is better to use a table or a graph.
EL8_2016
M-DCPS Department of Science
16
Teacher
-

Results:


If using a graph, make sure that the graph has a title, both axis are labeled clearly,
units of measure are identified and that the correct scale is chosen to utilize most of
the graph space.
Record all observations.
- Include color changes, solubility changes, whether heat was released or absorbed, etc.
Ensure that you have used your data correctly to produce the required result in words and
provide graphs.
Include any other errors or uncertainties which may affect the validity of your result.
Conclusion and Evaluation:
 A conclusion statement answers the following 7 questions in at least three paragraphs.
I
First Paragraph: Introduction
1. What was investigated?
a) Describe the problem.
2. Was the hypothesis supported by the data?
a) Compare your actual result to the expected result
(either from the literature, textbook, or your hypothesis)
b) Include a valid conclusion that relates to the initial problem or hypothesis.
3. What were your major findings?
a) Did the findings support or not support the hypothesis as the solution to the restated
problem?
b) Calculate the percentage error from the expected value.
II Middle Paragraphs: These paragraphs answer question 4 and discusses the major findings of
the experiment using data.
1. How did your findings compare with other researchers?
a) Compare your result to other students’ results in the class.
 The body paragraphs support the introductory paragraph by elaborating on the
different pieces of information that were collected as data that either
supported or did not support the original hypothesis.
 Each finding needs its own sentence and relates back to supporting or not
supporting the hypothesis.
 The number of body paragraphs you have will depend on how many different
types of data were collected. They will always refer back to the findings in
the first paragraph.
III Last Paragraph: Conclusion
1. What possible explanations can you offer for your findings?
a) Evaluate your method.
b) State any assumptions that were made which may affect the result.
2. What recommendations do you have for further study and for improving the experiment?
a) Comment on the limitations of the method chosen.
b) Suggest how the method chosen could be improved to obtain more accurate and
reliable results.
3. What are some possible applications of the experiment?
a) How can this experiment or the findings of this experiment be used in the real world
for the benefit of society?
EL8_2016
M-DCPS Department of Science
17
Teacher
Parts of a Lab Report Reminder
Step 1: Stating the Purpose/Problem
 What do you want to find out? Write a statement that describes what you want to do. It should be
as specific as possible. Often, scientists read relevant information pertaining to their experiment
beforehand. The purpose/problem will most likely be stated as a question such as:
- “What are the effects of _________ on ___________?”
Step 2: Defining Variables
 TEST VARIABLE (TV) (also called the independent variable) – The variable that is changed
on purpose for the experiment; you may have several levels of your test variable.
 OUTCOME VARIABLE (OV) (also called the dependent variable) – The variable that acts in
response to or because of the manipulation of the test variable.
 CONTROLLED VARIABLES (CV) – All factors in the experiment that are NOT allowed to
change throughout the entire experiment. Controlling variables is very important to assure that
the results are due only to the changes in the test variable; everything (except the test variable)
must be kept constant in order to provide accurate results.
Step 3: Forming a Hypothesis
 A hypothesis is an inferring statement that can be tested.
 The hypothesis describes how you think the test variable will respond to the outcome variable.
- (i.e., If…... then……)
 It is based on research and is written prior to the experiment. Never change your hypothesis during the
experiment.
 Never use “I,” “we,” or “you” in your hypothesis (i.e. I believe or I think that…)
- For example: If the temperature increases, then the rate of the reaction will increase.
 It is OK if the hypothesis is not supported by the data. A possible explanation for the unexpected
results should be given in the conclusion
Step 4: Designing an Experimental Procedure
 Select only one thing to change in each experimental group (test variable).
 Change a variable that will help test the hypothesis.
 The procedure must tell how the variable will be changed (what are you doing?).
 The procedure must explain how the change in the variable will be measured.
 The procedure should indicate how many trials would be performed (usually a minimum of 3-4
for class experiments).
 It must be written in a way that someone can copy your experiment, in step by step format.
Step 5: Results (Data)
 Qualitative Data is comprised of a description of the experimental results (i.e. larger, faster….).
 Quantitative Data is comprised of results in numbers (i.e. 5 cm, 10.4 grams)
 The results of the experiment will usually be compiled into a table/chart for easy interpretation.
 A graph of the data (results) may be made to more easily observe trends.
Step 6: Conclusion
The conclusion should be written in paragraph form. It is a summary of the experiment, not a step-bystep description. Does the data support the hypothesis? If so, you state that the hypothesis is accepted. If
not, you reject the hypothesis and offer an explanation for the unexpected result. You should summarize
the trend in data in a concluding statement (ex: To conclude, the increase in temperature caused the rate
of change to increase as shown by the above stated data.). Compare or contrast your results to those
from similar experiments. You should also discuss the implications for further study. Could a variation
of this experiment be used for another study? How does the experiment relate to situations outside the
lab? (How could you apply it to real world situations?)
EL8_2016
M-DCPS Department of Science
18
Teacher
Student Name: ____________________________
Date: ______________
Period: ______
Experimental Design Diagram & Hints
This form should be completed before experimentation.
Title:
Problem
Statement:
Null Hypothesis:
Research
Hypothesis:
Test Variable
(Independent Variable)
Number of Tests:
Subdivide this box to
specify each variety.
Control Test:
# of Trials per
Test:
Outcome Variable
(Dependent Variable)
1.
2.
3.
Controlled
Variables
4.
5.
6.
EL8_2016
M-DCPS Department of Science
19
Teacher
EXPERIMENTAL DESIGN DIAGRAM HINTS
Title: A clear, scientific way to communicate what you’re changing and what you’re measuring is to
state your title as, "The Effect of ____________on__________." The tested variable is written on
the first line above and the outcome variable is written on the second line.
Problem Statement: Use an interrogative word and end the sentence with a question mark. Begin
the sentence with words such as: How many, How often, Where, Will, or What. Avoid Why.
Null Hypothesis: This begins just like the alternate hypothesis. The sentence should be in If ............,
then...........format. After If, you should state the TV, and after the then, you should state that there
will be no significant difference in the results of each test group.
Research Hypothesis: If ____________(state the conditions of the experiment), then
____________(state the predicted measurable results). Do not use pronouns (no I, you, or we)
following If in your hypothesis.
Test Variable (TV): This is the condition the experimenter sets up, so it is known before the
experiment (I know the TV before). In middle school, there is usually only one TV. It is also called
the independent variable, the IV.
Number of Tests: State the number of variations of the TV and identify how they are different from
one another. For example, if the TV is "Amount of Calcium Chloride" and 4 different amounts are
used, there would be 4 tests. Then, specify the amount used in each test.
Control Test: This is usually the experimental set up that does not use the TV. Another type of
control test is one in which the experimenter decides to use the normal or usual condition as the
control test to serve as a standard to compare experimental results against. The control is not counted
as one of the tests of the TV. In comparison experiments there may be no control test.
Number of Trials: This is the number of repetitions of one test. You will do the same number of
repetitions of each variety of the TV and also the same number of repetitions of the control test. If
you have 4 test groups and you repeat each test 30 times, you are doing 30 trials. Do not multiply 4 x
30 and state that there were 120 trials.
Outcome Variable(s): This is the result that you observe, measure and record during the
experiment. It’s also known as the dependent variable, OV. (I don’t know the measurement of the
OV before doing the experiment.) You may have more than one OV.
Controlled Variables or Variables Held Constant: Controlled Variables (Constants) are
conditions that you keep the same way while conducting each variation (test) and the control test.
All conditions must be the same in each test except for the TV in order to conclude that the TV was
the cause of any differences in the results. Examples of Controlled Variables (Constants): Same
experimenter, same place, time, environmental conditions, same measuring tools, and same
techniques.
EL8_2016
M-DCPS Department of Science
20
Teacher
ENGINEERING DESIGN PROCESS
Step 1
Identify the Need
or Problem
Step 8
Redesign
Step 2
Research the Need
or Problem
Step 7
Communicate the
Solution(s)
Step 3
Develop Possible
Solution(s)
Step 6
Test and Evaluate
the Solution(s)
Step 5
Construct a
Prototype
Step 4
Select the Best
Possible Solution(s)
1. Identify the need or problem
2. Research the need or problem
a. Examine current state of the issue and current solutions
b. Explore other options via the internet, library, interviews, etc.
c. Determine design criteria
3. Develop possible solution(s)
a. Brainstorm possible solutions
b. Draw on mathematics and science
c. Articulate the possible solutions in two and three dimensions
d. Refine the possible solutions
4. Select the best possible solution(s)
a. Determine which solution(s) best meet(s) the original requirements
5. Construct a prototype
a. Model the selected solution(s) in two and three dimensions
6. Test and evaluate the solution(s)
a. Does it work?
b. Does it meet the original design constraints?
7. Communicate the solution(s)
a. Make an engineering presentation that includes a discussion of how the solution(s) best
meet(s) the needs of the initial problem, opportunity, or need
b. Discuss societal impact and tradeoffs of the solution(s)
8. Redesign
a. Overhaul the solution(s) based on information gathered during the tests and presentation
Source(s): Massachusetts Department of Elementary and Secondary Education
EL8_2016
M-DCPS Department of Science
21
Teacher
CONCLUSION WRITING
Claim, Evidence and Reasoning
Students should support their own written claims with appropriate justification. Science education
should help prepare students for this complex inquiry practice where students seek and provide
evidence and reasons for ideas or claims (Driver, Newton and Osborne, 2000). Engaging students in
explanation and argumentation can result in numerous benefits for students. Research shows that when
students develop and provide support for their claims they develop a better and stronger understanding
of the content knowledge (Zohar and Nemet, 2002).
When students construct explanations, they actively use the scientific principles to explain different
phenomena, developing a deeper understanding of the content. Constructing explanations may also help
change students’ view of science (Bell and Linn, 2000). Often students view science as a static set of
facts that they need to memorize. They do not understand that scientists socially construct scientific
ideas and that this science knowledge can change over time. By engaging in this inquiry practice,
students can also improve their ability to justify their own written claims (McNeill et al., 2006).
Remember when providing evidence to support a claim, the evidence must always be:

Appropriate

Accurate

Sufficient
The rubric below should be used when grading lab reports/conclusions to ensure that students are
effectively connecting their claim to their evidence to provide logical reasons for their conclusions.
Base Explanation Rubric
Component
Level
0
1
2
Claim –
A conclusion that answers
the original question.
Does not make a
claim, or makes an
inaccurate claim.
Makes an accurate
but incomplete claim.
Makes an accurate and
complete claim.
Evidence –
Scientific data that supports
the claim. The data needs to
be appropriate and sufficient
to support the claim.
Does not provide
evidence, or only
provides inappropriate
evidence (evidence
that does not support
the claim).
Does not provide
reasoning, or only
provides reasoning
that does not link
evidence to claim
Provides appropriate
but insufficient
evidence to support
claim. May include
some inappropriate
evidence.
Provides reasoning
that links the claim
and evidence. Repeats
the evidence and/or
includes some – but
not sufficient –
scientific principles.
Provides appropriate
and sufficient
evidence to support
claim.
Reasoning –
A justification that links the
claim and evidence. It shows
why the data count as
evidence by using
appropriate and sufficient
scientific principles.
Provides reasoning
that links evidence to
claim. Includes
appropriate and
sufficient scientific
principles.
McNeill, K. L. & Krajcik, J. (2008). Inquiry and scientific explanations: Helping students use evidence and reasoning. In Luft, J., Bell, R. &
Gess-Newsome, J. (Eds.). Science as inquiry in the secondary setting. (p. 121-134). Arlington, VA: National Science Teachers Association Press.
Source(s): Massachusetts Department of Elementary and Secondary Education
EL8_2016
M-DCPS Department of Science
22
Project: _______________________________
Score: ______________
PROJECT BASED STEM ACTIVITY (PBSA) RUBRIC
Score 0
Students demonstrate
Students demonstrate adequate
outstanding understanding of the understanding of the problem,
problem, criteria, and constraints. criteria, and constraints.
Students demonstrate minimal
understanding of the problem,
criteria, and constraints.
Student understanding of the
Student understanding of the
problem, criteria, and constraints problem, criteria, and constraints
in inadequate or unclear.
is not evident or not recorded.
Student uses prior knowledge
and lesson content knowledge
to brainstorm a clear, focused
idea(s).
Idea(s) selected from
brainstorming are excellently
aligned to the intent of the
problem.
Student uses prior knowledge
and/or lesson content
knowledge to brainstorm a
clear, focused ideas.
Idea(s) selected from
brainstorming are adequately
aligned to the intent of the
problem.
Student uses prior knowledge
and/or lesson content
knowledge to brainstorm an
idea(s). Idea(s) selected from
brainstorming are minimally
aligned to the intent of the
problem and a clear connection
is not readily apparent without
explanation.
Student uses prior knowledge
and/or lesson content knowledge
to brainstorm an idea(s).
Idea(s) selected from
brainstorming are impractical
for the intent of the problem
and/or connection to the
problem is inadequate or
unclear.
Brainstorming idea(s) are not
aligned with the intent of the
problem, no idea(s) were given
by the student, or no
brainstorming is evident or
recorded.
Student proposes and designs a
plan that excellently aligns with
the criteria, constraints, and
intent of the problem.
Design sketch is complete and
includes exceptional, relevant
details that will be referenced
when building the solution to
the problem.
Student proposes and designs a
plan that adequately aligns with
the criteria, constraints, and
intent of the problem.
Design sketch is complete and
includes details that will be
referenced when building the
solution to the problem.
Student proposes and designs a
plan that minimally aligns with
the criteria, constraints, and
intent of the problem.
Design sketch is complete and
a clear connection is not readily
apparent without explanation.
Student proposes and designs a
plan that does not align with
the criteria, constraints, and
intent of the problem.
Design sketch is impractical
and/or connection to the
problem is inadequate or
unclear.
Design plan is not completed
by the student or no plan is
evident or recorded.
Student builds a working model
that excellently aligns with the
criteria, constraints, and intent
of the problem.
The working model can be
tested using appropriate tools,
materials and resources.
Student builds a working model
that adequately aligns with the
criteria, constraints, and intent
of the problem.
The working model can be
tested using appropriate tools,
materials and resources.
Student builds a working model
that minimally aligns with the
criteria, constraints, and intent
of the problem.
The working model can be
tested using modified tools,
materials and resources.
Student builds a working model
that does not align with the
criteria, constraints, and intent
of the problem.
The working model can be
tested using modified tools,
materials and resources OR
completed working model
cannot be tested.
Working model is not built.
Student tests the working
model’s effectiveness to solve
the problem. Accurate and
detailed records are collected
and an analysis of data is
present.
Student tests the working
model’s effectiveness to solve
the problem. Adequate records
are collected and an analysis of
data is present.
Student tests the working
model’s effectiveness to solve
the problem. Minimal records
are collected. Analysis of data
is not present.
Student tests the working
model’s effectiveness to solve
the problem. Minimal records
are collected. Analysis of data
is not present.
Testing is not performed due to
an inability to test based on the
quality of the working model,
there is no working model to
test, or no testing is evident or
recorded.
Test and
Redesign
Purpose
Score 1
Brainstorm
Score 2
Design/Plan
Score 3
Create/Build a
Working Model
Score 4
EL8_2016
M-DCPS Department of Science
23
Project: _______________________________
Score: ______________
PROJECT BASED STEM ACTIVITY (PBSA) RUBRIC
Construct viable
arguments.
Discuss and Share
Production
Budget(if
applicable)
Score 4
Score 3
Score 2
Score 1
Score 0
Student record of budget is
exceptionally clear and
complete. Students were on or
under budget.
Student record of budget is
exceptionally clear and
complete. Students were over
budget, but less than 10% over.
Student record of budget is
clear and complete. OR the
student went 10% or more over
budget.
Student record of budget is
unclear or incomplete. OR the
student went 15% or more over
budget.
Student did not include a
record of the budget or it is not
evident.
Student uses data, observations,
and anecdotal notes from the
design process to excellently
articulate why their project is
ready for production and use.
Student uses data, observations,
and anecdotal notes from the
design process to adequately
articulate why their project is
ready for production and use.
Student uses data, observations,
and anecdotal notes from the
design process to minimally
articulate why their project is
ready for production and use.
Student is excellently prepared
for and participates in project
discussion without prompting.
Summarized results from
testing are communicated
clearly and effectively. Student
poses and responds to specific
questions to clarify or follow
up on information shared from
other classmates.
Student can reason inductively
about data, using this
knowledge to communicate
findings clearly based on
evidence. Student can
appropriately reference objects,
diagrams, drawings, data,
and/or actions from the activity
for a viable argument of
whether not their design plan
was successful.
Student is adequately prepared
for and participates in project
discussion without prompting.
Summarized results from
testing are communicated
clearly. Student poses and
responds to specific questions
to clarify or follow up on
information shared from other
classmates.
Student is minimally prepared
for and participates in project
discussion with prompting.
Summarized results from
testing are shared. Student
infrequently poses and
responds to questions to clarify
or follow up on information
shared from other classmates.
Student can adequately
interpret data, using this
knowledge to communicate
findings based on evidence.
Student can appropriately
reference objects, diagrams,
drawings, data, and/or actions
from the activity for a viable
argument of whether not their
design plan was successful.
Student can minimally
communicate findings by
referring to objects, diagrams,
drawings, data, and/or actions
from the activity for a viable
argument of whether not their
design plan was successful.
EL8_2016
M-DCPS Department of Science
Student uses data, observations,
and anecdotal notes but
production notes are unclear or
incomplete.
Or no data was used to support
statement.
Student is not prepared for and
inadequately participates in
project discussion.
Summarized results from
testing are shared, but are
incomplete or unclear.
Communication with
classmates by posing and
responding to questions is
limited.
Student inadequately
communicates findings, or
analysis of data is present, but
flawed.
Student does not provide
reasoning for why the project is
ready for production or use or
this is not evident.
Student does not participate in
project discussion with judge.
Student does not participate in
project discussion with judge.
24
Teacher
BOAT CHALLENGE
(STEM 4.0)
Project Based STEM Activities – Middle Grades Science
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world problems,
and construct evidence-based explanations of real-world phenomena within their science content. Students
are also provided the opportunity to re-design models they have developed, based on peer feedback and
reviews. Through these engineering practices within the content, students can gain a deeper understanding of
science and are exposed to how STEM relates to their education and future career goals.
Teacher Set-Up
Engagement or
Introduction:
Standard
Alignment:
EL8_2016
Suggested
Timeframe:
CrossCurricular
Standards:
Introduce the challenge and show YouTube video: Basic Hull Design
[1:01].
SC.8.N.1.1: Define a problem from the eighth grade curriculum using
appropriate reference materials to support scientific understanding,
plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and
organize data, interpret data in charts, tables, and graphics, analyze
information, make predictions, and defend conclusions.
SC.8.N.2.2: Discuss what characterizes science and its methods.
SC.8.N.4.1: Explain that science is one of the processes that can be
used to inform decision making at the community, state, national, and
international levels.
SC.8.P.8.3: Explore and describe the densities of various materials
through measurement of their masses and volumes.
2 Block periods/4 traditional periods
LAFS.68.RST.1.3: Follow precisely a multistep procedure when
carrying out experiments, taking measurements or performing
technical tasks.
LAFS.68.WHST.2.4: Produce clear and coherent writing in which
the development, organization, and style are appropriate to task,
purpose, and audience.
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that allow
for multiple avenues of exploration.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
points in a focused, coherent manner with relevant evidence, sound
valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
MAFS.8.SP.1.1: Construct and interpret scatter plots for bivariate
measurement data to investigate patterns of association between two
quantities. Describe patterns such as clustering, outliers, positive or
negative association, linear association, and nonlinear association.
M-DCPS Department of Science
25
Step 2
Research the
Need or
Problem
Step 1
Identify the Need
or Problem
Teacher
Define
Problem/
Scenario:
Expected
Task:
Research and
Citations:
Vocabulary:
Step 6
Test and Evaluate the
Solution(s)
Step 4
Select the Best
Possible Solution(s)/
Step 5
Construct a Prototype
Step 3
Develop
Possible
Solution(s)
Criteria:
EL8_2016
Constraints:
Materials:
Building of
the Product
(Prototype,
model or
Artifact):
Testing of the
Product
(Prototype,
model or
Artifact):
Peer-Review
Questions:
Your company wants to be hired to transport building materials from
Miami Beach to Fisher Island at the lowest possible cost. In order to do
so, your company will ship more materials in fewer trips. Cost of fuel
is very expensive making it important that your team constructs the
most energy efficient boat possible.
Build an economical boat that can hold the most mass without sinking.
Written information by the students about the need or problem being
solved with citations noted. How does the shape or material design of a
boat affect how much weight it can hold?
http://www.dot.state.fl.us/planning/trends/tc-report/freight.pdf
mass, volume, density, buoyancy, gravity, balanced forces, unbalanced
forces, design, solution, test
 Costs: 1cm2 of foil= $10,1 cm of masking tape= $100,1 plastic
straws= $250
 Each group should consist of 3-4 students
 Maximum Budget for construction materials $5,000
Plastic tub, pennies (may substitute with paper clips, plastic cubes or
any standard weight), ruler, electronic scale or triple beam balance.
Brainstorm ways in which to design the boat with the fewest materials
possible. Create a sketch of the design of the boat that will keep the
boat afloat and balanced. Think of ways to reinforce the bottom and
how to make the walls to keep the water out. Then build the model to
replicate the sketch using the materials provided. Be sure to note the
volume of your boat when completed.
Test the boat and record the maximum amount of pennies (mass)
before the boat sinks. Record the volume of the boat. Calculate the
density of the sinking/floating boats.





How did you prioritize the budget with the design of your team’s
boat?
How did you choose which design to build?
What research did you use to design your boat?
What other designs did you consider for your boat?
What would you improve in the design of your boat?
M-DCPS Department of Science
26
Teacher
Step 8
Redesign
Step 7
Communicate the Solution(s)
Project
Summary:
EL8_2016
Presentation
of Final
Solution:
Re-designing
of the
Prototype
Teacher
Notes:
Each team will create a “pitch” (poster, PowerPoint, etc.) presentation
to their company’s boat and the reason their boat had the most
efficient design.
Students will present their team’s boat design and budget to the class.
They will test to see the maximum mass that their boat can hold. A
class data chart will be constructed where the volume of the boat and
maximum mass is recorded per team.
Teacher: Take the boat that held the most pennies and the one that
held the least pennies and compare them. Lead the class in a brief
discussion of the immediately apparent physical differences between
the two boats. Subject both boats to the water displacement test to
have students discuss mass, volume and density relationship by
observing the volume of the boat (shape) and the water it displaces.
 How did the shape of the boat affect how much mass it can hold?
 How did the most efficient boat compare to the other boats in
relation to its volume and mass it could hold?
Students will adjust or re-design their boat and re-test based on peer
reviews, teacher input, and analysis of proposed solution.



Record the volume of the boat before testing.
Maximum mass is the number of pennies before the boat sinks.
You may have students copy the suggested data chart and analysis
questions in their journals and have them fill in the data and
answers to the questions.
M-DCPS Department of Science
27
Teacher
“WHAT’S THE MATTER?” INQUIRY LAB
(STEM 2.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.P.8.4. Classify and compare substances on the basis of characteristic physical properties that can be
demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic
properties, melting and boiling points, and know that these properties are independent of the amount of the
sample.
Purpose of the Lab/Activity:
 Students will identify different classes of matter based on physical properties by separating a mixture.
 Students will observe and explore the properties of different substances.
 Students will test how different substances interact with each other
Prior Knowledge:
Matter is divided into the four basic states of solid, liquid, gas, and plasma. Matter is classified based on
composition. Matter is identified by its characteristic physical properties. Physical properties are those that can
be determined without altering the composition of the substance, such as, color, odor, density, strength,
elasticity, magnetism, and solubility.
Problem Statement / Research Question: How can characteristic properties be used to distinguish one form of
matter from another? Why is that important?
Materials (per group):
 Mystery Mixture (sugar,
sand, water, wood chips, and
iron fillings or staples)
 Hot Plate
 Triple Beam Balance

Coffee Filter

Magnets


Beaker
Thermometer

Graduated Cylinder
Procedures for Teacher
Teacher will create mystery mixture in a beaker for each lab group, which consists of
Before
sugar, sand, water, wood chips, and iron (fillings or staples).
Activity
During
Activity
EL8_2016
Engage:
Teacher will engage students through the following activities:
 “Mystery balloons”: place common objects or materials (penny, key, battery,
flour, etc.) in deflated rubber balloons and tie the balloons. Have students use
their senses to try to identify the contents based on physical properties.
 Show Study Jams-Properties of Matter.
 Distribute the student handout and mystery mixture to begin the lab activity
Explore:
 Ask students to examine the mystery mixture and think about how they would
separate it.
 Ask students to create a set of procedures that can be replicated to separate the
mixture.
M-DCPS Department of Science
28
Teacher
The possible steps are written in red. Students should create their OWN procedures.
1. Run magnet through mixture to separate iron based on magnetism.
2. Pour water over mixture to separate wood based on density. Wood is less dense
than water.
3. Use filter to remove sand from mixture since sand is not soluble in water.
4. Use hot plate to separate sugar from water. Water will evaporate first since it
has a lower boiling point than sugar.



If students are having difficulty coming up with procedures, ask them to list the
properties of matter (magnetism, density, particle size, and solubility)
After students create procedures, distribute materials so students can conduct
their investigation.
Circulate the room and inquire what students are doing as well as encourage the
completion of the lab report by referring to and/or amplifying the following
questions:
1. How did you separate the materials in the beaker? Answers will vary.
2. Why is it important for scientists to write detailed procedures? So that other
scientists can replicate the study and verify the validity of the results.
3. Would the physical properties of a material change if the size of the material
is changed? Explain. No, physical properties are independent of sample size.
4. Did you have to completely alter /chemically change any of the materials to
measure their physical properties? Explain. No, can measure physical
properties without changing the substance.
Important Note: Students may not know what the difference is between a physical and
chemical change. This activity is to get students thinking about physical and chemical
changes for the next topic.
After Activity Explain and Elaborate:
 After students have completed the lab procedures they should discuss the
following conclusion questions:
Scientists often find mysterious materials. Explain how physical properties are
important for identifying unknown substances.
Scientists can use the various physical properties such as melting point, boiling
point, thermal or electrical conductivity, magnetism, density and solubility of the
unknown substance to compare to known substances and correctly identify the
substance or discover a new substance.

Have students read Discovery Education article “Understanding Physical
Properties of Matter”
Evaluate:
Evaluate student understanding of objectives through conclusion writing using the
Claim-Evidence-Reasoning based on the problem statement.
EL8_2016
M-DCPS Department of Science
29
Teacher
SSA Connections:
1. Rafael broke a small twig off a tree and threw it in the lake. It floated away. If he
could somehow push the whole tree into the lake and it floated, which of the
following would explain why it floats?
A. The temperature of the tree is less than the temperature of the water.
B. The volume of the tree is less than the volume of the water.
C. The mass of the tree is less than the mass of the water.
D. The density of the tree is less than the density of the water.
2. Ryan boiled a liter of water and then stirred sugar into it, adding more sugar until no
more would dissolve in the water, creating a saturated solution. If he pours more
sugar into it after it has had a chance to cool, what will most likely happen?
A. All of the sugar will come out of solution, and pure water will float to the top.
B. If he stirs constantly, the sugar will form into one large sugar crystal.
C. The added sugar will sink to the bottom.
D. The added sugar will dissolve in the water.
3. Sarah is completing a lab in which she is required to identify an unknown substance.
She records several observations and measurements of the substance. Which of the
following properties will be most helpful to Sarah in making a correct identification?
A. Density
B. Mass
C. Volume
D. Weight
4. Katie's teacher has given her a sample that contains a mixture of salt, sand, and iron
filings. She is instructed to separate the mixture into the three individual components.
What would be the best physical property to focus on for the first step in separating the
mixture?
A. Density
B. Electrical conductivity
C. Magnetism
D. Melting point
EL8_2016
M-DCPS Department of Science
30
Teacher
PHYSICAL & CHEMICAL CHANGES IN MATTER
(STEM 3.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA)
(Also assesses SC.8.P.9.1 and SC.8.P.9.3.)
SC.8.P.9.3 Investigate and describe how temperature influences chemical changes.
Purpose:
 Students will differentiate between physical changes and chemical changes by mixing a variety of
substances in test tubes with red cabbage juice (phenol red).
Problem Statement / Research Question:
How can you differentiate between a physical and chemical change?
What are some indicators that a chemical change has occurred?
Important Notes:
 There are two versions of this lab with separate directions for each outlined in the “Procedure” table.
 The use of vinegar and calcium chloride will need to be accompanied by the use of a ventilation fan in
case of nasal sensitivity, allergy issues, or asthma. Be sure to read precautions on the calcium chloride
container. Calcium chloride can burn the skin. Students should use gloves when handling this
substance. If you prepare small cups with quantities for each set of students, you may want to cover the
cups to prevent inhalation issues.
Guiding Questions:
 How does changing what you add to each substance affect it? Answers may vary.
 How could you explain the similarities and differences between what you see before you start your
investigation and after you have completed your tests? Answers may vary.
 What is a physical change? Any change that changes a substance’s shape, texture, or other physical
property without altering its chemical composition.
 What is a chemical change? Any change that alters the chemical composition of a substance.
 How can you tell if a substance has stayed the same or changed into a new substance? A substance has
undergone a chemical change when a gas is released, a precipitate has formed, an odor is released, or
when its color changes (although sometimes color changes don’t always necessarily mean a chemical
change occurred).
Materials (per group)
 Beakers (2)
 Stirrers
 Cabbage Juice (phenol red)
Before
EL8_2016



Test tubes (6)
Water
Baking Soda



Test tube rack
Milk
Calcium Chloride



Thermometer
Vinegar
250 mL Beaker
Preparation
 Teacher will prepare test tubes, all of which contain purple cabbage juice, about 510 ml depending on the size of test tubes.
Engage
 Teacher may demonstrate different changes (both physical and chemical) in front
of students without telling what is happening.
M-DCPS Department of Science
31
Teacher

During
After
EL8_2016
Play YouTube video Properties of Matter Rap – Justin Bieber “Boyfriend
REMIX” and have students identify how many examples of physical and
chemical properties they noticed.
Explore
 Teacher will direct to students to work together for this option.
 Teacher will explain that students will have 5 test tubes filled with cabbage
juice to test materials for reactions.
 Teacher will list what each test tube is to test.
 Students will write their predictions as to what they think will happen.
 Students will test 5 liquids/materials with the cabbage juice:
o Test tube 1: water (5 ml)
o Test tube 2: vinegar (5 ml)
o Test tube 3: baking soda (a pinch or ¼ a small spoonful)
o Test tube 4: calcium carbonate (¼ a small spoonful)
o Test tube 5: milk (5 ml)
 Teacher will instruct students on how to mix materials and how to take the
temperature of each test tube before and during the reaction.
 Be sure students clean the thermometer between each reaction to avoid cross
reactions.
 Students will write down their observations.
Explain
 The teacher will facilitate student discussions of the Guiding Questions.
 The teacher will write vocabulary on the board and ask students to use these
terms during their discussions:
Substance
Temperature
Change of State
Mixture
Solution
Property
Solid
Liquid
Gas
Elaborate
 The teacher will give a demonstration at the end of the activity that involves
mixing vinegar, purple cabbage juice, milk, baking soda, and calcium chloride
into a beaker and recalling the initial temperature students mentioned for the
liquids. Students will make predictions, discuss, and explain the physical and/or
chemical changes they think are involved (Predict/Observe/Explain).
 Have a student helper share out the temperature after the test tubes have been
mixed.
 Ask students to share their observations.
 Ask students to refer back to the Problem Statement and discuss what are some
indicators that a chemical change has occurred?
Expected results: If you begin with room-temperature vinegar, the temperature
will drop. There is also a gas produced.
 Explain to students that a change in temperature is a sign that a chemical reaction
has occurred. Introduce the term endothermic to describe a reaction in which the
temperature decreases.
 Remind students that in chemical reactions, new substances are formed. Ask
students if they observed anything that might be considered a new substance.
Students should recognize the bubbles of carbon dioxide gas as a new substance.
 You may also want to talk about how purple cabbage juice is also used to tell
whether or not something is an acid or a base, and tell students it is something
M-DCPS Department of Science
32
Teacher
they will also be learning about. When the cabbage juice changes color, it is a
chemical change resulting in either blue (bases) or red (acids).
Evaluate
 Students will write a Claim-Evidence-Reasoning Conclusion to the lab activity
using evidence to support their reasoning as to whether a chemical or physical
change occurred in each combination.
SSA Connection:
1. Hilary put some ice cubes in a glass of water, and the ice cubes melted. What is
the best evidence she can use to show that the melting of the ice is a purely
physical change and not a chemical change?
A. Even though the ice and the liquid water look different, they can be shown to
be made of the same molecules.
B. When liquid water is put into the freezer and cooled long enough, it will
change into a solid form.
C. She did not need to add any extra heat in order to get the ice to melt in the
glass of water.
D. Although ice is more difficult to see through than liquid water, it does not
change color when it melts.
2. Which of the following is an example of a chemical change?
A. freezing water to make ice
B. boiling water to make steam
C. making salt water from salt and water
D. separating water into hydrogen and oxygen
3. Which of the following events involves a chemical change?
A. A cake rises in the oven.
B. Salt is dissolved in warm water.
C. A pencil is broken into two pieces.
D. Sandy water is filtered to extract the sand from the water.
4. Which of the following is an example of a chemical change?
A. A rock breaks into pebbles.
B. Wood burns and becomes charcoal.
C. Water boils and changes from a liquid to a gas.
D. Dry ice (solid carbon dioxide) sublimes into carbon dioxide gas.
5. Julian mixes two test tubes of unknown liquids and observes a temperature
increased from 18º C to 27ºC. What type of change might Julian have observed?
A. A physical change because the liquids didn’t change color.
B. A chemical change because the volume of the liquids increased.
C. A physical change because the starting liquids created a new liquid.
D. A chemical change because the reaction generated heat as a result.
Reading Passage Answer Key
1. C 2. B 3. A
EL8_2016
M-DCPS Department of Science
33
Teacher
CONSERVATION OF MASS
(STEM 3.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.P.9.1 Explore the Law of Conservation of Mass by demonstrating and concluding that mass is conserved
when substances undergo physical and chemical changes. (Assessed as SC.8.P.9.2)
SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA)
(Also assesses SC.8.P.9.1 and SC.8.P.9.3.)
Background information:
The “Law of Conservation of Mass” states that when matter goes through a physical or chemical change, the
amount of matter stays the same before and after the changes occur. In other words, matter cannot be created or
destroyed.
Materials:
 Graduated Cylinder
 Erlenmeyer Flask
 Balloon
 Baking Soda
 Triple Beam Balance
 Spoon
 Vinegar
 A stopper
What the teacher will do:
Engage:
Allow students opportunity to answer Assessment Probe "Burning Paper", share
thoughts, and teacher demonstrates probe activity.
Before
activity:
During
activity:
EL8_2016
Mimic the assessment probe by burning a small piece of paper inside of an Erlenmeyer
flask with a stopper. Ask students:
 What happened to the paper?
 Is there the same amount of matter in the beaker before and after?
 Where did the matter go? How can you tell?
 What type of change did you observe: physical or chemical?
Have students use the background information to develop a problem statement.
What the teacher will do:
Explore
a. Monitor students to make sure they are remaining on task and are following proper
lab protocol.
b. Review the experimental design diagram by asking individual students in groups to
explain the different parts of the experiment.
 Follow laboratory procedural plan; making sure to model proper laboratory
safety and use of equipment.
 While walking around, ask students within their group what is the temperature
in the thermometer to make sure they remember how to read it.
 Emphasize importance of data collection by groups.
M-DCPS Department of Science
34
Teacher

Calculate the percent error for your results and show work. Come up with
possible sources of error to mention when drawing conclusions.
 Percent error = Initial Mass – Final Mass X 100
Initial Mass
c. Have students use the Discussion Questions provided to apply the exploration to
expected learning.
Answer Key:
1. Name the reactants: Baking Soda and Vinegar
2. Name the products: Sodium Acetate, Water, and Carbon Dioxide
3. Name the gas produced: Carbon Dioxide
4. Compare the mass of the closed system before and after the reaction. Explain your
results. (The mass of the closed system before and after the reaction were the same
because matter cannot be created nor destroyed
5. Were any new elements introduced into the closed system? Where did the gas
come from? Explain. NO. The law of conservation of mass states that in any
chemical reaction, matter is neither created nor destroyed. Therefore, in a balanced
chemical equation you must have the same number of atoms of each element on
either side of the equation. The gas came from the baking soda and vinegar.
6. What evidence did you observe to indicate that a chemical reaction took place?
(Bubbles indicated that a chemical reaction took place, also a new substance was
form and gas was given off which inflated the balloon)
7. After the gas was released, what happened to the mass of the system and why?
(The mass of the system decreased because the system was no longer closed. Some
matter escaped (the gas) which caused the mass to decreased
8. Did your results support this statement? Why/Why Not?
What the teacher will do:
Explain
Have students complete the Claim-Evidence-Reasoning to respond to their OWN
problem statement.
After
activity:
Elaborate
As the law of conservation states, matter cannot be created or destroyed, although it
may be rearranged. The mass of a closed system will remain constant, regardless of the
process acting inside the system.
Ask students to infer whether or not the mass of the final reaction (gas escaped) will be
greater in a closed system or in an open system?
Design and create a model to describe the flow of energy and cycling of matter in a
food web. How does the model demonstrate the Laws of Conservation of Mass and
Energy?
Evaluate:
Create a poster that defines and illustrates the Law of Conservation of Mass.
EL8_2016
M-DCPS Department of Science
35
Teacher
SSA Connection
1. A student adds water and sugar to a jar and seals the jar so that nothing can get in
or out. The student then finds the mass of the jar containing the water and sugar.
After some sugar dissolves, the student finds the mass of the jar and its contents
again.
What will happen to the mass of the jar containing the water and sugar after some of
the sugar dissolves?
A. The mass will stay the same.
B. The mass will increase.
C. The mass will decrease.
D. The mass will depend on how much sugar dissolves.
2. Joey is performing an experiment in science class. He mixes two liquids in a test
tube, and gas bubbles appear at the surface of the test tube. Which of the following
describes what most likely is taking place?
A. A physical change is causing a change in phase from liquid to gas.
B. A chemical change has caused the liquids to undergo combustion and gas is
escaping.
C. A physical change is causing the solution to exhibit different properties than
the original substances.
D. A chemical change has resulted in the production of a new substance, which
is being given off as a gas.
3. Suppose you put popcorn kernels into an airtight popcorn popper and measure the
mass of the popper and measure the mass of the popper with the kernels. After the
popcorn has popped, what would you expect to find regarding the mass of the
popper and the popcorn?
A. The mass after popping will be less than the original mass because the
popped corn is less dense than the kernels.
B. The mass after popping will be equal to the original mass because the
airtight container did not allow any materials to enter or leave the popper.
C. The mass after popping will be greater than the original mass because the
volume of the popped corn is greater than that of the kernels.
D. The mass after popping will not be able to be determined accurately
because of the steam that is released from the kernels during the popping.
EL8_2016
M-DCPS Department of Science
36
Teacher
AIR BAG CHALLENGE
An extension to the Conservation of Mass Lab
(STEM 4.0)
Project Based STEM Activities - Middle Grades Science
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world problems,
and construct evidence-based explanations of real-world phenomena within their science content. Students are
also provided the opportunity to re-design models they have developed, based on peer feedback and reviews.
Through these engineering practices within the content, students can gain a deeper understanding of science
and are exposed to how STEM relates to their education and future career goals.
Engagement or
Introduction:
Introduce the challenge and show video using the National Geographic:
I Didn’t Know That – Air Bags video [2:43].
Standard
Alignment:
SC.8.N.1.1: Define a problem from the eighth grade curriculum using
appropriate reference materials to support scientific understanding,
plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and
organize data, interpret data in charts, tables, and graphics, analyze
information, make predictions, and defend conclusions.
Teacher Set-Up
SC.8.N.2.2: Discuss what characterizes science and its methods.
SC.8.N.4.1: Explain that science is one of the processes that can be
used to inform decision making at the community, state, national, and
international levels.
SC.8.P.9.1: Explore the Law of Conservation of Mass by
demonstrating and concluding that mass is conserved when substances
undergo physical and chemical changes.
SC.8.P.9.2: Differentiate between physical changes and chemical
changes.
SC.8.P.9.3: Investigate and describe how temperature influences
chemical changes.
EL8_2016
Suggested
Student
Timeframe:
2 block days /4 traditional days
CrossCurricular
Standards:
LAFS.68.RST.1.3: Follow precisely a multistep procedure when
carrying out experiments, taking measurements or performing technical
tasks.
M-DCPS Department of Science
37
Teacher
LAFS.68.RST.2.4: Determine the meaning of symbols, key terms, and
other domain-specific words and phrases as are used in a specific
scientific or technical context relevant to grades 6–8 texts and topics.
LAFS.68.WHST.2.4: Produce clear and coherent writing in which the
development, organization, and style are appropriate to task, purpose,
and audience.
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that allow
for multiple avenues of exploration.
LAFS.68.WHST.3.8: Gather relevant information from multiple print
and digital sources, using search terms effectively; assess the
credibility and accuracy of each source; and quote or paraphrase the
data and conclusions of others while avoiding plagiarism and following
a standard format for citation.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
points in a focused, coherent manner with relevant evidence, sound
valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
Identify the Need
or Problem
Research the Need
or Problem
Define
Problem/
Scenario:
EL8_2016
Your company wants to hire you to design a cost-effective airbag from
nonflammable chemicals that will inflate quickly and prevent injury.
Expected Task: Build a prototype of an airbag that will prevent an egg from breaking
simulating a car crash.
Research and
Citations:
Written information by the students about the addressing need or
solving the problem with citations noted.
Vocabulary:
mass, volume, physical change, chemical change, law of conservation
of mass, design, solution, test
Criteria:



Develo
p
Possibl
e
Solutio
n(s)
Step 3
Step 2
Step 1
MAFS.8.SP.1.1: Construct and interpret scatter plots for bivariate
measurement data to investigate patterns of association between two
quantities. Describe patterns such as clustering, outliers, positive or
negative association, linear association, and nonlinear association.
Costs: 10 mL of vinegar= $500
1 grams of baking soda= $100
Each group should consist of 3-4 students
M-DCPS Department of Science
38
Teacher
Constraints:
EL8_2016
Construct a
Prototype
Building of the
Product
(Prototype,
model or
Artifact):
Step 5
Select the Best
Possible
Solution(s)/
Test and Evaluate the Solution(s)
Communicate the
Solution(s)
tep 7
Step 6
Step 4
Materials:
 Air bag doesn’t explode
 Protects passenger (egg) from a minimum vertical drop of 50 cm.
 Maximum amount of vinegar 50 mL and 5 grams of baking soda
 Vinegar
 Baking soda
 Meter stick/measuring tape
 Electronic scale/triple beam balance
 Plastic sandwich bags
 Hard boiled eggs
 Clear plastic cups
 Graduated cylinders
 Masking tape
 Optional: shoebox or plastic container to hold air bag in place.
Brainstorm ways in which to create a chemical reaction that will
sustain the impact of an egg being dropped from 50 cm. Think of ways
to hold your air bag in the container to avoid the egg from bouncing
out.
Testing of the
Product
(Prototype,
model or
Artifact):
Test the air bag by dropping the egg from 50cm height for first trial.
Repeat each drop by increasing the height by 5cm. Record the
maximum height of the egg before it cracks and/or explodes the air
bag. Record the height on the class chart.
Peer-Review
Questions:





Did you the budget of materials play a role in your design? How?
How did you choose which ratios of vinegar and baking soda to
try?
What research did you use to design your air bag?
What other designs did your team consider?
What would you change to improve in the design of your air bag?
Project
Summary:
Each team will create a presentation (poster, PowerPoint, etc.) of their
company’s airbag and the reason their airbag had the most efficient
design.
Presentation of
Final Solution:
Students will present their team’s air bag design and budget to the
class. They will test to see the maximum height their air bag can
maintain the egg passenger safe. A class data chart will be constructed
where the ratio of vinegar and baking soda is recorded with respect to
the maximum height the egg was “safe” per team.
M-DCPS Department of Science
39
Teacher
Redesign
Step 8
Re-designing of Students will adjust or re-design their boat and re-test based on peer
reviews, teacher input, and analysis of proposed solution.
the Prototype
EL8_2016
Teacher Notes:


Boiled eggs work best in order to avoid messes. Groups should be
given at least three eggs to test their prototype.
Quart size bags may be used instead of sandwich size taking into
consideration the ratio of vinegar and baking soda will need to
increase.
M-DCPS Department of Science
40
Teacher
ATOMIC MODELING
(STEM 2.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.P.8.1 Explore the scientific theory of atoms (also known as atomic theory) by using models to explain the
motion of particles in solids, liquids, and gases.
Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)
SC.8.P.8.7 Explore the scientific theory of atoms (also known as atomic theory) by recognizing that atoms are
the smallest unit of an element and are composed of sub-atomic particles (electrons surrounding a nucleus
containing protons and neutrons).
Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)
Purpose:
 Students will explain that atoms are the smallest unit of an element and are composed of subatomic
particles by drawing and/or creating models of an atom.
 Students will describe size and charge of the subatomic particles proton, neutron, and electron.
Problem Statement / Research Question: How does atomic structure relate to the information on the periodic
table?
Materials
 Handout, Periodic Table of Elements and coloring utensils
Procedure
Before
During
EL8_2016
Preparation
 Teacher will display an illustration of atoms in a pencil.
 Teacher will have handouts of student “Atomic Models” worksheet.
 Optional: Periodic Table for Elaborate activity.
Engage
 Ask students to predict how many times they can cut a piece of paper (standard
8.5 x 11 paper cut into 11 inch strips works well) in half as many times as they
can.
 Provide students paper to test prediction and estimate number of total cuts
required to get to the size of an atom.
 Explain to students that the smallest unit of matter is called an “atom” and is
smaller than the piece of paper they cut and cannot be seen by the human eye.
http://www.quarked.org/parents/lesson1.html has a useful table to share with
students and to use as a guide for this engage activity.
 Explain to students that all states of matter (solids, liquids, and gases) are
made up of atoms.
Explore
 Show a picture of a pencil point and how the carbon atoms look at the
molecular level. Project the image Pencil Zoom.
 Ask students questions:
- What are the three different tiny particles that make up an atom?
Protons, neutrons, and electrons.
- Which of these is in the center of the atom?
Protons and neutrons are in the center (nucleus) of the atom. You may
M-DCPS Department of Science
41
Teacher
After
want to mention that hydrogen is the only atom that usually has no
neutrons. The nucleus of most hydrogen atoms is composed of just 1
proton. A small percentage of hydrogen atoms have 1 or even 2
neutrons.
- What zooms around the nucleus of an atom?
Electrons
- What are the charges of these particles?
Proton—positive; electron—negative; neutron—no charge. The charge
on the proton and electron are exactly the same size but opposite. The
same number of protons and electrons exactly cancel one another in a
neutral atom.
- How might atoms be arranged in solids, liquids, and gases?
In solids, atoms are tightly packed and vibrating in place. In liquids,
atoms are close together, but without regular arrangement. In solids,
atoms are well separated with no regular arrangement.
 Teacher will draw the current model of the atom and students will follow
along.
 Students will then create their own atomic models in their handout.
Explain
 Students will make the connection between atoms and matter through
drawings and explanations in their handout.
 Teacher will circulate the classroom assisting students with misconceptions.
Elaborate
 Students will be given a periodic table to read and look for other elements that
they have not created atomic models for to create their own examples of how
an elements’ atoms combine to form a piece of matter.
Evaluate
 Teacher will evaluate student understanding of objectives based on the ClaimEvidence-Reasoning conclusion that asks, “How does atomic structure relate
to the information on the periodic table?”
SSA Connection
1. Which of the following statements about atoms is TRUE?
A. They are the same for all elements.
B. They are both stable and nonradioactive.
C. They are arranged in the periodic table according to number of protons.
D. They are made up of protons and electrons in a nucleus surrounded by
orbiting neutrons.
2. Why does the atomic mass of an element differ from the atomic number?
A. Atomic number consists of only the number of neutrons. Atomic mass
also includes the number of protons.
B. Atomic number consists of only the number of protons. Atomic mass also
includes the number of neutrons.
C. Atomic number consists of only the number of protons. Atomic mass also
includes the number of electrons.
D. Atomic number consists of only the number of electrons. Atomic mass
also includes the number of protons.
EL8_2016
3. What subatomic particle(s) are found in the atom’s nucleus?
M-DCPS Department of Science
42
Teacher
A. Protons
B. Neutrons
C. Electrons
D. Both Protons and Neutrons
4. Your science teacher has three samples of matter. Each sample is the exact same
substance. However, one is a solid, one is a liquid, and one is a gas. Which of
the following would be correct?
A. The solid sample has the most thermal energy and so the particles in that
sample are moving the most.
B. The liquid sample has the most thermal energy and so the particles in that
sample are moving the most.
C. The gas sample has the most thermal energy and so the particles in that
sample are moving the most.
D. All three samples have the same amount of energy; they are just different
temperatures.
5. How does the formation of ice in the freezing compartment of a refrigerator
demonstrate the particulate nature of matter?
A. As the particle energy of matter decreases, the motion of the atoms in a
given space decreases
B. As the particle energy of matter decreases, the motion of atoms in a given
space increases
C. As the particle energy of matter increases, the motion of atoms in a given
space decreases
D. As the particle energy of matter increases, the motion of atoms remains
unchanged
EL8_2016
M-DCPS Department of Science
43
Teacher
PERIODIC TABLE OF ELEMENTS
(STEM 2.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.P.8.6 Recognize that elements are grouped in the periodic table according to similarities of their
properties. Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 1: Recall)
Purpose:
 Students will be introduced to the basic information given for the elements in most periodic tables: the
name, symbol, atomic number, and atomic mass for each element.
 Students will focus on the first 20 elements to create an imaginary periodic table that is modeled off of
the Periodic Table of Elements commonly used.
 Students will identify trends in the periodic table by explaining that elements in the same groups have
similar properties.
Problem Statement / Research Question: How is the periodic table useful for scientists?
Guiding Questions:
 How do we organize what we know about matter, elements, and atoms?
 What is the Periodic Table and how is it useful?
 What trends do we see in the Periodic Table?
Materials
 Handout, Periodic Table of Elements, and Textbook
Procedure
Before
Activity
During
Activity
Preparation
 Print out student handouts, periodic table, and project periodic table on the board.
Engage
 Have students make observations of the Lithium and water demonstration on
Discovery Education: Lithium.
 Project an image of the Periodic Table for students to locate Lithium (Li) and
ensure students can read the Periodic Table.
Explore
 Students should use the periodic table to make predictions about all of the
following metals with water prior to viewing any of the clips. Students should be
given the opportunity to revise predictions for upcoming reactions after observing
the previous video clip.
o Sodium
o Potassium
o Rubidium
o Cesium


EL8_2016
Students will work in groups of 2-3 to read through the “Imaginary Periodic
Table” clues.
Students will fill in their periodic table based on the clues, which require them to
M-DCPS Department of Science
44
Teacher
understand how the periodic table is organized.
After Activity
Elaborate
 Students will research examples of families of elements that have common
characteristics. Students will read and complete Color Coding the Periodic Table
handout.
Evaluate
 Teacher will evaluate student understanding of objective based on written
conclusion in C-E-R that answers the question, “How is the periodic table useful
for scientists?”
 Students should be able to explain how elements are arranged (increasing in order
of atomic number; elements with similar characteristics are grouped in families).
SSA Connection:
1. Which of the following statements regarding the periodic table of elements is
true?
A. The periodic table does not list all of the known elements in the universe.
B. The properties of elements can be predicted by their positions in the
periodic table, but how the elements react with each other cannot be
predicted.
C. All elements on the periodic table are made up of the same fundamental
particles: protons, neutrons and electrons.
D. All nonliving things consist of elements on the periodic table; all living
things consist of things that are not listed on the periodic table.
2. In the modern periodic table, which of the following describes atoms with similar
chemical behavior and properties?
A.
B.
C.
D.
They have similar atomic masses.
They are located in the same group.
They are located in the same period.
They have the same number of isotopes.
3. Using the periodic table, which of the following pairs of elements should you
expect to have the most similar properties?
A.
B.
C.
D.
EL8_2016
Aluminum (Al) and Silicon (Si)
Sulfur (S) and Selenium (Se)
Sodium (Na) and Nitrogen (N)
Hydrogen (H) and Helium (He)
M-DCPS Department of Science
45
Teacher
Imaginary Periodic Table Answer Key
1
18
1
L
2
13
14
15
16
17
Ba
2
Sp
Gl
B
Lv
Ab
Br
Re
Si
3
Bu
Bw
Xi
Cc
Bl
Sk
P
Sb
4
V
To
F
M
Po
Mo
Lo
Sm
Dk
Cn
Na
E
If
Hu
Transition
Elements
5
Ex
Sc
Coloring Coding the Periodic Table Key
Adapted from the Texas Center for Educational Technology
1.
2.
3.
4.
5.
6.
Groups
Periods
Metals
Metalloids
Gases or Non-Metals
Alkali
EL8_2016
7. Alkaline Earth
8. Transition Metals
9. Halogens
10. Noble Gases
11. Lanthanides
12. Properties or characteristics
M-DCPS Department of Science
46
Teacher
Clay Elements, Molecules, and Compounds
(STEM 3.0)
SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a
multitude of ways to produce compounds that make up all of the living and nonliving things that we
encounter. (AA)
SC.8.P.8.9 Distinguish among mixtures (including solutions) and pure substances (Assessed as SC.8.P.8.5)
Objectives:
 Students will model how elements combine in a multitude of ways to produce
compounds that make up all living and nonliving things.
 Students will differentiate among pure substances, mixtures and solutions.
Problem Statement / Research Question: How does a small set of elements combine to form molecules,
compounds and mixtures, which are used in your daily lives?
Materials:
 Modeling Clay
 Paper Towel
 Colored pencils
 Toothpicks
Background Information for the Teacher:
This activity is used for students to gain an understanding that atoms of elements combine to form
molecules and compounds. Since students can’t see atoms, molecules and compounds, they will create
models of them using different colors of clay pieces to represent the different elements. Students should
understand that some molecules are elements not compounds since they are only made up of only one
type of element such as hydrogen gas. Mixtures consist of different types of elements and/or compounds
that are physically blended but not chemically bonded together. When students complete this activity,
they should be able to differentiate between elements, compounds and mixtures.
Before Activity Preparation
Before the activity, prepare the clay pieces that represent the different elements. Each
group will need a bag, which contains six different colors of clay pieces. Each bag
should contain the number of pieces for each color that are found on the color key
card. Using small bags for each color works best so that way the different colors of
clay pieces don’t stick together.
During Activity
EL8_2016
Engage: Show Study Jams Video: Elements and Compounds
Study Jams Video: Mixtures
Show examples of elements, compounds and mixtures such as sample of salt, copper,
saltwater, sand and water and beaker of air. The class should have a brief discussion
about the video and the samples shown.
Explore: Students will complete the activity: Clay Elements, Molecules and
Compounds
Guiding Questions:
1. What is an atom and what part of the model represents an atom?
2. How do atoms form molecules and compounds?
M-DCPS Department of Science
47
Teacher
3. What is the difference between molecules, compounds and mixtures?
During this activity, the teacher should walk around to ensure that students
understand that the atoms (clay pieces) combine to form different types of molecules,
compounds and mixtures.
Suggestion: have each group save one of their models (teacher assigns) to share
during the discussion.
After Activity
Explain:
Students will participate in a class discussion by sharing their answers to questions
completed during activity and models that they created for a particular element,
compound or mixture. The teacher should revisit the guiding questions to ensure that
students don’t have misconceptions and have mastered the material.
Elaborate:
Students will research and identify elements, molecules, compounds and mixtures
that they use in their daily lives. They will create a drawing that represents a model of
the element, molecule, compound or mixture and explain how they use each one in
their daily lives.
Evaluate:
Teacher will evaluate student understanding of objectives based on the ClaimEvidence-Reasoning conclusion for the essential questions: Explain how atoms of
elements form molecules, compounds and mixtures that are used in your daily lives.
SSA Connection
1. Which of the following is the best example of a heterogeneous mixture?
A. Lemonade made of water, lemonade powder mix, and sugar.
B. An omelet made of scrambled eggs and cheddar cheese.
C. Trail mix made of raisins, peanuts, and chocolate candies.
D. A glass of ice water made of ice cubes and pure water.
2. Susie wants to make lemonade on a hot summer day. She mixes lemon juice,
water, and sugar in a large container. Which of the following happens as she
combines the ingredients?
A. They mix together to form a new compound.
B. They mix together to form a homogeneous solution.
C. The stirring motion causes them to break down into elements.
D. The heavier items will not completely dissolve, creating a suspension.
3. Which statement best explains why silver nitrate (AgNO3) is classified as a
compound?
A.
B.
C.
D.
EL8_2016
Silver nitrate contains a metal.
Silver nitrate can react with copper.
Silver nitrate forms when three elements chemically combine.
Silver nitrate forms a solution when mixed with water.
M-DCPS Department of Science
48
Teacher
4. In the following diagram, the content of each container is shown as spheres
representing atoms. Different shadings of the atoms represent different
elements.
Which of the containers has only one pure substance shown?
A.
B.
C.
D.
I
II
III
IV
Reading Passage Answer Key
1. D 2. A 3. D 4. C
EL8_2016
M-DCPS Department of Science
49
Teacher
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
8-Hydrogen
3-Chlorine
10-Oxygen
8-Hydrogen
3-Chlorine
10-Oxygen
2-Sodium
4-Carbon
2-Nitrogen
2-Sodium
4-Carbon
2-Nitrogen
Names: ______________________________________
Names: ______________________________________
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
8-Hydrogen
3-Chlorine
10-Oxygen
8-Hydrogen
3-Chlorine
10-Oxygen
2-Sodium
4-Carbon
2-Nitrogen
2-Sodium
4-Carbon
2-Nitrogen
Names: ______________________________________
Names: ______________________________________
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
Clay Model Compounds ---Color Key
Count the number of clay pieces you have for
each color and match to the key. Use a crayon
or colored pencil to color each clay piece.
Match the colors to the numbers!
8-Hydrogen
3-Chlorine
10-Oxygen
8-Hydrogen
3-Chlorine
10-Oxygen
2-Sodium
4-Carbon
2-Nitrogen
2-Sodium
4-Carbon
2-Nitrogen
Names: ______________________________________
EL8_2016
Names: ______________________________________
M-DCPS Department of Science
50
Teacher
Separating Mixtures
(STEM 3.0)
Project Based STEM Activities - Middle Grades Science
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world
problems, and construct evidence-based explanations of real-world phenomena within their science
content. Students are also provided the opportunity to re-design models they have developed, based on
peer feedback and reviews. Through these engineering practices within the content, students can gain a
deeper understanding of science and are exposed to how STEM relates to their education and future
career goals.
Engagement or
Introduction:
Teacher Set-Up
Standard
Alignment:
EL8_2016
Suggested
Student
Timeframe:
CrossCurricular
Standards:
What’s in a Mixture video from TED Ed: What’s in a mixture?
Introduce the challenge and show video of a trailer truck spilling its
contents and turning over on YouTube
SC.8.N.1.1: Define a problem from the eighth grade curriculum using
appropriate reference materials to support scientific understanding,
plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and
organize data, interpret data in charts, tables, and graphics, analyze
information, make predictions, and defend conclusions.
SC.8.N.2.2: Discuss what characterizes science and its methods.
SC.8.N.4.1: Explain that science is one of the processes that can be
used to inform decision making at the community, state, national, and
international levels.
SC.8.P.8.9: Distinguish among mixtures (including solutions) and pure
substances.
2 Block periods/4 traditional periods
LAFS.68.RST.1.3: Follow precisely a multistep procedure when
carrying out experiments, taking measurements or performing technical
tasks.
LAFS.68.RST.2.4: Determine the meaning of symbols, key terms, and
other domain-specific words and phrases as they are used in a specific
scientific or technical context relevant to grades 6–8 texts and topics.
LAFS.68.WHST.2.4: Produce clear and coherent writing in which the
development, organization, and style are appropriate to task, purpose,
and audience.
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that allow
for multiple avenues of exploration.
LAFS.68.WHST.3.8: Gather relevant information from multiple print
and digital sources, using search terms effectively; assess the
credibility and accuracy of each source; and quote or paraphrase the
data and conclusions of others while avoiding plagiarism and following
a standard format for citation.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
M-DCPS Department of Science
51
points in a focused, coherent manner with relevant evidence, sound
valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
MAFS.K12.MP.3.1: Construct viable arguments and critique the
reasoning of others.
Define Problem/ Your company wants to be hired to transport building materials from
Scenario:
Miami A tractor-trailer has accidently spilled the contents of its load on
the road. The contents have mixed together and must be separated in
order to complete the delivery.
Expected Task: Students draw up plans for a portable machine that can be built on site
to clean up the spill of salt, sand, iron and wood chips.
Written information by the students about the need or problem being
Research and
solved with citations noted. Students can view the video of the ways of
Citations:
separating mixtures from TED Ed.
Compounds, mixtures, solutions, heterogeneous, homogeneous,
Vocabulary:
distillation, chromatography, reverse osmosis, diffusion through semipermeable membranes.
Criteria:
-No more than four separation mechanisms.
Constraints:
- Machine must be portable.
- May not use electricity. (Alternatives: solar power, batteries,
etc.)
Materials:
1000mL beaker, sand, soil, wood chips, iron fillings, water, coffee
filters, magnets, hot plate, large chart, poster or bulletin board paper
and markers.
Brainstorm ways in which to design a machine that can separate the
Building of the
sand, salt, iron and wood chips. Create a sketch of the design of the
Product
machine that can be built onsite. Think of ways combine the separation
(Prototype,
mechanisms into one machine.
model or
Artifact):
Test the different separation methods in a small scale.
Testing of the
Product
(Prototype,
model or
Artifact):
-How did you prioritize the substances to separate first?
Peer-Review
Questions:
-How did you choose which design to build?
-What research did you use to design your separation machine?
-What other designs did you consider for your machine?
-What would you improve in the design of your machine?
Step 6
Test and Evaluate the
Solution(s)
Step 4
Select the
Best
Possible
Solution(s)/
Step 5
Construct a
Prototype
Step 3
Develop Possible
Solution(s)
Step 2
Research the
Need or
Problem
Step 1
Identify the
Need or
Problem
Teacher
EL8_2016
M-DCPS Department of Science
52
Step 8
Redesign
Step 7
Communicate
the Solution(s)
Teacher
EL8_2016
Project
Summary:
Presentation of
Final Solution:
Re-designing of
the Prototype
Teacher Notes:
Each team will create a sketch of their separation machine to present
the most efficient way to separate the mixture using the vocabulary for
the different methods of separating.
Students will present their team’s sketch of the design of their
separation machine to the class and explain why it is the most efficient
solution.
Students will adjust or re-design their machine and re-test based on
peer reviews, teacher input, and analysis of proposed solution.
- May use this activity in combination with the Essentials lab
- Safety precautions for the use of hot plates.
- Staples are an easier substitute than iron fillings.
- As a class decide which machine is most efficient and why?
M-DCPS Department of Science
53
Teacher
Investigating the Effect of Light Intensity on Photosynthesis
Adapted from: State Adopted – Prentice Hall (Laboratory Manual B)
(STEM 3.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.L.18.1 Describe and investigate the process of photosynthesis, such
as the roles of light, carbon dioxide, water and chlorophyll; production of
food; release of oxygen (Assessed as SC.8.L.18.4)
Objective/Purpose:
1. To observe how light affects photosynthesis.
2. To understand how photosynthesis in important to life.
Background Information:
Photosynthesis is the process by which plants take carbon dioxide from the atmosphere, add water,
and use the energy of sunlight to produce sugar. Photosynthesis occurs in the chloroplast, an organelle in
plant cells that contains the molecule chlorophyll. Chlorophyll absorbs the energy of sunlight. That light
energy is converted to chemical energy through the steps of photosynthesis.
In order to carry out photosynthesis, a plant must have light. But, how much light must a plant
have? Some plants need a lot of light. Others seem to thrive in shade. Does more light lead to more
photosynthesis? In this investigation, you will examine how the intensity of light affects photosynthesis.
You will also analyze the importance of photosynthesis and its need for our environment to survive.
Problem Statement/Research Question:
Students should develop their own question to investigate. Sample questions include: “How does light
affect photosynthesis?” “When is the rate of photosynthesis greatest in a day?” “How are animals
dependent on the process of photosynthesis?”
Read the entire investigation. Then, work with a partner to answer the following questions.
1. What are the products of photosynthesis? Which of these products is released from leaves as a
gas?
2. What can you tell about photosynthesis if a leaf begins to produce more gas bubbles? Fewer gas
bubbles?
3. What are the manipulated and responding variables in this experiment? Identify one controlled
variable.
Materials:
Test tube
Sodium bicarbonate solution
400-mL beaker
Freshly cut sprig of an evergreen (such as yew) or
elodea
Forceps
Before
activity:
EL8_2016
Source of bright light
Watch or clock with second indicator
Plastic gloves
Hand lens
What the teacher will do:
Engage:
Have students observe the process of photosynthesis with an aquatic plant.
In groups, students should:
1. Write ten observations
M-DCPS Department of Science
54
Teacher
During
activity:
2. Discuss as a group what factors may affect the rate of which the bubbles
move (indicator of rate of photosynthesis).
3. Write three questions about what you saw
4. Decide on a Problem Statement
What the teacher will do:
Explore:
 Students should develop a hypothesis and method for testing the hypothesis.
 Monitor students to make sure they are remaining on task and are following
proper lab protocol.
 Follow laboratory procedural plan; making sure to model proper laboratory
safety and use of equipment.
 Emphasize importance of data collection by groups.
What the teacher will do:
Explain:
Have students complete the Claim-Evidence-Reasoning to respond to their own
problem statement
Elaborate:
Students can use their findings to develop a sustainable ecosystem in a bottle.
Evaluate:
Students can use their C-E-R and other resources to create a display, poem, song, etc.
that summarizes the process of photosynthesis.
After
activity:
SSA Connection:
1. Plants make sugar molecules, which contain a good deal of energy. Where do
they get the energy that goes into the sugar molecules?
A. They harvest it from water
B. They manufacture it themselves.
C. They trap the energy in light.
D. They extract it from other cells.
2. If a plant had a mutation that kept it from making enough chlorophyll, how
would it look different from other plants of its own kind?
A. It would have fewer leaves and a broader stem than the others.
B. It would be smaller and not as green than the others.
C. It would be larger and greener than the others.
D. It would have more flowers and more leaves than the others.
3. Janelle needs to draw a diagram of the process of photosynthesis for
homework. She begins by writing the equation for photosynthesis. Which of the
following correctly shows the overall process of photosynthesis?
A. carbohydrate + oxygen + light energy → carbon dioxide + water
B. carbohydrate + water + light energy → carbon dioxide + oxygen
C. carbon dioxide + water + light energy → carbohydrate + oxygen
D. carbon dioxide + oxygen + light energy → carbohydrate + water
Reading Passage Answer Key
1. A 2. C. 3.A 4.A
EL8_2016
M-DCPS Department of Science
55
Teacher
Data (Tables and Observations):
Light
1 min
Intensity
Room light
Dim light
Bright light
2 min
3 min
4 min
5 min
Average
Data Analysis (Calculations):
1. Observing: From what part of the sprig (stem or needle leaves) did the bubbles emerge?
2. Observing: When was the greatest number of bubbles produced?
3. Expository: Explain the data produced in the experiment in relation to the levels of
photosynthesis.
Results and Conclusions:
1. Drawing Conclusions: How does the intensity of light affect the rate of photosynthesis? Was
your hypothesis correct or not? Explain what occurred.
2. Comparing and Contrasting: How do your results compare with those of your classmates?
Are they similar? Are they different? Why might there have been differences in the numbers of
bubbles produced? Can you identify any trends even if the actual numbers differ?
3. Closure Activity:
Students can make a Microsoft Power Point presentation about the importance of plants to our
atmosphere, community and future. Include measures that can be implemented to save forests and
stop global warming.
Extension:
Perform the activity again using different colors of light. What effect does each color have on the
rate of photosynthesis?
Notes for Teacher:
 Provide sprigs that are as freshly cut as possible. For better results, cut stems underwater
and keep the cut ends in water until use.
 Prepare a saturated solution of 7 g sodium bicarbonate per 100 ml water. Pour off the
solution, leaving any undissolved solid behind.
EL8_2016
M-DCPS Department of Science
56
Teacher
Maximizing Photosynthesis
(STEM 3.0)
Project Based STEM Activities - Middle Grades Science
Teacher Set-Up
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world problems,
and construct evidence-based explanations of real-world phenomena within their science content. Students are
also provided the opportunity to re-design models they have developed, based on peer feedback and reviews.
Through these engineering practices within the content, students can gain a deeper understanding of science
and are exposed to how STEM relates to their education and future career goals.
Photosynthesis video; MIT Photosynthetic Cell Article “Artificial
Engagement
Leaf Makes Food from Sunlight”
or
Introduction:
SC.8.N.1.1: Define a problem from the eighth grade curriculum
Standard
Alignment:
using appropriate reference materials to support scientific
understanding, plan and carry out scientific investigations of
various types, such as systematic observations or experiments,
identify variables, collect and organize data, interpret data in
charts, tables, and graphics, analyze information, make
predictions, and defend conclusions.
SC.8.N.2.2: Discuss what characterizes science and its methods.
SC.8.N.4.1: Explain that science is one of the processes that can
be used to inform decision making at the community, state,
national, and international levels.
SC.8.L.18.1: Describe and investigate the process of
photosynthesis, such as the roles of light, carbon dioxide, water
and chlorophyll; production of food; release of oxygen.
Suggested
1.5 Block periods/3 traditional periods
Student
Timeframe:
LAFS.68.RST.1.3: Follow precisely a multistep procedure when
Crosscarrying out experiments, taking measurements or performing
Curricular
technical tasks.
Standards:
LAFS.68.RST.2.4: Determine the meaning of symbols, key terms,
and other domain-specific words and phrases as they are used in a
specific scientific or technical context relevant to grades 6–8 texts
and topics.
LAFS.68.WHST.2.4: Produce clear and coherent writing in
which the development, organization, and style are appropriate to
task, purpose, and audience.
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that
allow for multiple avenues of exploration.
LAFS.68.WHST.3.8: Gather relevant information from multiple
print and digital sources, using search terms effectively; assess the
credibility and accuracy of each source; and quote or paraphrase
the data and conclusions of others while avoiding plagiarism and
following a standard format for citation.
EL8_2016
M-DCPS Department of Science
57
Teacher
Step 2
Research
the Need or
Problem
Step 1
Identify the
Need or
Problem
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
points in a focused, coherent manner with relevant evidence,
sound valid reasoning, and well-chosen details; use appropriate
eye contact, adequate volume, and clear pronunciation.
Define
Problem/
Scenario:
Expected
Task:
Research and
Citations:
Vocabulary:
Step 4
Select the Best
Possible
Solution(s)/
Step 5
Construct a
Prototype
Step 3
Develop Possible Solution(s)
Criteria:
EL8_2016
Constraints:
Materials:
Building of
the Product
(Prototype,
model or
Artifact):
MAFS.8.F.2.5: Describe qualitatively the functional relationship
between two quantities by analyzing a graph (e.g., where the
function is increasing or decreasing, linear or nonlinear). Sketch a
graph that exhibits the qualitative features of a function that has
been described verbally.
Scientists are deciding on which plants to take to a space station
that will be self-sufficient. They need to choose a plant that creates
the most amount of oxygen by absorbing the most light from their
leaves.
Create a structure and layout for a plant’s leaves to absorb the
most light for photosynthesis.
Research: Why Leaves Take Different Shapes
Photosynthesis, light, plant cell, chloroplast, chlorophyll, oxygen,
carbon dioxide, design, solution, test
 No more than four separation mechanisms.
 Must capture light efficiently
 Must be aesthetically desirable
 Must be conducive and sturdy enough to survive transport in
and out of space
 Must be between 25 cm and 30 cm above the paper
 Light will be placed above the center of the graph paper
 Leaf setup will be placed over any part of the graph paper the
group chooses
 6 Straws/Skewers
 3 Plastic Bags
 1 Pair of Scissors
 1 Ruler
 1 Meter of Masking Tape
 1 Sheet of Graph Paper
 1 smartphone/tablet with a Thermal Cam app (many free
options are available)
 Stand (2 liter soda bottle with skewer)
Students will work in groups of 3-4 to build a setup with the
materials given that adhere to all constraints.
M-DCPS Department of Science
58
Step 8
Redesign
Step 7
Communicate the
Solution(s)
Step 6
Test and Evaluate the
Solution(s)
Teacher
EL8_2016
Testing of the
Product
(Prototype,
model or
Artifact):
Peer-Review
Questions:
The group will test their design by placing their setup between the
lamp and the graph paper. The Thermal Cam app will be used to
determine how much light is making through the design and onto
the paper.





Project
Summary:
Presentation
of Final
Solution:
Re-designing
of the
Prototype
Teacher
Notes:
How did you choose which design to build?
What research did you use to design your leaf?
How did you prioritize the design of the leaf to the efficiency
of water distribution and food transport to the roots?
What other designs did you consider for your leaf?
What would you improve in the design of your set up?
Students will present their team’s design of their leaf design and
setup, as well as, the percentage of the leaf that absorbs light.
Students will present their team’s leaf design and set up and
explain why the scientists should choose their design to take to the
space station.
Students will adjust or re-design their set up and leaf design based
on peer reviews, teacher input, and analysis of proposed solution.
The Thermal Cam app displays different colors when viewing the
design. Create a code for each color displayed: red, orange,
yellow, green and blue.
M-DCPS Department of Science
59
Teacher
CARBON CYCLE STATION GAME
(STEM 3.0)
(Adapted from Resources for Educators from the National Center for Atmospheric Research http://www.ucar.edu)
Next Generation Sunshine State Standards Benchmark:
SC.8.L.18.3 Construct a scientific model of the carbon cycle to show how matter and energy are
continuously transferred within and between organisms and their physical environment.
SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of
science.
Purpose: Model the movement of carbon through the environment
Problem Statement / Research Question: How does carbon move through the environment?
How can the carbon cycle become unbalanced?
Background Information for the teacher:
The movement of carbon through various aspects of the natural environment is the focus of much
scientific research. Global warming and climate change can be attributed to the increased amount of heattrapping gases, such as carbon dioxide. Students must develop an understanding of how carbon moves
through the environment in order to appreciate the complexity of developing solutions to address
problems associated with climate change. In addition, since anthropogenic influences impact how much
carbon is reintroduced to the active carbon cycle, students should recognize that human actions negatively
affect the environment.
What is the Carbon Cycle?
All living organisms are based on the carbon atom. Unique among the common elements of the Earth's
surface, the carbon atom has the ability to form bonds with as many as four other atoms (including other
carbon atoms) and to form double bonds to itself. Carbon compounds can be solid, liquid, or gas under
conditions commonly found on the Earth's surface. Because of this, carbon can help form solid minerals
(such as limestone), 'squishy' organisms (such as plants and animals), and can be dissolved in water or
carried around the world through the atmosphere as carbon dioxide gas. The attributes of the remarkable
carbon atom make possible the existence of all organic compounds essential to life on Earth.
Carbon atoms continually move through living organisms, the oceans, the atmosphere, and the crust of the
planet. This movement is known as the carbon cycle. The paths taken by carbon atoms through this cycle
are extremely complex, and may take millions of years to come full circle.
Modified with permission from Global Climates Past, Present, and Future, S. Henderson, S.
Holman, and L. Mortensen (Eds.). EPA Report No.
EPA/600/R-93/126, U.S. Environmental Protection
Agency, Office of Research and Development,
Washington, DC. pp. 59 - 64.
EL8_2016
M-DCPS Department of Science
60
Teacher
Materials:
 7 Dice
 7 Station Signs
 7 Station Movement Directions
 Carbon Cycle Passport for Each Student
 Carbon Atom Model for Each Student
 Blank Bar Graph for Each Student
What the teacher will do:
Teacher Preparation:
Print and laminate station signs for durability. Place signs outside next to real life
examples. For example, place “plant” station by flowers, plants or grass. Place “soil”
station on the ground, etc. Place one die at each station.
Before
activity:
During
activity:
EL8_2016
Engage: Dirt for Lunch
1. Have students list everything they are having or had for lunch.
2. Ask students if they can name a food in their lunch that did not come from dirt?
Mention that no matter what you will eat or have eaten for lunch, ultimately
they are eating dirt!
3. Have students create a concept map to attempt to figure out the ingredients in
different foods and, as a group, trace each food’s origin back to the Earth.
4. Use a tuna fish sandwich for an example.
 The bread came from wheat grown in the dirt.
 Pickles are preserved cucumbers grown in the dirt.
 Lettuce was grown in the dirt.
 Mayonnaise came from eggs, which came from chickens that ate grains
grown in the dirt.
 Tuna living in the ocean eat smaller fish that eat zooplankton that eat
phytoplankton, which need nutrients from the decomposed bodies of
dead plants and animals accumulated on the ocean floor and brought to
the surface by currents.
5. Optional: As a group create a poster using an appropriate graphic organizer
explaining “I Eat Dirt…Ask Me How”. Drawings, magazine cutouts, or
computer graphics should be incorporated into the poster.
Optional: Study Jams-Carbon Cycle, TED Ed-Carbon Cycle, BBC-Carbon Cycle
What the teacher will do:
Explore:
1. Tell students that they are going to be carbon atoms moving through the carbon
cycle.
2. Using the carbon atom model, have students draw in the protons, neutrons and
electrons.
3. Students then wear the carbon atom model as they travel the Carbon Cycle.
4. Categorize the places carbon can be found into these stations: Atmosphere,
Plants, Animals, Soil, Ocean, Deep Ocean, and Fossil Fuels. Point out the
areas outside or in the room that are labeled with each station and contain the
directions for movement from that station.
5. Assign students to each station randomly and evenly. Have students identify
the different places carbon could go from that given station. Discuss the
M-DCPS Department of Science
61
Teacher
processes that allow for the transfer of carbon between stations. Students
should make a line and roll the die individually to follow the directions for
movement from (or retention at) each station. Remind them that they are
representing atoms of carbon moving through the carbon cycle and that they
should record their movements on the data sheet.
6. Students will realize the routine movements (or non-movements) in the carbon
cycle.
7. Once the carbon atoms (students) have had a chance to roll the die ten times,
have each student create a bar graph using the data they collected. The bar
graph should represent the number of times the carbon atom (student) was at
each station.
8. Using graph paper, create a large bar graph recording the number of carbon
atoms (students) at each station.
What the teacher will do:
Explain
Have students complete the Claim-Evidence-Reasoning to respond to the problem
statement.
Elaborate/Extend
Present students with the following scenario to research and solve.
After
activity:
Problem:
Humans cause many combustion processes that dramatically increase the
concentrations of acid-producing oxides in the Earth’s atmosphere. For example, when
any type of fuel is burnt, several types of chemicals are produced. Power stations,
factories, and automobiles burn fuels. Some of the gases that are released from these
fuels, especially nitrogen oxides and sulfur dioxide, react with the tiny droplets of
water in clouds to form sulfuric and nitric acids. The rain from these clouds then falls
as very weak acid; this acid is commonly described as “acid rain.” While acid rain is
not harmful to humans, acid rain does trigger inorganic and biochemical reactions that
are harmful to the environment. Immediate, sustainable actions need to be taken to
decrease the high concentrations of acid-producing oxides in the Earth’s atmosphere.
Task:
Your mission is to develop and implement a feasible “Acid Rain Reduction Plan” for
your school, family, or neighborhood community.
SSA Connection:
1. Which of the following processes would most likely release carbon dioxide
into the environment?
A. building a wooden house
B. growing trees in the yard
C. burning wood in a campfire
D. chipping up wood for mulch
2. Fossil fuels such as natural gas and petroleum contain carbon. How did the
EL8_2016
M-DCPS Department of Science
62
Teacher
carbon get into the fossil fuels?
A. It migrated into them from the rocks in which the fossil fuels are found.
B. It seeped out of coal buried near the fossil fuel deposits underground.
C. It was in the air that was trapped underground when the fossil fuels
formed.
D. It was once part of the organisms from which the fossil fuels formed.
3. Which of the following is NOT a way carbon dioxide returns to the
atmosphere?
A. decay of organisms
B. emissions by factories
C. photosynthesis
D. respiration
Reading Passage Answer Key
1. B 2. A 3.C 4.A
EL8_2016
M-DCPS Department of Science
63
Teacher
The Carbon Cycle
THE ATMOSPHERE
You are currently a molecule of carbon dioxide in the atmosphere.
If you roll…
EL8_2016
Then you …
1
Stay in the atmosphere. Much of the carbon dioxide in the
atmosphere moves through the atmosphere.
2
Go to plant. You are used by a plant in
photosynthesis.
3
Stay in the atmosphere. Much of the carbon dioxide in the
atmosphere moves through the atmosphere.
4
Stay in the atmosphere. Much of the carbon dioxide in the
atmosphere circulates through the atmosphere.
5
Go to surface ocean.
6
Go to plant. You are used by a plant in photosynthesis.
M-DCPS Department of Science
64
Teacher
The Carbon Cycle
PLANTS
BIOSPHERE
You are currently a carbon molecule in the structure of the plant.
If you roll…
EL8_2016
Then you …
1
Go to soil. The tree shed its leaves.
2
Stay in plant. You are a carbon molecule in the tree’s trunk.
3
Go to animal. The leaves and berries that the plant produced contain
your carbon molecule and were eaten.
4
Stay in plant. You are a carbon molecule in the tree’s roots.
5
Stay in plant. You are a carbon molecule in the tree’s branches.
6
Stay in plant. You are a carbon molecule in the tree’s trunk.
M-DCPS Department of Science
65
Teacher
The Carbon Cycle
ANIMALS
BIOSPHERE
You are currently a molecule of carbon in an animal.
If you roll…
EL8_2016
Then you …
1
Stay in animal. The carbon molecule is stored as fat in the animal.
2
Go to soil. The animal that consumed you died and your carbon
molecule is returned to the soil.
3
Go to atmosphere. The animal that consumed you respired
(breathed) you out as carbon dioxide.
4
Stay in animal. You are eaten by a predator.
5
Go to atmosphere. The animal that consumed you respired
(breathed) you out as carbon dioxide.
6
Go to atmosphere. The animal that consumed you respired
(breathed) you out as carbon dioxide.
M-DCPS Department of Science
66
Teacher
The Carbon Cycle
SOIL
GEOSPHERE
You are currently a molecule of carbon dioxide in the soil.
If you roll…
EL8_2016
Then you …
1
Stay in the soil. Much of the carbon in the soil is stored there.
2
Go to plant. You are used by a plant in photosynthesis.
3
Go to fossil fuels. Your carbon molecule has been in the soil so
long it turns into fossil fuels.
4
Go to the atmosphere.
5
Stay in the soil.
6
Go to fossil fuels. Your carbon molecule has been in the soil so
long that it turns into fossil fuels.
M-DCPS Department of Science
67
Teacher
The Carbon Cycle
SURFACE OCEAN
HYDROSPHERE
You are currently a molecule of carbon dioxide in the surface ocean.
If you roll…
EL8_2016
Then you …
1
Go to deep ocean.
2
Stay in the surface ocean.
3
Go to deep ocean. Your carbon atom was part of an ocean organism
that has died and has sunk to the bottom of the ocean.
4
Stay in the surface ocean.
5
Go to the atmosphere.
6
Go to the atmosphere.
M-DCPS Department of Science
68
Teacher
The Carbon Cycle
DEEP OCEAN
HYDROSPHERE
You are currently a molecule of carbon in the deep ocean.
If you roll…
EL8_2016
Then you …
1
Stay in the deep ocean.
2
Stay in the deep ocean.
3
Go to surface ocean.
4
Go to surface ocean.
5
Go to surface ocean.
6
Go to animal. An organism in the water has taken you up as food in
the deep ocean.
M-DCPS Department of Science
69
Teacher
The Carbon Cycle
FOSSIL FUELS
GEOSPHERE
Fossil fuels are a rich source of energy that has been created from carbon that has been stored for
many millions of years.
If you roll…
EL8_2016
Then you …
1
Stay in the fossil fuels.
2
Stay in the fossil fuels.
3
Stay in the fossil fuels.
4
Stay in the fossil fuels.
5
Go to the atmosphere. Humans have pumped the fuel that you are
part of out of the ground and have used it to power their cars.
6
Go to the atmosphere.
M-DCPS Department of Science
70
Teacher
SCALE OF OUR UNIVERSE MODELING ACTIVITY
(STEM 4.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.E.5.3: Distinguish the hierarchical relationships between planets and other astronomical bodies
relative to solar system, galaxy, and universe, including distance, size, and composition. (Also assesses
SC.8.E.5.1 and SC.8.E.5.2.)
SC.7.N.3.2: Identify the benefits and limitations of the use of scientific models.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner
with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
MAFS.7.RP.1.2: Recognize and represent proportional relationships between quantities.
Purpose of Lab/Activity:
 Students will identify the various celestial bodies in our universe by creating models as
proportional representations highlighting similarities or differences amongst those celestial bodies.
 Students will understand relative scales of the various distances of the Universe by incorporating a
scale in their model of the universe.
Problem Statement / Research Question:
 How can a model be used to describe the vastness (largeness) of our universe?
Materials (Suggested, but not limited to)
 Modeling clay
 String

Paper (construction/ poster)

Balloons
Straws

Various spherical objects

Markers

Scissors


Register tape

Protractors

Computer/Internet Access

Procedures:
Before
Engage:
Activity
 Teacher will project http://htwins.net/scale2/ to introduce how large our universe
is and all that is inside.
 Teacher will ask students what else they think is inside the universe and how long
it would take to reach the outskirts of our solar system.
During
Explore
Activity
 Teacher must explain expectations and directions for activity:
 Students will be given a list of celestial objects they are to include in their model
(see student handout). And develop a problem statement
 Students will work in groups of 2-3 to create a scale to use to illustrate distances
between the objects.
 Students will gather any materials they wish to use to create their model of the
universe.
EL8_2016
Tasks for groups to explore:
1. Identify unique characteristics of celestial objects within the Universe
2. Sort and classify the mass objects in the universe from least to greatest
3. Sort and classify the distance of celestial objects within the universe in AU/lightyears
M-DCPS Department of Science
71
Teacher
After
Activity
Explain
 Students will research each celestial object
 Students will explain how they created their universe model
 Students will demonstrate their understanding of the scale of the universe by
explaining the different celestial bodies as each group presents their models, the
audience must record notes about each celestial object
Elaborate
 After activity, students will complete activity write up and discuss the benefits and
limitations of their model.
 Challenge the students by having the students use their notes and all celestial
objects from the word bank to sort them into a hierarchical organizer.
(Students can use the diagram to take notes or further lesson extensions)
Evaluate
 Teacher will evaluate understanding of objectives based on student conclusions in
C-E-R.
SSA Connection:
1. Which statement about relative astronomical size is correct?
A.
B.
C.
D.
The diameter of Earth is bigger than the diameter of the Sun.
Our Solar System is bigger than the Milky Way galaxy.
Asteroids are the largest of the minor bodies in our Solar System.
The orbit of our Moon is smaller than the dwarf planet Pluto.
2. It would be appropriate to use Astronomical Units (AU) to measure the distance
between which of the following?
A.
B.
C.
D.
stars
galaxies
countries
planets
3. Which of the following correctly describes the relationship between astronomical
bodies in outer space?
A. Mars is larger than Earth.
B. The Milky Way is much larger than our Solar System.
C. The Moon is further away from the Sun than the asteroid belt.
D. The orbits of planets are greater than the orbits of the satellites.
Reading Passage Answer Key
1. A 2. A 3.A 4.D
EL8_2016
M-DCPS Department of Science
72
Teacher
STAR BRIGHT APPARENT MAGNITUDE LAB
(STEM 3.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.E.5.5 Describe and classify specific physical properties of stars: apparent magnitude (brightness),
temperature (color), size, and luminosity (absolute brightness). AA
(Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)
SC.8.N.1.1 Define a problem from the 8th grade curriculum using appropriate reference materials to
support scientific understanding, plan and carry out scientific investigations of various types: systematic
observations, or experiments, identify variables. AA
(Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)
Purpose:
 Students will demonstrate how distance affects the apparent magnitude and absolute brightness of
a flashlight and relate it to brightness of stars.
 Students will explain the apparent magnitude and absolute brightness of a star.
Problem Statement / Research Question: What determines the brightness of a star?
Materials (per group):
 3 pencils
 1 meter stick

Tape

2 flashlights
Procedures:
Preparation:
 Have materials ready for students to use in groups or at stations
 Optional: separate each part of the activity (during and after) into stations.
Before Activity
During Activity
EL8_2016
Engage:
 Show the Discovery Education Video on Brightness & Luminosity [0:55]
 Review vocabulary and clarify the meaning of “absolute brightness” and
“apparent magnitude” as the terms to use.
 Ask students what other things emit light and are bright, such as stars to
transition to lab activity.
Explore:
 Teacher will pass out lab handouts and students will read background
information.
 Students will answer the pre-lab questions and teacher will begin a discussion
on the purpose of the lab.
 Students will work in groups of 3 to execute the lab activity.
 Teacher will monitor groups and ask students the following questions:
1. How does distance of the flashlight affect what you see?
The closer the flashlight is, the brighter it appears; and the further away
the flashlight is the dimmer it appears.
2. When the flashlights are the same distance from you, what do you see and
why?
When the flashlights are both close and both far their brightness is the
same. This is because both flashlights are emitting the same amount of
brightness since they are the same flashlight.
M-DCPS Department of Science
73
Teacher
3. How does this activity relate to our objective and our knowledge about
stars?
This activity shows us how distance affects the observed brightness of a
star. For example, stars that are really far away may be bright but don’t
seem bright because of their distance. Stars that are closer to Earth seem
brighter because there is less distance between the star and the Earth.
Explain:
 Students write their explanations and conclusions in their lab handout
 Students will answer the question: “What is the relationship between a star’s
apparent magnitude and distance from Earth?” in the C-E-R template
Elaborate:
 Watch Stargazing Basics: Understanding Star Magnitude in Astronomy
 Extension activity Science Net Links - Star Light, Star Bright Activity
modified student worksheet and answer sheet
 Use Interactive 3D night Sky (on promethean board/Smartboard) to locate
Ursa Minor and have students click on stars to get information to fill in their
worksheet.
 Additional option: To wrap up the lesson, you may use the step by step
simulation Analyzing Stars with the HR Diagram to find relationships
between star properties.
Evaluate:
 Evaluate student understanding and mastery of concept based on responses
for conclusion of lab.
After Activity
SSA Connection:
1. Which factor is NOT used to determine a star's apparent magnitude?
A. how big the star is
B. how hot the star is
C. how dense the star is
D. how far away the star is
2. The observed brightness of a star depends on which factors?
A. the star's temperature, size, and composition
B. the star's brightness, size, and distance
C. the star's shape, distance, and size
D. the star's composition, shape, and temperature
3. The surface temperature of a star is indicated by which characteristic?
A. shape
B. absolute brightness
C. color
D. size
4. Brandon learns that a star's luminosity is a measure of the star's absolute
brightness, and is determined by a combination of the star's physical properties.
Which of the following correctly describes the relationship between the
luminosity of two stars that have the same radius?
EL8_2016
M-DCPS Department of Science
74
Teacher
A.
B.
C.
D.
EL8_2016
The star that is hotter will have a lower luminosity.
The star that is hotter will have a higher luminosity.
The stars' luminosities will depend on how close they are to the Sun.
The stars will have the same luminosity since their radii are the same.
M-DCPS Department of Science
75
Teacher
Star Brightness
(STEM 4.0)
Project Based STEM Activities for Middle Grades Science
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world problems,
and construct evidence-based explanations of real-world phenomena within their science content. Students
are also provided the opportunity to re-design models they have developed, based on peer feedback and
reviews. Through these engineering practices within the content, students can gain a deeper understanding
of science and are exposed to how STEM relates to their education and future career goals.
Engagement or
Introduction:
Step 2
Research
the Need
or
Problem
Step 1
Identify the Need or
Problem
Teacher Set-Up
Standard
Alignment:
EL8_2016
Suggested
Student
Timeframe:
CrossCurricular
Standards:
Following the Star Bright Apparent Magnitude Lab or similar activity,
students should reflect on how two identical flashlights are useful
demonstrating apparent brightness, but not absolute brightness.
SC.8.E.5.5: Describe and classify specific physical properties of stars:
apparent magnitude (brightness), temperature (color), size, and
luminosity (absolute brightness).
1.5 blocks / 3 traditional periods
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that allow
for multiple avenues of exploration.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
points in a focused, coherent manner with relevant evidence, sound
valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
MAFS.8.F.2.5: Describe qualitatively the functional relationship
between two quantities by analyzing a graph (e.g., where the function
is increasing or decreasing, linear or nonlinear). Sketch a graph that
exhibits the qualitative features of a function that has been described
verbally.
Define Problem/ In an effort to better engage students with the concept of stellar
Scenario:
properties, a private space agency is funding a project to develop
educational technology able to allow students to manipulate a model
star. You have decided to apply for the project and well need to
demonstrate your invention.
Expected Task:
Research and
Citations:
Vocabulary:
Develop and demonstrate an adjustable model that can simulate various
components of a star to adjust the star’s magnitude and temperature.
Written information by the students about the need or problem being
solved with citations noted.
apparent magnitude (brightness), luminosity (absolute brightness), star,
temperature
M-DCPS Department of Science
76
Teacher
Constraints:
Materials:
Building of the
Product
(Prototype,
model or
Artifact):
Testing of the
Product
(Prototype,
model or
Artifact):
Peer-Review
Questions:
Step 8
Redesign
Step 7
Communic
ate the
Solution(s)
Step 6
Test and Evaluate
the Solution(s)
Step 4
Select the
Best
Possible
Solution(s)/
Step 5
Construct a
Prototype
Step 3
Develop Possible Solution(s)
Criteria:
EL8_2016
Project
Summary:
Presentation of
Final Solution:
Re-designing of
the Prototype
Teacher Notes:
Teams should be comprised of 3-4 students
Model should be easily adjustable (quickly interchangeable parts or
adjustable parts)
Model will demonstrate differences in luminosity based on size and
color
The size range that is demonstrated must have the largest star at least
100 times larger than the smallest star
Only 1 light source is allowed in the model
Demonstrations of the model should be under 2 minutes in length and
display
Colors area limited to the colors of actual stars
The size range
You may be up to 5 interchangeable parts other than the main
component, device or set-up for you model
 Flash light or other light source
 Black construction paper
 Cardboard (individual panels or box)
 Tape/glue
 Scissors
 Colored plastic (clear plastic wrap and markers may substitute)
Based on research and brainstorming of solutions, the students are to
build a prototype or their model or product.
Students test the success of their prototype.
How does the model account for various temperatures of stars?
Can distance re a relevant variable in the model?
What were alternative methods of modeling star size?
Written description of completed task and proposed solution to
presented problem or scenario. This should include a product
description similar to one that would be found in a sales catalogue.
Demonstration of product with description.
Based on peer reviews, teacher input, and analysis of proposed
solution, the students are to re-design and rebuild a prototype of their
model, product, etc.
To wrap up the lesson, you may use the step by step simulation
Analyzing Stars with the HR Diagram to find relationships between
star properties.
M-DCPS Department of Science
77
Teacher
THE MARTIAN SUN-TIMES
(STEM 4.0)
Next Generation Sunshine State Standards Benchmark:
SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets,
and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement,
temperature, and atmospheric conditions. (AA) (Also assesses SC.8.E.5.4 and SC.8.E.5.8.).
Background Information: Sources: NASA Solar System Exploration and
http://nineplanets.org/mars.html
Our Solar system is a part of a spiral galaxy called the Milky Way. It is comprised of our nearest star, the
Sun, and the celestial bodies that surround it. There are eight (8) planets in our solar system – Pluto was
downgraded to a dwarf planet in 2006 mainly because it orbits around the Sun in “zones of similar objects
that can cross its path.” Pluto has a more distinguished recognition because dwarf planets orbiting the Sun
beyond Neptune are referred to as plutoids. Of the eight remaining planets, there are four (4) inner
“rocky” planets and four (4) outer “gas giants.” One of particular interest is Mars.
Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is
sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of
agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming
Mars may prefer this symbolism.) The name of the month March derives from Mars.
Mars has been known since prehistoric times. Of course, it has been extensively studied with groundbased observatories. But even very large telescopes find Mars a difficult target, it's just too small. It is still
a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!).
Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was
used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of
this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The
surface of Mars is therefore much colder than the Earth would be at that distance from the Sun.
Background Information:
Distances in space can sometimes be hard to imagine because space is so vast. Think about measuring the
following objects: a textbook, the classroom door, or the distance from your house to school. You would
probably have to use different units of measurement. In order to measure long distances on Earth, we
would use kilometers. But larger units are required for measuring distances in space. One astronomical
unit equals 150 million km (1 AU = 150,000,000 km), which is the average distance from the Earth to the
Sun.
EL8_2016
M-DCPS Department of Science
78
Teacher
Materials:
Part 1 - various spherical objects of different sizes (i.e., basketball, softball, soccer ball, large marbles
small marbles, beads, etc.
Part 2 - Computer with Internet access
Part 3 - receipt paper rolls (adding machine tape), meter stick, metric ruler, markers or colored pencils,
scissors, protractor, construction paper
Objectives
Students will:
 Explore the solar system
 Build a scale models various components of the solar system
 Gather, interpret, and compare information for the planets of our solar system.
Problem Statement / Research Question: How do models provide us with a better understanding of the
Solar System?
Teacher note:
 Students are told that they are Earthling news reporters for an Internet newspaper called the
Martian Sun-Times. They will write articles for the newspaper comparing different planets to
Earth.
 It is recommended that you assign a team to each investigation. It is possible for students to collect
data and answer the questions in one period if there is a computer for each group.
 Another period will be necessary for them to discuss and write their article as well as develop their
models. Encourage students to use their factual information but to consider one of the following
formats when writing their articles: travel brochure, human or Martian interest - story, fashion
report, disaster report, weather predictions, etc.
 Students must gather information and create a display that summarizes the similarities and
differences discovered for their category (task card) about the planets and the sun.
 Students will be evaluated on the basis of effort, job performance, team participation and their
literary contribution.
Your role will be to answer questions for students and assist students in their interpretations. As always is
the case, it's important for you to have done the investigations before teaching them. Occasionally, you
may need to further explain some science concept found in the "Stats" sheets.
Before
Engage:
Activity
Part 1: Solar System Sizes
1. As a class, discuss the actual size of our solar system – the planets, moons, and the
Sun. Note that all of the measurements in the table below are in thousands, and even
hundreds of thousands, of kilometers.
2. Using a spreadsheet program or calculator, begin to calculate the needed data in
column 3. Once done, discuss these ratios as a class.
3. To complete column 4, set Earth’s diameter to the size of a large marble and
recalculate the sizes based on the ratios in column 3.
4. Try to think of objects that correspond to the calculated sizes.
EL8_2016
M-DCPS Department of Science
79
Teacher
Answers
Solar
System
Body
Equatorial
Diameter
(kilometers)
Diameter
Compared
with
Earth's
Scaled Diameters
Scaled to…
Earth=Large
Marble
(cm)
Everyday Object
Representing Solar
System Body
Mercury
4,880
0.38
0.76
Small bead
Venus
12,100
0.95
1.9
Large marble
Earth
12,756
1
2
Large Marble
Mars
6,787
0.53
1.06
Small marble
Jupiter
143,200
11.2
22.4
Basketball
Saturn
120,000
9.4
18.8
Soccer ball
Uranus
51,800
4.1
8.2
Softball
Neptune
49,528
3.9
7.8
Softball
Pluto (Dwarf
planet)
~2,330
0.19
0.38
Tiny bead
Moon
3,476
0.27
0.54
Tiny bead
Sun
1,392,000
109
218
Giant beach ball?
(Very Large)
Source(s) www.perkins-observatory.org and www.flpromise.org
Part 2 –Reporters on Assignment
Using the task cards, each group will research the answers to their tasks and develop
their news presentation and model to demonstrate their findings in a creative,
proportional, and logical manner.
- Task 1: Identify unique characteristics of celestial objects within the Solar
System
- Task 2: Sort and classify the planets in the Solar System by composition
- Task 3: Sort and classify the mass of the planets in the Solar System from least
to greatest (kg)
- Task 4: Sort and classify the axis tilt of the planets in the Solar System from
least to greatest
- Task 5: Sort and classify the distance of celestial objects within the Solar
System in AU
- Task 6: Sort and classify the length of a year (revolution) of objects in the Solar
System from least to greatest number of days
Task 7: Sort and classify the average atmospheric temperature highs and lows of
each planet from least to greatest
- Task 8: Sort and classify the length of a day (rotation) of objects in the Solar
System from least to greatest number of hours
Part 3 - Solar System Scale Model:
Students will use mathematical equations, measuring tools and skills to create an
accurate scale model of the solar system.
EL8_2016
M-DCPS Department of Science
80
Teacher
Ask students to brainstorm about all of the objects that they have seen or observed in the
night sky. Then discuss with the class how far away they think these objects (stars,
planets, or satellites) are. Reinforce to students that there are planets much closer to the
Earth than stars other than our Sun.
During
Activity
Explore
1. As a class, decide what scale you will use to determine your measured distance
from the Earth to the Sun. This measurement will represent one Astronomical
Unit (AU); (Ex: 10 cm = 1 AU).
2. Multiply your chosen AU standard by 40 to determine the length of adding
machine tape needed to complete your scale model activity. (10 cm x 40 = 400
cm of tape).
3. Place your values in Table 2.
TABLE 2: Scaled Distances of Planets
Standard-Scale
Distance from
Distance of
(chosen by
the Sun in
Planet in the
PLANET
class/group)
Astronomical
chosen scale.
Units (AU)
Mercury
0.4
Venus
0.7
Earth
1.0
Mars
1.5
Jupiter
5.2
Saturn
9.5
Uranus
19.5
Neptune
30.2
AU x scale
unit
(cm)
Pluto (Dwarf
40
Planet)
4. Cut the adding machine tape to the appropriate length.
Note: If you would like to include the Sun and Asteroid Belt, be sure to cut
extra length (5 cm – 7cm should be adequate) at the start of your distance scale
model. Students should also consider that the Sun’s size will not be to scale.
5. Mark one end of the tape to represent the Sun.
6. Measure from the edge of your group’s drawn Sun the distances for each planet.
Place a dot where each planet should be placed. Include your scale on the model.
Once all of the planets have mapped out, each group member should choose one or two
planets to draw and color. Use your textbook or materials provided by your teacher as a
reference.
EL8_2016
M-DCPS Department of Science
81
Teacher
After
Activity
Explain
 Students will explain how they created their solar system model.
 Students will demonstrate their understanding by completing the results and
conclusion worksheet based on the presentations of the various groups
 Emphasize the importance of paying attention to the group presentations in order
to complete the results and conclusion worksheet
Results and Conclusions:
1. Why do you think scale models are important?
2. Compare and contrast the distances of the inner and outer planets from the Sun
3. Draw the planets by scale according to size (diameter) on the distance scale model.
4.
Elaborate
Part 4 - Martian Sun Times Reporters
Teacher’s Procedure:
1. Divide the class into eight different groups. Each person within the group will be
assigned a specific job, e.g. secretary, researcher(s), editor, organizer.
2. Assign to each group one of the investigations to research.
Use the factual
information obtained to prepare an article. This may consist of anyone of a variety
of formats, e.g., a newspaper article, a travel brochure, a human –interest (or
Martian interest) story, a fashion report, weather predictions.
Student Procedure:
1. Your group will be assigned an investigation to research and present to class.
2. Use the factual information obtained to prepare an article. This may consist of
anyone of a variety of formats, e.g., a newspaper article, a travel brochure, a human
–interest (or Martian interest) story, a fashion report, weather predictions.
3. Your group will develop a model that is easy for readers to understand based on the
information you gathered.
4. Each person within the group will be assigned a specific job, e.g. secretary,
researcher(s), editor, organizer.
Summary of Investigations:
Investigation I: Weather Forecasts for Earthlings and Martians. (Comparing
weather for Mars and where you live).
Compare temperatures and wind speeds on Mars and on Earth where you live, as well
as noting the temperature ranges across the two planets.
Investigation II : A Martian Summer Day (Comparing temperatures for summer on
Mars and the place you live)
Research the typical high and low summer temperatures for Mars. Compare
temperatures for the current date on Mars and Earth based upon 30° N latitude.
Investigation III: Stormy Mars: Dust Gets In My Eyes (Finding out about dust
storms on Mars). Discover the effect of Martian dust storms on temperatures. Find out
what might cause the storms and infer the length of one storm.
Investigation IV: Probing Earth and Mars: What Should We Pack? (Finding out
temperatures at various landing sites)
If MASA (Martian Aeronautics and Space Administration) sent astronauts to Earth to
places that match the latitude and longitude of Viking and Pathfinder landing sites,
EL8_2016
M-DCPS Department of Science
82
Teacher
where would they land and what weather conditions would they encounter?
Investigation V: Life on Mars: Where's the Party? (Finding out about the possibility
of life on Mars)
Learn about the Martian meteorite that may show evidence of life there. Are any
temperatures on Mars similar to Earth? Considering the environment of Mars what,
would a Martian look like?
Investigation VI: Getting to Mars: Are We There Yet? (Finding out about Mars'
orbit and NASA Missions)
Learn about planetary orbits and interplanetary travel. How long would a trip from
Earth to Mars take? What are some of the next Martian missions planned?
Investigation VII: Exploring Mars: Oh Water, Where Art Thou? (Finding out
about water on Mars)
Early observers of Mars thought they saw canals on the planet. There are no canals, but
there is a lot of evidence of once– abundant water on Mars. Students will see current
Mars images and compare them to water– formed features on Earth.
Extension:
1. Allow students to imagine that they are living on one of the planets other than Earth.
They must assume the role of a travel agent who is trying to attract visitors to their
home world. They must create an Interplanetary Travel Brochure.
Resources:
http://www.ucls.uchicago.edu/MartianSunTimes/index.html)
http://www.nineplanets.org/mars.html
Evaluate: Students will present to the other groups within the class as groups record
information presented in their journals. A sample notetaking template is provided for
students. It can be copied at 80% and pasted into their notebooks to complete upon
presenting. If groups are finished with their work before they present, encourage
students to complete the information in their journals for their own groups information
as they wait for others.
SSA Connection:
1. A year is the amount of time it takes for a planet to orbit the Sun. If Earth is 1
astronomical unit (AU) away from the Sun, and Neptune is 30 astronomical units
(AU) away from the Sun, how does the length of a year on Neptune compare to a
year on Earth?
A. A year is the same amount of time for all planets.
B. A year on Neptune is shorter than on Earth, since Neptune is bigger and orbits
the Sun faster.
C. A year on Earth is shorter than a year on Neptune because Earth is closer to the
Sun.
D. A year on Earth is shorter than a year on Neptune because Earth is smaller than
Neptune.
EL8_2016
M-DCPS Department of Science
83
Teacher
2. Saturn is 9.5 astronomical units (AU) from the Sun and Mars is only 1.5 AU from
the Sun. Saturn is also much larger than Mars. Based on this information, how does
the average surface temperature on Mars compare to the average surface
temperature on Saturn?
A. Since Mars is closer to the Sun than Saturn, it has a higher average surface
temperature.
B. Saturn is larger than Mars and absorbs more light, so it has a higher average
surface temperature.
C. Since both planets are more than 1 AU from the Sun, their average surface
temperatures are equal.
D. Even though Saturn is further away, Saturn's rings cause it to have a lower
average surface temperature.
3. The planets in our Solar System share some similarities, but their differences often
outnumber the similarities. For example, one day on Neptune is only about 16.1
hours, and while Earth and Neptune both have natural satellites, Earth has only one
moon, while Neptune has 13. Which of the following is also an accurate comparison
of Earth and Neptune?
A.
B.
C.
D.
Neptune has a more solid surface than Earth.
Earth has a shorter period of revolution than Neptune.
Neptune has a longer period of rotation than Earth.
Earth has a lower average temperature than Neptune.
4. The table below provides information about 4 planets.
Planet
Period of Revolution
(Earth Time)
365 days
687 days
88 days
225 days
Earth
Mars
Mercury
Venus
Period of Rotation
(Earth Time)
23.9 hours
24.6 hours
59 days
243 days
Which of these planets has the longest year?
A.
B.
C.
D.
EL8_2016
Earth
Mars
Mercury
Venus
M-DCPS Department of Science
84
Teacher
Space Travel Tour Agency
(STEM 3.0)
Project Based STEM Activities for Middle Grades Science
Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a studentcentered learning environment in which students investigate and engineer solutions to real-world problems,
and construct evidence-based explanations of real-world phenomena within their science content. Students
are also provided the opportunity to re-design models they have developed, based on peer feedback and
reviews. Through these engineering practices within the content, students can gain a deeper understanding
of science and are exposed to how STEM relates to their education and future career goals.
Teacher Set-Up
Engagement or
Introduction:
Standard
Alignment:
EL8_2016
Suggested
Student
Timeframe:
CrossCurricular
Standards:
NASA Video What is a Planet? [7:53]
YouTube Video Is Pluto a Planet? [4:44]
SC.8.N.1.1: Define a problem from the eighth grade curriculum using
appropriate reference materials to support scientific understanding,
plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and
organize data, interpret data in charts, tables, and graphics, analyze
information, make predictions, and defend conclusions.
SC.8.N.2.2: Discuss what characterizes science and its methods.
SC.8.N.4.1: Explain that science is one of the processes that can be
used to inform decision making at the community, state, national, and
international levels.
SC.8.E.5.7: Compare and contrast the properties of objects in the Solar
System including the Sun, planets, and moons to those of Earth, such
as gravitational force, distance from the Sun, speed, movement,
temperature, and atmospheric conditions.
2 Block periods/4 traditional periods
LAFS.68.RST.1.3: Follow precisely a multistep procedure when
carrying out experiments, taking measurements or performing technical
tasks.
LAFS.68.WHST.2.4: Produce clear and coherent writing in which the
development, organization, and style are appropriate to task, purpose,
and audience.
LAFS.68.WHST.3.7: Conduct short research projects to answer a
question (including a self-generated question), drawing on several
sources and generating additional related, focused questions that allow
for multiple avenues of exploration.
LAFS.68.WHST.3.8: Gather relevant information from multiple print
and digital sources, using search terms effectively; assess the
credibility and accuracy of each source; and quote or paraphrase the
data and conclusions of others while avoiding plagiarism and following
a standard format for citation.
LAFS.8.SL.2.4: Present claims and findings, emphasizing salient
points in a focused, coherent manner with relevant evidence, sound
M-DCPS Department of Science
85
Teacher
Step 2
Research
the Need
or
Problem
Step 1
Identify the Need or
Problem
valid reasoning, and well-chosen details; use appropriate eye contact,
adequate volume, and clear pronunciation.
Define
Problem/Scenar
io:
Expected Task:
Research and
Citations:
Vocabulary:
Step 3
Develop Possible Solution(s)
Criteria:
EL8_2016
Materials:
MAFS.8.F.2.5: Describe qualitatively the functional relationship
between two quantities by analyzing a graph (e.g., where the function
is increasing or decreasing, linear or nonlinear). Sketch a graph that
exhibits the qualitative features of a function that has been described
verbally.
Your team owns a leading travel agency for Space Travel. Scientists
and vacationers alike are interested in what is out there but need help or
additional information that your agency can provide.
Your team has to research a planet or moon within our solar system
and design a travel brochure to get future travelers to visit that planet.
Adapted from NASA: Travel Agent
Challenge - Based on your research, create a mini suitcase of Space
Travel Essentials for someone interested in visiting your planet.
NASA Solar System Exploration
NASA Space Place - Planet Extreme Weather
Gravity, temperature, atmosphere, minerals, rocks, orbital, rotational,
moons, rings, distance
The Brochure must have:
 Name of destination
 Distance from Sun
 Surface temperature range
 Orbital period (length of year in Earth days or years)
 Rotational period (length of day in Earth hours or days)
 Main components of the atmosphere
 Gravity
 Moons
 Rings
 Key attractions (volcanoes, hurricanes, craters, etc.)
 Any other interesting facts that visitors should be aware of
 Graphics (include at least three pictures)
 Computers with internet access
 Construction paper
 Crayons, markers, colored pencils, etc.
 Scissors
 Glue and/or tape
 Student Page
 Rubric
M-DCPS Department of Science
86
Step 8
Redesign
Step 7
Communicate the
Solution(s)
Step 6
Communicate the
Solution(s)
Step 4
Select the Best
Possible Solution(s)/
Step 5
Construct a Prototype
Teacher
EL8_2016
Building of the
Product
(Prototype,
model or
Artifact):
Testing of the
Product
(Prototype,
model or
Artifact):
Peer-Review
Questions:
Project
Summary:
Presentation of
Final Solution:
Re-designing of
the Prototype
Teacher Notes:
Place students into groups of 2-4 students. Assign each group a planet
(Mercury, Venus, Mars, Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune). Assign remaining groups Earth’s Moon, Pluto, or Titan.
Check that the information displayed on your brochure or in your
suitcase aligns with the planetary or lunar facts researched.
-What research did you use to design your brochure?
-How did you prioritize the design of the brochure in relation to the
planetary features?
-How did you determine the contents of your suitcase?
-What would you improve in the design of your brochure or suitcase?
Students will present their brochure and suitcase to the class in a
Gallery Walk. One student stays behind to answer questions while all
other students from the group visit different planets.
Students will present their brochure and suitcase to the other groups
where one member stays behind to explain and the others rotate around
the room to other presentations. Encourage students to take notes when
visiting the planets in their journals.
Students will adjust the contents of the suitcase challenge based on
peer reviews, teacher input and creativity.
Recognize students who take notes.
Discuss the differences in the destinations. Talk about the real
possibilities of traveling to these planets in the future.
M-DCPS Department of Science
87
Teacher
Space Travel Tour Agency Brochure Rubric
Category
Title
Content
Graphics
Attractiveness
Grammar
4
3
2
1
The title is too small
The title can be read The title can be read The title can be read
and/or does not
clearly and is
clearly and describes clearly but is not
describe the content
creative.
the content well.
creative.
of the project well.
At least seven
Three or four
Fewer than three
Five or six accurate
accurate facts are
accurate facts are
accurate facts are
facts are displayed
displayed on the
displayed on the
displayed on the
on the brochure.
brochure.
brochure.
brochure.
All of the graphics
One or two of the
used on the project
The graphics are
graphics used on the
reflect an
made by the student, No graphics made
brochure reflect
exceptional degree
but are based on the by the student are
student creativity in
of student creativity
designs or ideas of included.
the creation and
in the creation and
others.
display.
display.
The brochure is
The brochure is
The brochure is
The brochure is
exceptionally
distractingly messy
attractive in terms of acceptably attractive
attractive in terms of
or very poorly
design, layout and though it may be a
design, layout and
designed. It is not
neatness.
bit messy.
neatness.
attractive.
There are no
There are two
There are more than
There is one
grammatical
grammatical
two grammatical
grammatical mistake
mistakes on the
mistakes on the
mistakes on the
on the brochure.
brochure.
brochure.
brochure.
Total points out of a possible 20 points: ________________________________
EL8_2016
M-DCPS Department of Science
88
Teacher
WHAT CAUSES THE SEASONS?
(STEM 3.0)
Benchmarks:
SC.8.E.5.9: Explain the impact of objects in space on each other including: 1. The Sun on the Earth
including seasons and gravitational attraction 2. The Moon on the Earth, including phases, tides, and
eclipses, and the relative position of each body. (AA)
SC.7.N.1.4: Identify test variables (independent variables) and outcome variables (dependent variables) in
an experiment. (Assessed as SC.8.N.1.1)
SC.7.N.3.2: Identify the benefits and limitations of the use of scientific models. (Assessed as SC.7.N.1.5
Overview:
Because the axis of the Earth is tilted, the Earth receives different amounts of solar radiation at different
times of the year. The tilt of the axis of the Earth, as well as the revolution around the sun produces the
seasons. In this experiment, a simulated Sun—a light bulb—will shine on a thermometer attached to a
globe. You will study how the tilt of the globe influences warming caused by the lighted bulb.
Objective:
 Compare simulated warming of your city by the Sun in the winter and in the summer.

Explain the causes of the cycle of seasons on Earth.
How does the tilt of Earth affect the temperature on the Northern and Southern hemispheres?
Materials:
 Globe of the Earth
 Tape
 Metric ruler
 Thermometer
 Lamp with 100-watt bulb
 Ring stand and utility clamp
 20-cm Length of string
EL8_2016
M-DCPS Department of Science
89
Teacher
Preparation:
Engage:
Provide students with visuals of extreme climates and ask if anyone has lived in a
climate very different than that of Miami. Discuss possible reasons for the change in
seasons. Accept all possible answers from students and readdress ideas at the end of
the lab.
Before Activity
EL8_2016
Common misconception notes: Students often believe that the seasons are caused due
to the distance of Earth from the Sun and may be aware of the elliptical nature of
Earth’s orbit. You may note at the end of the lab, when addressing this misconception
that the Northern and Southern hemispheres have opposite seasons, which would
disprove the distance from sun hypothesis. Additionally, you may note that Earth is
actually farther from the sun during the summer than in the Northern hemisphere.
M-DCPS Department of Science
90
Teacher
Explore:
Procedure:
During Activity
EL8_2016
1. Prepare the light bulb (simulated Sun).
a. Fasten the lamp to a ring stand as shown in Figure 1.
b. Stand the ring stand and lamp in the center of your work area.
c. Position the globe with the North Pole
tilted away from the lamp as shown in
Figure
d. Position the bulb at the same height as the
Tropic of Capricorn. Note: The Sun is
directly over the Tropic of Capricorn on
December 21, the first day of winter.
2. Attach the thermometer to the globe.
a. Use a location such as Alaska or Australia, Figure 1
which are far from equator.
b. Tape the thermometer to the globe with the tip of the thermometer at your
location. Place the tape about 1 cm from the tip of the thermometer.
c. To keep the tip of the thermometer in
contact with the surface of the globe,
fold a piece of paper and wedge it
under the thermometer as shown in
Figure 2.
3. Position the globe for winter (in the
Figure 2
Northern Hemisphere) data collection.
a. Turn the globe to position the North Pole (still tilting away from the
lamp), your location, and the bulb in a straight line.
b. Cut a piece of string 10-cm long.
c. Use the string to position your location on the globe at 10 cm from the
bulb (you may position farther, up to 20 cm, depending on the intensity of
the lamp that you are using).
d. Do not turn on the lamp until after you have recorded the initial
temperature.
4. Collect winter data.
a. Record the initial temperature.
b. After 5 minutes record the final temperature.
c. Turn off the light.
5. Record the beginning and final temperatures (to the nearest 0.1°C).
6. Position the globe for summer data collection.
a. Move the globe to the opposite side of the lamp.
b. Position the globe with the North Pole tilted toward the lamp. Note: This
represents the position of the Northern Hemisphere on June 21, the first
day of summer.
c. Turn the globe to position the North Pole, your location, and the bulb in a
straight line.
d. Use the string to position your location on the globe 10 cm from the bulb.
e. Do not turn on the lamp until after you have recorded the initial
temperature.
7. Collecting summer data.
M-DCPS Department of Science
91
Teacher
a. Let the globe and thermometer cool to the beginning temperature that you
recorded for the winter setup.
b. When the globe and probe have cooled, begin data collection.
c. Record the final temperature after 5 minutes. Turn the lamp off.
Explain:
Processing Data:
1. In the space provided in the data table, subtract to find the temperature
change for each season.
2. How does the beginning and final temperature change for summer
compare to the temperature change for winter?
3. During which season is the sunlight more direct? Explain.
4. What would happen to the temperature changes if the Earth were tilted
more than 23.5 degrees?
5. As you move the globe from its winter position to its summer position, the
part of the globe closest to the bulb changes. Describe how it changes.
6. What other factors affect the climate in a region?
7. Identify the test variable, outcome variable, and any controlled variables
in the experiment.
8. Why is this model useful for understanding the seasons and how is it
limited?
9. What improvements can be made to this model of the seasons?
Elaboration:
After Activity
Repeat the experiment for locations in the Southern Hemisphere and other
areas (different latitudes) in the Northern Hemisphere to develop an
understanding of climate zones.
Students illustrate the position of the Earth around the sun in an elliptical
shape. Students must include the following vocabulary: tilt, rotation,
revolution, year, winter, spring, summer, fall, equator, northern hemisphere,
southern hemisphere.
Possible diagram:
Evaluate:
Develop a C-E-R
response to the problem
statement:
How does the tilt of Earth
affect the temperature on
the Northern and
Southern hemispheres?
EL8_2016
M-DCPS Department of Science
92
Teacher
SSA Connection:
1. During which season does the Northern Hemisphere of Earth receive the least
amount of energy from the Sun?
A. Spring
B. Summer
C. Fall
D. Winter
2. Which of the following statements correctly explains why we experience
seasons?
A. As the Earth moves away from the Sun, we change from summer to fall to
winter. As the Earth moves closer to the Sun, we change from winter to
spring to summer.
B. As the Earth spins on its axis, we experience seasons. Each 1/4 spin of the
Earth on its axis represents a change in season.
C. Earth's tilt on its axis means one hemisphere leans toward the Sun, causing it
to experience warmer temperatures. As Earth revolves around the Sun, a
different hemisphere leans toward the Sun, causes warmer temperatures in
that hemisphere.
D. The Moon moving in front of the Sun causes temperatures on Earth to drop,
which causes winter. When it moves behind the Sun, a rise in temperature
causes summer.
3. In Alaska, there are few hours of daylight in the winter and few hours of night in
the summer. Which statement best explains why this occurs?
A. The Sun releases more heat in the summer.
B. The Sun moves below the horizon in the summer.
C. The Northern Hemisphere is closer to the Sun in the summer.
D. The Northern Hemisphere is tilted away from the Sun in the winter.
4. The diagram below shows the relative positions of Earth and the Sun at a certain
time of year.
Based on the diagram, which season is occurring in the Southern Hemisphere of
Earth?
A. Winter
B. Spring
C. Summer
D. Fall
Reading Passage Answer Key
1. A 2. C. 3.B 4.A
EL8_2016
M-DCPS Department of Science
93
Teacher
DENSITY OF BLOCKS
(STEM 2.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to
support scientific understanding, plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and organize data, interpret data in
charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)
SC.8.P.8.3 – Explore and describe the densities of various materials through measurement of their masses
and volumes. Assessed as SC.8.P.8.4 – Classify and compare substances on the basis of characteristic
physical properties that can be demonstrated or measured; for example, density, thermal or electrical
conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties
are independent of the amount of the sample.
Background Information for the teacher:
Density is a basic physical property of any sample of matter. It is much more important than other
physical properties such as size or shape, in that the numerical value of density for a pure substance at a
particular temperature and pressure is a constant and never changes! The density may be determined in the
laboratory if the mass and volume of a sample can be determined. Density may be calculated by dividing
the mass by the volume (d = m / V). It also may be thought of as the ratio of the mass to the volume. The
density of water is important to know. It is 1.0 g/mL at 40C.
In this experiment, the student will measure the mass, volume, and the length of several rocks. They will
then use their data to explore the relationship between the mass and volume of the rocks and calculate
their density.
Material
Densities of Common Substances
Source: Teacher Developed – Classroom Tested
Provide students with the following information: You have been given blocks of equal volume. You may
want to provide the Density Block samples or have students make cubes 2.54 cm x 2.54 cm x 2.54 cm
1. Based on the densities of the various substances listed in the data table above, ask students to make
predictions whether the block made of the various materials would sink or float in water.
Block
Prediction (sink or float)
Observation (sink or float)
Acrylic
Aluminum
Brass
EL8_2016
M-DCPS Department of Science
94
Teacher
Copper
Oak
Pine
Polypropylene
PVC
Steel
Acrylic
Evaluate
If two blocks of pine were stacked on top of each other, would they sink or float? Explain.
Extensions:
1. Students will explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15% saltwater
solution. Discover the relationship between density and the solute concentration.
EL8_2016
M-DCPS Department of Science
95
Teacher
Possible Answers
Explain
Analysis Questions:
1. Which variable is considered the test variable (independent) variable in this lab activity? Type of
rock
2. Which variable (s) is considered the outcome variable (dependent) variable in this lab activity?
density
3. If the mass of the rock increases, what could happen to the density of each sample? Increase if
volume stays same
4. If the volume of the rock increases, what would happen to the density of each sample? It would
stay the same because the mass would also increase
5. Analyze your data: What do you observe about the relationship between mass and volume for the
rocks with the larger densities and smaller densities? Give examples from the lab in your
explanation. Larger densities have larger mass compared to the object’s volume; smaller densities
have larger volume compared to the mass. Examples will vary
6. In terms of density, differentiate between an object which floats in water and an object which
sinks in water. An object that floats in water is less dense than the water or less than 1 g/cm3 . An
object that sinks has a greater density than water.
7. Show how one would set up a ratio to determine the mass of a substance with a density of
8.4g/mL and a volume of 2.0 mL. Determine the mass. 8.4g/mL = ?g/2.0 mL mass = 16.8 g
8. Show how one would set up a ratio to determine the volume of a substance with a density of 4.0
g/mL and a mass of 8.0 g. Determine the volume. 4.0 g/mL = 8.0 g/?mL volume = 2 mL
9. Based on the results of this lab, explain how unknown substances can be identified or
distinguished from one another by using their densities. All substances have a specific density. If
the mass and volume can be determined, then the substance can be found by comparing with
substances of known densities.
Bonus question:
10. Density of water is 1 g/ml or 1.0 g/cm3). What is the volume of a sample of water if the mass is
6g? Explain why this is so easy to figure out (think ratio). The density of water is a 1:1 ratio 6 g
would mean 6 mL
Evaluate
If two blocks of pine were stacked on top of each other, would they sink or float? Explain: The
blocks would float. The wood is still less dense than water. For example, if the mass doubles, so
does the volume, keeping the density the same.
Note: Use real examples for students to measure and test.
www.sciencenet.org.uk/.../Chemistry/StructBond/c00195b.html
EL8_2016
M-DCPS Department of Science
96
Teacher
CSI: Following the Hard Evidence Density Lab
Revised by: University of Miami – Science Made Sensible Fellows
Florida Sunshine State Next Generation Standards Benchmark: SC.8.P.8.4 Classify and compare
substances on the basis of characteristic physical properties that can be demonstrated or measured for
example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling
points, and know that these properties are independent of the amount of the sample. (AA)
SC.8.P.8.3 Explore and describe the densities of various materials through measurement of their masses
and volumes.
Background Information for the teacher:
Density is a basic physical property of any sample of matter. It is much more important than other
physical properties such as size or shape, in that the numerical value of density for a pure substance at a
particular temperature and pressure is a constant and never changes! The density may be determined in
the laboratory if the mass and volume of a sample can be determined. Density may be calculated by
dividing the mass by the volume (d = m / V). The density of water is important to know. It is 1.0 g/mL at
4oC.
In this experiment, the student will measure the mass, volume, and the length of several rocks. They will
then use their data to explore the relationship between the mass and volume of the rocks and calculate the
rocks’ density.
Time Frame: 1-1.5 hours
Materials:









Demonstrations
Vegetable oil
Karo syrup
1 can of coke
1 can of diet coke
Aquarium/container to float cokes
Lab Activity
Rocks, four types, including pumice
stone
Plastic baggies or other container for
rocks
triple beam scales
500ml graduated cylinders




Dry ice
Container for dry ice demo
Bubble wand and soap
1 large graduated cylinder (~1000ml)




250ml Flasks
Eye droppers
Paper towels
Food Coloring dye (for demo also)
Pre-lab preparation:
1) Color the water/oil/karo syrup demo with food coloring
2) Select 4 rocks with very different densities as available. One should be pumice stone. Alter the
comic strip and student worksheet (clues) so that the “evidence” rock density matches the density
of one of the types of rock you have available.
3) Gather and prepare demonstration supplies as desired.
EL8_2016
M-DCPS Department of Science
97
Teacher
Engage:
1) Engage the students by discussing the topic of density as a class, explaining how it is a
relationship between mass and volume.
2) Perform one or more of the following demonstrations:
a. Water/Oil/Syrup layering: Discuss with the class what you will be doing, and have them
make predictions of how the three liquids will layer in the 1000ml graduated cylinder. Start
with ~250ml of colored water in the cylinder, then add vegetable oil (~100ml) and finally
add Karo syrup (~100ml). Discuss why the fluids became layered.
b. Coke vs. Diet Coke: Explain what you are going to do, and have your class predict whether
the sodas will sink or float. In a clear container (aquarium) filled with water, place a
regular coke or comparable soda. Discuss why the soda sank. Next, add the diet coke (it
will float). Discuss why a can with the exact same volume will float because it has less
mass and therefore is less dense.
c. Dry ice/bubbles: In a container that is at least 12 inches deep, place the dry ice. Add some
water to speed up the sublimation process and make the gas visible to the students. Then,
blow bubbles gently on top of the CO2 gas. Discuss with your class why the bubbles did
not sink through the CO2, and how density applies to gases. (this is also useful at the end of
the lab as they elaborate on the concept of density)
3) Engage the students further by reading the “CSI: Following the Hard Evidence” comic (source:
http://www.pixton.com/SciMadeSensible).
Explore:
1) Give the student all the supplies and the procedures worksheet. Discuss the concept of volume
displacement for determining the volume of non-geometric items.
2) Have student complete the procedures while you assist and answer questions. You may need to
help them measure the volume of the pumice stone by pushing it completely under the surface of
the water using a pencil.
Explain:
1) Have students complete the analysis questions at the end of the lab.
2) Discuss any questions as a class.
Elaborate/Extension:
1) Students can explore the density of objects with identical masses, but different volumes. Discover
the relationship among mass, volume, and density.
2) Students can explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15% saltwater
solution. Discover the relationship between density and the solute concentration.
This is a good time to do the dry ice demo in order to elaborate that the property density applies to gases
also.
EL8_2016
M-DCPS Department of Science
98
Teacher
EL8_2016
M-DCPS Department of Science
99
Teacher
EL8_2016
M-DCPS Department of Science
100
Teacher
MASS, VOLUME, DENSITY
(Comprehensive Science 3 Advanced)
(STEM 2.0)
Florida Next Generation Sunshine State Standards Benchmark:
SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to
support scientific understanding, plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and organize data, interpret data in
charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)
SC.8.P.8.3 – Explore and describe the densities of various materials through measurement of their masses
and volumes. Assessed as SC.8.P.8.4 – Classify and compare substances on the basis of characteristic
physical properties that can be demonstrated or measured; for example, density, thermal or electrical
conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties
are independent of the amount of the sample. (AA)
Background Information:
Density is a basic physical property of any sample of matter. It is much more important than other
physical properties such as size or shape, in that the numerical value of density for a pure substance at a
particular temperature and pressure is a constant and never changes! The density may be determined in
the laboratory if the mass and volume of a sample can be determined. Density may be calculated by
dividing the mass by the volume (d = m / V). It also may be thought of as the ratio of the mass to the
volume. The density of water is important to know. It is 1.0 g/mL at 4 ºC.
In this experiment, the students will measure the mass and volume of several materials. They will then use
their data to explore the relationship between the mass and volume of the materials and calculate their
density.
Literature Connection: “Archimedes and the King’s Crown”
Time Frame: 1 hour
Materials (per pair of students):
Safety
goggles
50 mL of isopropyl alcohol (colored red)
50 mL of water (colored blue)
50 mL of salt-water (colored green)
Graduated cylinder
Eyedropper
Calculator
Electronic balance or triple-beam balance
Procedure
Part A: Teacher Pre-Lab Preparation and Presentation
1. Color the isopropyl alcohol red by adding a few drops of red food coloring.
2. Color the water blue by adding a few drops of blue food coloring.
3. Prepare a saltwater solution by mixing four parts water to one-part salt by volume. Color the
solution green using a few drops of green food coloring.
4. Show the students the three solutions and ask them to suggest a way to compare the masses of the
three liquids.
5. Guide the discussion towards the realization that in order to compare the masses, equal volumes
would have to be massed. Ask students to predict how the masses of the different liquids would
vary if the volume of each liquid is the same. Based on their predictions, have students formulate a
hypothesis.
6. The topic of density as the relationship between mass and volume can now be introduced.
Part B: Student Procedure
EL8_2016
M-DCPS Department of Science
101
Teacher
1. On the electronic balance, mass the graduated cylinder and press "tare" to subtract the mass. If you
are using a triple beam balance, mass the graduated cylinder and record this mass to the nearest
0.01g. Record the mass of the empty cylinder in the Data Table.
2. Pour 10 mL of the red liquid into the graduated cylinder. Use an eyedropper to get the exact
amount of 10.0 mL.
3. To get a precise measurement, place the cylinder on a flat surface, bring your “eye” down to the
level of the liquid, and read the bottom of the meniscus.
4. Determine the mass of the 10.0 mL by reading the electronic balance directly, or if using a triplebeam balance, record the total mass (cylinder + liquid) in the Data Table. Then subtract the mass
of the empty graduated cylinder from the mass of the cylinder and sample of liquid.
5. Record the mass of the sample of liquid on the Data Table in the appropriate location, e.g. Red
Liquid, volume of 10.0 mL.
6. Calculate the density of the liquid by dividing the mass by the volume (10 mL).
7. Record the density on the Data Table in the appropriate location, i.e. Red Liquid; volume of 10.0
mL.
8. Add another 10.0 mL to the cylinder. You should now have a total of 20.0 mL (10 mL + 10 mL).
9. Determine the mass of the 20.0 mL by reading the electronic balance directly, or if using a triplebeam balance, record the total mass CL (cylinder + liquid) record in the Data Table.
10. Then subtract the mass of the empty graduated cylinder (CE) from the mass of the cylinder and
sample of liquid (CL). Record the mass of the sample of liquid on the Data Table
11. Find the density again by dividing the mass by 20.0 mL and record it on the Data Table.
12. Keep adding 10.0 mL of the red liquid, recording the mass and calculating the density by dividing
the mass by the amount of liquid in the cylinder until a total of 50.0 mL of the red liquid has been
used.
13. Repeat the procedure for each of the other liquids, finding mass and density.
14. Graph mass (y-axis) vs. volume (x-axis) for each liquid on the graph paper provided. Use a
different color for each of the liquid solutions.
15. Draw a line of “best-fit” for the points of each solution.
Data Analysis
Data Table for RED LIQUID
Volume
Mass of Empty
(mL)
Cylinder
CE
(g)
Mass of Cylinder
and Sample of
Liquid
CL
(g)
Mass of
Sample of
Liquid
CL- CE
(g)
Density
(g/mL)
10.0
20.0
30.0
40.0
50.0
EL8_2016
M-DCPS Department of Science
102
Teacher
Data Table for BLUE LIQUID
Volume (mL)
Mass of Empty
Cylinder
CE
(g)
Mass of Cylinder
and Sample of
Liquid
CL
(g)
Mass of
Sample of
Liquid
CL- CE
(g)
Density
(g/mL)
Mass of Cylinder
and Sample of
Liquid
CL
(g)
Mass of
Sample of
Liquid
CL- CE
(g)
Density
(g/mL)
10.0
20.0
30.0
40.0
50.0
Data Table for GREEN LIQUID
Volume (mL)
Mass of Empty
Cylinder
CE
(g)
10.0
20.0
30.0
40.0
50.0
Analysis Questions:
1. Which variable, mass or volume, is considered the test variable (independent variable) in this
experiment?
2. Which variable, mass or volume is considered the outcome variable (dependent variable) in this
experiment?
3. As the volume increases, what happens to the mass of each sample?
4. Compare your density calculations for the red liquid. Should the density be the same in each
instance? Explain your answer. Will this also be true for the blue and green liquids?
5. Analyze your data and determine which liquid is most dense and which one is least dense.
Focusing on the mass and volume of each liquid. Identify what the relationship is between mass
and volume in terms of density.
EL8_2016
M-DCPS Department of Science
103
Teacher
1. Predict what would happen to the liquids, if you carefully poured each liquid into a clear
container. Write an explanation that differentiates the difference between each liquid of how and
why they layered that way including the relationship of density to the location of each liquid.
2. In terms of density, differentiate between an object which floats in water and an object which
sinks in water
3. Density of plain water is 1g/ml. What is the volume of a sample of water if the mass is 6.7g?
Explain why this is so easy to figure out.
4. Show how one would set up a ratio to determine the mass of a substance with a density of
5.6g/mL and a volume of 3.7 mL. Then determine the mass.
5. Show how one would set up a ratio to determine the volume of a substance with a density of 2.6
g/mL and a mass of 5.5 g. Then determine the volume.
6. Based on the results of this lab, design an experiment demonstrating how unknown substances can
be distinguished from one another by using their densities.
Home Learning:
Students will complete the Analysis Questions.
Extensions:
1. Have students explore the density of objects with identical volumes, but different masses (use
density cubes). Discover the relationship among mass, volume, and density.
2. Have students explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15%
saltwater solution. Discover the relationship between density and the solute concentration.
EL8_2016
M-DCPS Department of Science
104
Teacher
Literature Connection:
“Archimedes and the King’s Crown”
An ancient story tells about a Greek king, a gold
crown and an amazing scientist named Archimedes.
The king had ordered a solid golden crown made.
When the court goldsmiths presented it to him, he
asked Archimedes to test it to make sure it was pure
gold. Archimedes knew that pure gold was very soft.
He could bite a piece of it, and his teeth would leave a
dent in it. (But he also knew that the king would be
mad if he returned a dented crown. He couldn't use
THAT test.) Archimedes also knew that if he took
equal volumes of gold and water, the gold would
weigh 23 times more than the water. He COULD use
this test. (The problem was measuring the volume of
the crown, an irregular object.).
One night, while filling his tub, for a bath, Archimedes accidentally filled it to the very top. As he stepped
into it, water spilled out over the top. The idea struck him, that if he collected the water, and measured it,
he would know the volume of his body. HE COULD USE THIS TO MEASURE THE CROWN! In other
words, the amount of displaced water in the bathtub was the same amount as the volume of his body.
Archimedes was so excited that he jumped out of the tub. He ran outside and down the street yelling
"Eureka! Eureka! (One of the few Greek words I know!) I found the answer!"
www.sciencenet.org.uk/.../Chemistry/StructBond/c00195b.html/
All this was fine except in his excitement, Archimedes had forgotten to put on his clothes.
He was running down the street naked! Archimedes was able
to get the volume of the crown and an equal volume of pure
gold obtained, no doubt, from the King’s treasury. When he
placed the two items into separate pans on a two-pan balance,
well, I guess you can figure out the answer if I tell you that
the goldsmith was put into jail!
EL8_2016
M-DCPS Department of Science
105
Teacher
PRECIPITATING BUBBLES
Review of the Scientific Method
(STEM 3.0)
Florida Next Generation Sunshine State Standards Benchmark(s):
SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to
support scientific understanding, plan and carry out scientific investigations of various types, such as
systematic observations or experiments, identify variables, collect and organize data, interpret data in
charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)
SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a
multitude of ways to produce compounds that make up all of the living and nonliving things that we
encounter. (AA) (Also assesses SC.8.P.8.1, SC.8.P.8.6, SC.8.P.8.7, SC.8.P.8.8, and SC.8.P.8.9.)
SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA) (Also assesses SC.8.P.9.1
and SC.8.P.9.3.)
Background Information:
(Reprinted from The Brain in Space: A Teacher’s Guide with Activities for Neuroscience, NASA, URL:
http://science.nasa.gov/headlines/y2002/images/playingcatch/spacebrain.pdf)
Scientists aim to gain knowledge and reach an understanding of the world around them. To achieve this
goal, scientists must be curious, make observations, ask questions, and try to solve problems. Early
scientists tended to draw conclusions from observations that were largely speculative (e.g., that the Earth
was flat or that the Sun circled the Earth). By the mid-sixteenth century, some scientists began to realize
that using a systematic approach to obtaining information and solving problems could obtain far more
knowledge. This resulted in a process which we call the Scientific Method.
Steps of a Scientific Method involving an experimental design
 Identify the problem.
 Collect information about the problem.
 Propose a hypothesis.
 Test the hypothesis by conducting experiments, making comparative observations, and
collecting data.
 Evaluate the data collected through investigation.
 Draw conclusions based on data and determine whether to accept or reject the hypothesis.
 Communicate results and ask new questions.
The problem is a statement of the question to be investigated. Observations and curiosity help to define
exactly what problem should be investigated and what question(s) answered. Once a problem is defined, a
scientist should collect as much information as possible about it by searching journals, books, and
electronic information sources. This information will provide a basis for forming the hypothesis.
A hypothesis is often considered to be an “educated guess.” The word “guess” is inappropriate, however,
because a hypothesis should be based on information gathered. A hypothesis can be defined more
accurately as a “proposed” answer to the problem, based upon background information either gathered
through research or through experience. The hypothesis is then tested through experimentation and
observation. The results of experimentation provide evidence that may or may not support the hypothesis.
To be effective, experiments must be properly planned. The plan is called the procedure, which describes
the things that actually will be done to perform the investigation. This is where decisions are made about
EL8_2016
M-DCPS Department of Science
106
Teacher
which variables will be tested and which will be kept constant, what to use as a control, how many
samples to use, how large the sample sizes should be, safety precautions needed, and how many times to
run the experiment.
Many scientists investigate questions that cannot be answered directly through controlled experiments in
laboratories. For example, scientists studying global warming, the AIDS epidemic, and losses of
biodiversity must use comparative methods to examine differences that occur in the natural world.
When developing the procedure for an experiment, consider the following:
1. Test only one variable at a time.
A scientist wanting to find out “why trees shed their leaves in the fall” would have to consider the factors
that affect trees, such as the type of tree, the amount of water they receive, the temperature, the length of
daylight to which they are exposed, and the type of soil in which they are growing. These are the variables
which can cause changes to occur in an experiment.
To obtain reliable results, only one variable should be tested at a time. All others should be kept constant,
whenever possible. If the scientist’s hypothesis states that shorter daylight hours cause trees to shed their
leaves in the fall, trees of the same age should be tested. They should be placed in the same size pots with
the same type of soil, given the same amount of water, and kept at the same temperature. The only thing
changed should be the number of hours of light to which different groups of trees are exposed. Any
variable that the experimenter chooses to change, such as the hours exposed to light, is referred to as the
test variable (independent variable). The change in the experiment that happens as a result of the test
variable, such as the length of time that it takes for the leaves to fall, is referred to as the outcome
variable (dependent variable).
2. Use controls.
The control is used for comparing the changes that occur when the variables are tested. If a number of
young oak trees are placed in a greenhouse and exposed to 10 hours of light to simulate fall conditions,
how will the scientist know if a loss of leaves is due to the amount of light? It could be due to the
temperature that he/she chose or the amount of carbon dioxide in the air. To avoid such uncertainty, two
identical experiments must be set up: one in which the trees are exposed to 10 hours of light and the other,
the control, in which they are exposed to light for a longer period of time to simulate summer conditions.
All factors for the control are exactly the same as for the test except for the variable being tested—the
amount of light given to each tree.
3. Use several samples.
Using a number of samples prevents errors due to differences among individuals being tested. Some trees
are heartier than others. If only a few trees are tested, some may lose leaves for reasons that are not related
to the amount of light. This will produce misleading results. Larger numbers
of samples will provide more accurate results.
4. Always use appropriate safety measures.
Safety measures to be followed vary according to the type of experiment
being performed. For example, laboratory-based experiments frequently
require that participants wear protective clothing and safety goggles and that
dangerous volatile chemicals be used only under a vented fume hood.
EL8_2016
M-DCPS Department of Science
107
Teacher
5. Repeat the experiment several times.
To make valid conclusions, the scientist must have reproducible results. Ideally, comparable results
should be obtained every time the experiment is run.
After the plan or procedure is complete, the experiment is run. It is essential that careful and accurate
records be kept of all observations during an experiment. The recorded observations and the measurement
comprise the data. It is always useful to present data in the form of charts, tables, or graphs, as these
provide a visual way to analyze and interpret the results. When drawing graphs, the test variable
(independent variable) is conventionally plotted on the horizontal axis, and the outcome variable
(dependent variable) is plotted on the vertical axis. Analysis of data from the experiment allows the
scientist to reach a conclusion. The scientist determines whether or not the data support the hypothesis
and decides whether to accept or reject the hypothesis.
The conclusion should provide an answer to the question asked in the problem. Even if the hypothesis is
rejected, much information has been gained by performing the experiment. This information can be used
to help develop a new hypothesis if the results repeatedly show that the original hypothesis is
inappropriate. After performing many investigations on a particular problem over a period of time, a
scientist may come up with an explanation for the problem, based on all the observations and conclusions
made. This is called a theory.
A Scientific Theory is an explanation, supported by data, of how or why some event took place in nature.
MAJOR CONCEPTS FOR THE TEACHER
 Our exhaled breath contains carbon dioxide gas.
 The carbon dioxide we exhale reacts with calcium hydroxide in solution to form insoluble calcium
carbonate and water. *
 Formation of calcium carbonate precipitate can be used as a test for the presence of carbon
dioxide.
 If carbon dioxide continues to be bubbled into limewater (calcium hydroxide solution) after a
period of time, the white precipitate disappears. The excess carbon dioxide forms carbonic acid in
the water and the calcium carbonate reacts with the carbonic acid to form calcium ions and
bicarbonate ions, which are soluble in water. **
Ca(OH)2
CO2
CaCO3
H2O
H2CO3
Ca++
HCO3+
= calcium hydroxide
= carbon dioxide
= calcium carbonate
= water
= carbonic acid gas
= calcium ion
= bicarbonate ion
Chemical Equations
* Ca(OH)2 + CO2  CaCO3 + H2O
** CO2 + H2O + H2CO3
CaCO3 + H2CO3Ca++ 2HCO3+
This activity demonstrates the presence of carbon dioxide in exhaled air. In Activity 1, the teacher will
blow through a straw into a solution of calcium hydroxide. The carbon dioxide in the exhaled air will
combine with the calcium hydroxide to produce a white precipitate of calcium carbonate. In Part 2,
EL8_2016
M-DCPS Department of Science
108
Teacher
students will attempt to reproduce the experiment. They will not be able to do so because they will only
have water as their unknown liquid. They should conclude that the teacher had a liquid other than plain
water, resulting in a chemical reaction that changed one or more substances in the teacher’s original
solution.
The second part of this activity involves designing an experiment to test the hypotheses determined in the
class discussion. It may be handled in different ways depending on the age of the students.
Time Frame
30-minute teacher preparation
60-minute / student activity
MATERIALS
 5 grams calcium hydroxide powder
 One liter of water
 Filter paper
 Filter funnel
 Flasks or small bottles
 Straws
 25 mL or 50 mL graduated cylinder
 125 mL Erlenmeyer flasks
 Test–tube rack
 Aluminum foil
 Stop watch
 Hot Plate
 Goggles
Procedure:
Part 1: Lab Prep
The preparation of one liter of limewater
(Should be prepared a day ahead of time): Teacher preparation
1. Add 10 grams calcium hydroxide Ca(OH)2 powder to 500 mL of water.
2. Cover and shake well. Calcium hydroxide is only slightly soluble in water and 5 grams will
provide more solid than will dissolve.
3. Allow the suspension formed to settle for a few minutes.
4. To separate the limewater from the suspension, use the filter paper and filter–funnel apparatus to
filter the suspension.
5. If the limewater filtrate is still slightly cloudy, filter for a second time, using a new filter paper.
6. Keep the limewater tightly closed when not in use, as it will react with carbon dioxide from the air
and become cloudy.
7. The calcium hydroxide and water suspension can be stored in a large bottle, and the limewater
filtered off when needed.
8. The filtered limewater can be stored in smaller bottles or flasks, 250 mL in volume, for use in
class.
Engage
Part 1:
1. Read the following background information
EL8_2016
M-DCPS Department of Science
109
Teacher
BACKGROUND
Carbon dioxide comprises only 0.033 percent of Earth’s atmosphere, yet it is the principle
inorganic source of carbon for living organisms. Carbon dioxide and water are the raw materials
required by plants for the synthesis of sugars through photosynthesis. Organisms release carbon
dioxide back into the atmosphere as a waste product of respiration and other cellular processes.
2. Say to students: It is important for scientists to make careful observations, and you will practice
doing the same in this activity. Keep a record of all of your observations.
3. Everyone must wear safety goggles.
4. Fill a 125 mL Erlenmeyer flask with 15 mL of teacher liquid (filtered limewater solution).
5. Students record observations in notebook.
6. Teacher will use a straw to bubble his/her breath into the liquid slowly for no more than 2
minutes. DO NOT blow vigorously as you do not want to spill the liquid! Be very careful not to
allow any liquid to enter the mouth or eyes. Goggles are a must!
7. Organize students into cooperative lab groups of 3 – 4 members. Assign each member a role (see
Group Roles in the front of the packet).
Data Analysis: Teacher Directed Part 1
1. Have group members discuss the following questions and place their answers on sticky notes.
2. Have one member of the group place their answers on the poster paper (one question/poster paper)
provided by the teacher. Have another member read the group answers when called upon.
3. Questions for groups to answer:
a. What gases are present in exhaled air? Carbon dioxide gas (nitrogen, water vapor, and small
amounts of oxygen are also present.)
b. What is the clear liquid? Limewater (calcium hydroxide)
c. Why did a precipitate form? Why did the solution turn cloudy? There must have been a
chemical reaction
d. If a chemical reaction took place, what two ingredients do you think reacted? The limewater
and the carbon dioxide
e. How can we test for the presence of carbon dioxide? Bubble the gas into the clear limewater.
f. What is a positive test for carbon dioxide? Limewater is a solution of calcium hydroxide. It
chemically reacts with carbon dioxide to form solid calcium carbonate (chalk).
4. The responses from all groups will be discussed in class to ensure that all students understand the
experiment.
Data Analysis: Teacher Directed Part 2
1. Students will repeat the procedures demonstrated by the teacher.
2. Each student group is to measure 15 mL of student liquid (water) into a 125 mL Erlenmeyer flask,
and record their observations in lab notebooks.
3. Using a straw, the assigned member of each group will bubble his/her breath into the liquid
slowly for no more than 2 minutes. DO NOT blow vigorously to avoid spilling the liquid!
4. Observe the contents after blowing through the straws for approximately 1 – 2 minutes.
5. Record observations in lab notebook. These observations will be
recorded as data.
6. When the teacher is convinced that class knows exactly what
happened, he/she will say to the class, “Your teacher did the exact
same experiment but got very different results!” His/her test tube
has white precipitate.
EL8_2016
M-DCPS Department of Science
110
Teacher
7. The class now has a problem to solve: How can there be no white precipitate when the teacher
performed the same experiment?
8. Groups will discuss what factors might affect the production of the precipitate (cloudy solution
which will settle into a white solid and clear liquid in time).
9. Have groups propose a factor that might have affected the results.
Possible answers might be:
 Time—how long exhaled air was bubbled into the solution.
 Adults vs. teenagers
 Rate of bubbling
 Light vs. dark
 Temperature of the liquideither hotter or colder
 Different substance
The factors identified are known as variables.
10. Each group will be assigned at least one of the variables to test.
11. Use the following questions to guide the groups in the development of their group hypotheses and
experimental design:
• Does the hypothesis offer an answer to the problem?
Yes, it does. The problem was, “Why was there a white precipitate when the teacher performed
the experiment?” The hypothesis states that the teacher may have (choose a variable).
• Does the experiment have a control?
Yes. The control is the average length of time that the students exhaled into the liquid (possibly
about one minute).
• Which materials are needed? Are the materials readily available?
• What conditions are being kept constant?
The conditions kept constant are the temperature of the liquid, the size of the straws, the rate of
bubbling into the liquid and the amount of liquid used for each test (there may be human error
here – may not blow at same rate consistently).
• What is the test variable (independent variable) being tested? This is the variable that the
experimenter chooses to change.
• What is the outcome variable (dependent variable) being measured? The outcome variable
(dependent variable) is the presence or absence of precipitate present after exhaling into the
container.
• How will each group present its data? Presentation format will vary
12. Each group must submit to the teacher prior to any experimentation
 a proposed hypothesis; a draft procedure (which may be modified as students work through the
experiment); a draft data table
Procedure: Part 3
1. Groups will be provided with the needed materials to perform their experiments, collect data, and
draw conclusions.
2. Each group must turn in a completed Laboratory Report.
3. A post-experiment class discussion may be conducted to review the conclusions made by each
group.
4. Compare the experiments performed by each group of students. For each experiment designed,
discuss the variable tested, the control, the factors kept constant (controlled variables), and the
results obtained. Note that the amount of limewater used and the size of the straws and flasks
should be the same for each experiment. A chart, such as the one below, can be developed on an
overhead projector.
EL8_2016
M-DCPS Department of Science
111
Teacher
5. Add any other variables tested to the chart as necessary.
6. From the class observations, it can be concluded that only the length of time affects the amount of
precipitate formed. However, results have also varied based upon how vigorous the blowing was,
i.e. amount of carbon dioxide introduced.
7. At this point, explain that excess carbon dioxide bubbled into limewater forms carbonic acid,
which dissolves the precipitate of calcium carbonate. Place balanced chemical equation on the
board.
8. The use of a Scientific Method, specifically an experimental design to systematically test different
hypotheses will enable the students to determine which hypothesis is correct in answering a
problem.
Evaluation:
1. You will be evaluated according to the amount of effort expanded, your specific job performance,
your participation within the team, and on the final product—the laboratory write-up.
2. Your group’s experiment should be evaluated based on the appropriateness of the design you
initiated to test the group’s hypothesis (not whether the group actually found the “correct” solution.
3. Students will be asked to test the hypothesis that “the length of time that air was blown into the
solution” caused the teacher’s results to be different. Each student in a group of four will use the
same size tube and the same amount of lime water, run the experiment at the same temperature,
use the same size straws, and attempt to bubble at the same rate. Students should estimate how
long they exhaled into their liquid the first day. This could be the control time. One student in each
group will blow into his/her tube for the control time. Each of the remaining students in the group
should increase the control time by two to four minutes.
4. Explain why there was no change in the student liquid when carbon dioxide was exhaled into the
liquid.
Home Learning:
1. Work on designing and writing-up an experimental design for completion of Part 2.
2. Work on the completion of the laboratory write-up, which may include data analysis, graphing,
and drawing conclusions after completion of Part 3.
3. Discussion and provide examples of chemical changes
where new substances are formed as a result of atoms
combining – some students may discuss that this is a
result of electron bonds forming.
Extensions:
1. Have each group perform four more different
experiments, to test several variables.
2. Do not share the final chemical equation with students.
Additionally, challenge them to find the correct reaction
mechanism.
EL8_2016
M-DCPS Department of Science
112
Teacher
GREENHOUSE GASES IN A BOTTLE
(STEM 2.0)
Next Generation Sunshine State Standard Benchmark:
SC.8.L.18.3 Construct a scientific model of the carbon cycle to show how matter and energy are continuously
transferred within and between organisms and their physical environment.
SC.8.L.18.4 Cite evidence that living systems follow the Laws of Conservation of Mass and Energy. (AA)
Background Information for the teacher:
Particles suspended in our atmosphere (aerosols) can absorb more sunlight or they can reflect the Sun's
energy back into space. The Earth's temperature would be much colder without the CO2 in our
atmosphere we have naturally. When we add more, the Earth warms up. The effects of atmospheric CO2
and aerosols on our planet's temperature are measurable with simple tools anyone can use. Greenhouse
gases are carbon dioxide, methane, nitrous oxide, ozone (in the lower atmosphere), water vapor and
CFCs. One greenhouse gas that has been increasing in the past 50 years is carbon dioxide. Loss of
rainforests that take in carbon dioxide and the burning of fossil fuels by cars, factories and plants that
releases carbon dioxide is part of the causes.
CLAIM-EVIDENCE-REASONING-A persistent question with regard to the greenhouse effect is,
"Why does the light energy from the Sun pass through the greenhouse gases in the layers of the
atmosphere but are trapped once the infrared light returns to space after reflected off Earth?”
Materials:








Funnel
Filter paper for measuring baking soda
Graduated Cylinder
Timer/Stopwatch
Four: 500 mL clear water bottles with the
label removed
Identical thermometers for each soda
bottle
Duct tape
Source of carbon dioxide (CO2)-vinegar
and baking soda







Modeling clay
Measuring spoons
Balloons
125 mL Erlenmeyer
500 mL of room
temperature water
Optional Heat Lamps
Triple-Beam Balance
Flask
Engage:
Read or write on the board "Why does the light energy from the Sun pass through the greenhouse gases
unhindered and the infrared energy radiated from the Earth is absorbed?"
Explain how a greenhouse is able to maintain a temperature at which plants are able to grow even though
the temperature outside the greenhouse sometimes will not support plant life. Relate a greenhouse to how
the Earth’s atmosphere traps heat. Identify the gases in the atmosphere that “act” like the glass in a
greenhouse.
Optional: Studyjams-Carbon Cycle, BBC-Carbon Cycle
Explore:
Teacher Preparation:
1. Drill the caps of the bottles to the same diameter as your thermometer. Place the thermometers
through the holes in the caps several inches. Use the modeling clay to hold the thermometers in place
and seal the hole.
EL8_2016
M-DCPS Department of Science
113
Teacher
2. Number bottles #1, #2, #3, and #4.
Procedure:
For your source of carbon dioxide, use the following methods quickly to ensure CO2 is captured:
 Bottles #1 and #2 - Carefully mix 10 grams of baking soda and 50 mL vinegar in a flask. Cover
with balloon to capture the CO2. Add 50 mL water to bottle #1. Release the CO2 into bottle #1
and cover with cap quickly. Repeat the procedure for the bottle #2.
 Bottles #3 and #4 – Pour10 grams of baking soda into each bottle. Now add 50 mL of water to
each bottle.
3. Place the caps with thermometers onto the tops of the bottles.
4. Place bottles in sunlight. Make sure they receive the same amount of sun. NOTE: a heat lamp may
be substituted for the sun, but you must be very careful to place the bottles exactly the same
distance from the lamp.
5. Shade the thermometers by putting a strip of opaque tape on the outside of the bottles. The tape
must be the same length on all bottles.
6. Measure the temperature of the bottles over time. Record the temperature of each bottle every five
minutes for a half hour
Data Table
Dry
Elapsed Time in
minutes
Initial
Bottle 1
Wet
Bottle 2
Bottle 3
Bottle 4
5
10
15
20
25
30
Explain:
Conclusion
1. Interpret the graph and identify a trend for the change in temperature for each container during the
experiment? Did both jars show the same change in temperature? Calculate the change in temperature
for each jar.
2. Did your results support your hypothesis?
3. Explain why the temperature of the covered jar showed an increase in temperature. What part of this
setup contributed to the increase in temperature?
4. Explain how the covered jar setup represents an experimental model of the influences of the greenhouse
effect on the temperature of the Earth’s atmosphere. Identify what the light bulb and plastic wrap
represent in this experimental model.
5. Identify the tested (independent), outcome (dependent) and controlled (constant) variables in this
experiment.
6. In this experiment we only tested each setup one time (20 minute interval); explain why this will affect
the validity of the data. How can we change this experiment so the data will be more valid?
EL8_2016
M-DCPS Department of Science
114
Teacher
7. Based on what you learned in this activity, can you connect this knowledge to the environmental issue
of the dangers of the greenhouse effect? Explain
8. Think about what humans do that increases the amount of greenhouse gases released into the
atmosphere and develop a list of ways that we can reduce the level of these gases.
EL8_2016
M-DCPS Department of Science
115
Teacher
IMAGINARY ALIEN LIFE FORMS
Adapted from Mars Critters http://ares.jsc.nasa.gov/ares/education/program/Data/marsCritters.pdf
and
Solar System Activities: Search for a Habitable Planet
http://solarsystem.nasa.gov/educ/docs/modelingsolarsystem.pdf
Next Generation Sunshine State Standards Benchmark: SC.8.E.5.7 Compare and contrast the
properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as
gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions.
(AA) (Also assesses SC.8.E.5.4 and SC.8.E.5.8.);
SC.7.L.15.2 Explore the scientific theory of evolution by recognizing and explaining ways in which
genetic variation and environmental factors contribute to evolution by natural selection and diversity of
organisms. (AA) (Also assesses SC.7.L.15.1 and SC.7.L.15.3.)
SC.7.L.16.2 Determine the probabilities for genotype and phenotype combinations using Punnett Squares
and pedigrees.
About This Activity
In groups or as individuals, students will use their knowledge of Mars and living organisms to construct a
model of a plant or animal that has the critical features for survival on Mars. This is a “what if” type of
activity that encourages the students to apply knowledge. They will attempt to answer the question: What
would an organism need to be like in order to live in the harsh Mars environment?
Objectives
Students will:
• draw logical conclusions about conditions on Mars.
• predict the type of organism that might survive on Mars.
• use a Punnett Square to predict offspring genotype and phenotype
• construct a model of a possible Martian life form.
• write a description of the life form and its living conditions focusing on necessary structural adaptations
for survival.
Background
To construct a critter model, students must know about the environment
with extremes in temperature. The atmosphere is much thinner than the
Earth’s; therefore, special adaptations would be necessary to handle the
constant radiation on the surface of Mars. Also the dominant gas in the
Mars atmosphere is carbon dioxide with very little oxygen. The
gravitational pull is just over 1/3rd (0.38) of Earth’s. In addition, Mars
has very strong winds causing tremendous dust storms. Another
requirement for life is food—there are no plants or animals on the surface
of Mars to serve as food!
Scientists are finding organisms on Earth that live in extreme conditions
previously thought not able to support life. Some of these extreme
environments include: the harsh, dry, cold valleys of Antarctica, the
ocean depths with high pressures and no Sunlight, and deep rock
formations where organisms have no contact with organic material or Sunlight from the surface.
EL8_2016
M-DCPS Department of Science
116
Teacher
Vocabulary
Ecology, adaptations, gravity, geology, atmosphere, radiation exposure, weather, environment, genotype,
phenotype
Part 1
Materials
 paper (construction, tag board, bulletin board, etc.)
 colored pencils
 glue
 items to decorate critter (rice, macaroni, glitter, cereal, candy, yarn, string, beads, etc.)
 pictures of living organisms from Earth
 Student Sheet, Mars Critters
 Student Sheet - Activity 1, If You Went to Mars
 Mars Fact Sheet (pg. 56)
Procedure
Advanced Preparation
 Gather materials.
 Set up various art supplies at each table for either individual work or small group work. This
activity may be used as a homework project.
 Review the “If You Went to Mars” sheet, Mars Fact Sheet, and the background provided above
along with the research conducted in the Martian Sun-Times activity or other desired research.
Classroom Procedure
1. Ask students to work in groups to construct a model of an animal or plant that has features that
might allow it to live on or near the surface of Mars.
2. Have them consider all the special adaptations they see in animals and plants here on Earth.
3. They must use their knowledge of conditions on Mars, consulting the Mars Fact Sheet, If You
Went to Mars, and other resources such as web pages if necessary. Some key words for a web
search might be “life in space” or “extremophile” (organisms living in extreme environments).
4. They must identify a specific set of conditions under which this organism might live.
Encourage the students to use creativity and imagination in their descriptions and models.
5. If this is assigned as homework, provide each student with a set of rules and a grading sheet,
or read the rules and grading criteria aloud and post a copy.
6. Review the information already learned about Mars in previous lessons.
7. Remind the students that there are no wrong critters as long as the grading criteria are
followed.
8. Include a scale with each living organism.
9. Students select two different organisms that will mate.
10. Revisit/Introduce Genetics:: Select one trait, the height of the “Mars Critter,” and generate a
Punnett Square to predict the genotype (genetic make-up) and phenotype (physical
characteristics) of the offspring that the two organisms would produce, if mated. Students will
learn more about this in upcoming topics. For simplicity – tell students that the height trait
will have a paired allele, each parent giving one possible allele to the offspring and tall is
dominant and expressed in the offspring when present. Complete a sample Punnett Square, as
a reminder. Advanced students may explore incomplete dominance.
EL8_2016
M-DCPS Department of Science
117
Teacher
As an extension, mate offspring and/or generate Punnett Squares for other characteristics.
Genotype
TT
(dominant tall)
tt
(recessive short)
Tt (mixed hybrid)
Phenotype
Tall
Short
Tall
Teacher Guide
Source: www.exploringnature.org/db/detail.php?dbID=22&detID=2290
EL8_2016
M-DCPS Department of Science
118
Teacher
Description and Questions
Use another page if more space is needed.
1. The critter’s name:
2. Describe the habitat and climate in which your critter lives.
3. How does it move? Include both the form and method of locomotion. (For example: The miniature
Mars Gopher leaps on powerful hind legs.)
4. What does it eat or use as nutrients? Is it herbivorous, carnivorous, omnivorous, other? What is its
main food and how does it acquire this food?
5. What other creatures does it prey on, if any: How does it defend itself against predators?
6. How does your creature cope with Mars’ extreme cold, unfiltered solar radiation, and other
environmental factors?
7. Suppose two Mar’s critters mated. One was Tall and the other was short. Using a Punnett Square,
predict the offspring’s possible heredity of the tall gene. Each parent has two alleles for the height gene.
Dad is homozygous tall (TT) and mom is short (tt). Predict the genotype (genetic make-up) and
phenotype (physical characteristics) for the offspring
Dad
Genotype: _____% TT ____% tt ____% Tt
Phenotype: ______% Tall ______% short
Genotype
TT (homozygous tall)
tt (homozygous short)
Tt (heterozygous)
EL8_2016
Phenotype
Tall
Short
Tall
Offspring
Mom
M-DCPS Department of Science
119
Teacher
Student
MARS FACT SHEET
If You Went to Mars
From: “Guide to the Solar System.”
By the University of Texas, McDonald Observatory
Mars is more like Earth than any other planet in our solar system but is still very different. You would
have to wear a space suit to provide air and to protect you from the Sun’s rays because the planet’s thin
atmosphere does not block harmful solar radiation. Your space suit would also protect you from the bitter
cold, temperatures on Mars rarely climb above freezing, and they can plummet to -129oC (200 degrees
below zero Fahrenheit). You would need to bring water with you, although if you brought the proper
equipment, you could probably get some Martian water from the air or the ground.
The Martian surface is dusty and red, and huge duststorms occasionally sweep over the plains, darkening
the entire planet for days. Instead of a blue sky, a dusty pink sky would hang over you.
West Rim of Endeavour Crater on Mars
Image Credit: NASA/JPL-Caltech/Cornell/ASU
http://www.nasa.gov/mission_pages/mer/multimedia/gallery/pia11507.html
EL8_2016
M-DCPS Department of Science
120
Teacher
Fourth planet from the Sun
Distance from the Sun:
Minimum: 206,000,000 kilometers
Average: 228,000,000 kilometers
(1.52 times as far as Earth)
Maximum: 249,000,000 kilometers
Eccentricity of Orbit:
0.093 vs. 0.017 for Earth (0.00 is a perfectly circular orbit)
Distance from Earth:
Minimum: 56,000.000 kilometers
Maximum: 399,000,000 kilometers
Year:
1.88 Earth years - 669.3 Mars days (sols) – 686.7 Earth days
Day:
24.6 Earth hours
Tilt of Rotation Axis:
Size:
25.2o vs. 23.5o for Earth
Diameter: 6794 kilometers vs 12,76 kilometers for Earth
Surface Gravity: 0.38 9 or ~ 1/3) Earth’s gravity
Mass: 6.4 x 1026 grams vs. 59.8 x 1026 grams for Earth
Density: 3.9 grams/mL vs. 5.5 grams/mL for Earth
Surface Temperature:
Cold
Global extremes: -125oC (-190oF) to 25oC (75oF)
Average at Viking 1 site high 010oC (15oF); low -90oC (-135oF)
Atmosphere: Thin, un-breathable
Surface pressure: ~6 millibars, or about 1/200th of Earth’s -Contains 95% carbon dioxide,
3% nitrogen, 1.5%argon, ~0.03% water (varies with season), no oxygen. (Earth has 78%
nitrogen, 21% oxygen, 1% argon, 0.03% carbon dioxide.)
Dusty, which makes the sky pinkish. Planet-wide dust storms black out the sky.
Surface:
Color: Rust red
Ancient landscapes dominated by impact craters
Largest volcano in the solar system (Olympus Mons)
Largest canyon in the solar system (Valles Marineris)
Ancient river channels
Some rocks are basalt (dark lava rocks), most others unknown
Dust is reddish, rusty, like soil formed from volcanic rock
Moons
Phobos (“Fear”), 21 kilometers diameter
Deimos (“Panic”), 12 kilometers diameter
EL8_2016
M-DCPS Department of Science
121
Teacher
Part 2: Search for a Habitable Planet
Next Generation Sunshine State Standards:
SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies
relative to solar system, galaxy, and universe, including distance, size, and composition. (AA)(Also
assesses SC.8.E.5.1 and SC.8.E.5.2.)
SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets,
and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement,
temperature, and atmospheric conditions. (AA)(Also assesses SC.8.E.5.4 and SC.8.E.5.8.)
Objective:
This lesson focuses on characteristics of planets that make them habitable. Living creatures need food to
eat, gas to breathe, and a surface that provides a comfortable temperature, gravity, and place to move
around. These requirements are related to what the planet’s surface and atmosphere are made of, and how
large (gravity) and close to the Sun (temperature) the planet is located. The inner planets are small (low
gravity), relatively warm, and made of solid rock. Some of them have atmospheres. The outer planets are
large (high gravity), cold, and made of gaseous and liquid hydrogen and helium. A creature that might be
comfortable on a gas giant would not be comfortable on a small rocky planet and vise versa.
Vocabulary: habitable, life requirements, planet characteristics, surface and atmospheric composition
(chemical examples)
Time Required: One to two 45 minute class periods
Materials: Creature Cards Solar System Images and Script Planet Characteristics Table
Students will define the life requirements of a variety of creatures and learn that these relate to measurable
characteristics of planets the creatures might inhabit. By evaluating these characteristics, students
discover that Earth is the only natural home for us in our solar system and that Mars is the next most
likely home for life as we know it.
EL8_2016
M-DCPS Department of Science
122
Teacher
Procedures
Activity 1. Define Habitability and Design Creatures
This lesson has students take the places of extraterrestrial creatures exploring our solar system in search of
new homes. They define creature life requirements and relate them to planet characteristics in order to
choose homes. Several of these creatures have life requirements quite unlike life as we know it, where
water and carbon are essential, and some are downright impossible. The goals here are not to study
biochemistry, but habitability of planets. Bizarre creatures had to be invented for them to find homes on
some of the planets in our solar system. Another goal is to encourage creativity and teamwork in
designing creatures and selecting planets. This activity is one that is outside of the box.
ENGAGE
1. Set the stage by reading introduction:
We are space travelers from a distant star system. The crew of our spaceship includes six different
types of creatures who live on different planets in that star system. Our star is expanding and getting
very hot. Our home planets are heating up and soon we will need new places to live. It is our mission
to find habitable planets for our six different types of creatures with different life requirements. In all
we need to find new homes for five billion inhabitants.
First we need to know what makes a planet habitable so we can set up probes to measure the
characteristics of various planets. The different requirements for life can be related to measurable
planetary characteristics. What do creatures require to live?
EXPLORE
2. Brainstorm on requirements and characteristics. Lead the students in producing a table similar to the
one below. Encourage free-thinking, there aren't specific right answers, but lead students to the
following topics, among others.
Life requirements
food to eat
gas to breathe
comfortable temperature
ability to move
Planet characteristics
surface & atmosphere composition
atmosphere composition
temperature range
surface type (solid, liquid, gas) gravity size
3. Ask students what kinds of probes might be used to measure these characteristics. Answers may
range from general to specific and may be based on science fiction. Examples may include cameras,
radar, thermometers, and devises to measure magnetics, altitude, and light in all wavelengths from
radio waves, through infrared, ultraviolet, and X-ray to gamma-ray. [Secondary school classes might
do one of the excellent activities on the electromagnetic spectrum or activities related to solar system
missions.]
4. Divide students into six or more teams (more than one group can design the same creature). Explain
that each team represents one of the six different types of creatures on our mission. Today we will
make models of creatures having specific life requirements. Later we will collect data on a new
planetary system in order to search for new homes.
5. Distribute one creature card to each team. Each card contains the information on a single line A-F
below. Tell students that each team is supposed to create a creature that fits the characteristics on
their creature card. Students may select art supplies (or drawing supplies) and should be able to
complete their creatures in approximately 15-20 minutes. Students will name their creature
ambassador and be ready to introduce it to the class. Encourage teamwork and creativity.
EL8_2016
M-DCPS Department of Science
123
Teacher
[Teacher, you may get questions on some of the food or gases. Handle these as they come, but do not
provide this vocabulary ahead of time unless it comes up during brainstorming. Simply explain that they
are various chemical elements or compounds. They are needed only for matching with planetary
characteristics and should not be tested vocabulary.]
6. Ask each team to introduce their creature ambassador and to explain their creature's needs and any
specific features of the model. This will take longer than you expect because students really get
involved with their creatures.
Creature
A
B
C
D
E
F
Food
helium
rock
carbon
methane
water
carbon
Breathes
hydrogen
carbon dioxide
oxygen
hydrogen
carbon dioxide
oxygen
Motion
flies
flies
walks
swims
walks
swims
Temperature
cold
hot
moderate
cold
moderate
moderate
Assessment: Evaluate team presentations and collect descriptions of how their creature meets its life
requirements.
EXPLAIN
Activity 2. Tour solar system and evaluate for habitability
1. Prepare students for solar system tour. Tell students that they will have to take notes on the planets to
report back later. Students will work in the same teams as when they made creatures. The grade
level/ability will determine how the teacher structures the information gathering. Each team may
record the information on all planets or on just one or two planets. Young students may simply
compare planet characteristics to those on their creature cards and check off boxes of matching
characteristics on the planet chart.
2. Distribute copies of the blank planet characteristics chart or put it on the blackboard/overhead. Show
slides/photos of the planets and read the text provided below. For elementary students, exclude the
data in parentheses. For secondary students, include the data. As you tour the planets, it may be
necessary to repeat each section twice for younger students to get enough information to report.
3. Compile information on overhead or blackboard planet characteristics chart as teams report data they
recorded on planet (size, surface type, composition, atmosphere and temperature). Attached table
gives suggested answers. Students will probably be able to name the planets, but this is not a test.
Alternatively, each student could fill in a chart to allow evaluation of listening skills. Also, students
could work cooperatively to complete one chart per team.
4. Have teams compare the characteristics chart on the planets with the creature requirements on their
creature card. Decide which planets (if any) would be suitable homes for their creature. Report their
choices orally and explain, if necessary. Tabulate on the blackboard.
Creature Planet(s)
A
4, 5 (Saturn and Jupiter), but also 2,3 (Neptune and Uranus)
B
8 (Venus)
C, F
7 (Earth)
D
2,3 (Neptune and Uranus)
E
6 (Mars)
No creatures can live on planets 1 or 9 (Mercury or Pluto)
EL8_2016
M-DCPS Department of Science
124
Teacher
5.
Ask students to create a finale or read the finale below.
Now that the creatures have evaluated habitable planets we will send down spaceships to check
out the surfaces in detail. Creatures A, B, D and E find uninhabited planets that are just suited to
their needs. They decide to settle on their chosen planets. Creatures C and F are both interested in
the same planet. Creature F finds the salt water to be a perfect home for it, while creature C finds
the land to be overpopulated and polluted. They decide that there isn't room for one billion more
inhabitants and decide to look for a habitable planet in another solar system.
Assessment: Collect Planet Characteristics tables and compare with the suggested answers above. Do not
require a perfect match, but allow students to think critically and creatively. Allow adaptations of the
environment (such as turning water into hydrogen and oxygen) and other reasonable modifications.
EVALUATE
Writing assignment: Ask students to write a paragraph explaining why the planet they found will or will
not be suitable for their creature. The paragraph could be in the form of a news report to be sent back to
their dying solar system.
EL8_2016
M-DCPS Department of Science
125
Teacher
CREATURE CARDS
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature A
Food
Helium
Breathes
Motion
Hydrogen
Flies
Temperature
Cold
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature B
Food
Breathes
Motion
Temperature
EL8_2016
Rock
Carbon dioxide
Flies
Hot
M-DCPS Department of Science
126
Teacher
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature C
Food
Breathes
Motion
Temperature
Carbon
Oxygen
Walks
Moderate
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature D
Food
Breathes
Motion
Temperature
EL8_2016
Methane
Hydrogen
Swims
Cold
M-DCPS Department of Science
127
Teacher
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature E
Food
Breathes
Motion
Temperature
Water
Carbon Dioxide
Walks
Moderate
We are space travelers from a distant star system. The crew of our spaceship includes six different types
of creatures who live on different planets in that star system. Our star is expanding and getting very hot.
Our home planets are heating up and soon we will need new places to live. It is our mission to find
habitable planets for our six different types of creatures with different life requirements. In all we need to
find new homes for five billion inhabitants.
Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it
to the class and explain how it meets its needs for life.
Creature F
Food
Breathes
Motion
Temperature
EL8_2016
Carbon
Oxygen
Swims
Cold
M-DCPS Department of Science
128
Teacher
Search for a Habitable Planet
Solar System Images and Script
Today we are traveling through an outer section of the Milky Way galaxy.
There are many, many stars. We are approaching a medium-sized star, the
type that often has habitable planets. As we draw closer we see that there
are nine planets orbiting this star.
We will tour this planetary system and use our probes to measure planet
characteristics in our search for a habitable planet. Record this information
about your planet then when we have completed our tour we will collect all
our results. We will evaluate our results to look for a new place to live.
We will now tour this new planetary system, starting from the outside and
going toward the star: We are approaching the first planet.
The first “planet” is tiny (2350km). In fact, it was downgraded from a
planet to a dwarf planet in 2006 mainly because it orbits around the Sun in
“zones of similar objects that can cross its path.” It is made of rock and
methane ice. It has almost no atmosphere (just a trace of methane) and is
very cold (-230oC).
The second planet is a medium large (49,500km) and made of liquid
hydrogen and helium. It has a thick atmosphere of hydrogen, helium and
methane. It is very cold (-220 oC).
The third planet is very similar to the 2nd except that it has a small ring
system. It is medium large (51,000 km) and made of liquid hydrogen and
helium. It also has a thick atmosphere of hydrogen, helium and methane
and is very cold (-210 oC).
The fourth planet is large (120,500 km) and has an extraordinary ring
system. It has no solid surface, but is a giant mass of hydrogen and helium
gas outside and liquid hydrogen inside. It is cold (-180 oC).
EL8_2016
M-DCPS Department of Science
129
Teacher
Search for a Habitable Planet
Solar System Images and Script
The fifth planet is the largest (143,000 km) in this planetary system. Like
the fourth, it is a gas giant made of hydrogen and helium with no solid
surface. It is also cold (-150oC) in the upper atmosphere, but increases in
temperature and pressure and becomes liquid in the interior.
The sixth planet is small (6786 km) and rock. There is some water ice in
polar regions and a thin atmosphere of carbon dioxide. The temperature is
moderate (-23oC).
The seventh planet is medium small (12, 750 km). The surface is made of
liquid water and rock with some carbon compounds. The atmosphere is
mostly nitrogen and oxygen with some carbon dioxide and water vapor.
The temperature is moderate (21oC).
The eighth planet is also medium small (12,100 km). The atmosphere of
carbon dioxide is so thick that we can’t see the rocky surface beneath it,
but need our radar probes. The temperature is very hot (480oC).
The ninth planet is tiny (4880 km) and rocky. It has almost no atmosphere
(just a hint of helium). Temperatures are generally hot, but extreme
variable, ranging from -180oC on the space-facing side to 400oC on the
star-facing side.
We have now finished our tour and it’s time to compile all of
our data. Each team will report its results and we will make
a comparison chart.
EL8_2016
M-DCPS Department of Science
130
Teacher
PLANET CHARACTERISTICS
(Teacher Key)
Size
Surface Type
and
Composition
Atmosphere
Temperature
Name
Pluto
1
tiny 2350 km
solid rock,
methane ice
none (methane)
very cold -230 C
2
medium large
49,500 km
liquid hydrogen,
helium
thick hydrogen,
helium, methane
very cold
C
-220
Neptune
3
medium large
51,100 km
liquid hydrogen,
helium
thick hydrogen,
helium, methane
very cold
C
-210
Uranus
4
large 120,500 km
liquid hydrogen
cold -180 C
Saturn
5
very large
143,000 km
liquid hydrogen
thick hydrogen,
helium
thick hydrogen,
helium
cold -150 C
Jupiter
6
small
km
solid rock, water
ice
thin carbon
dioxide
moderate -23 C
Mars
7
medium small
12,756 km
solid rock, liquid
water, carbon
compounds
medium nitrogen,
oxygen
moderate 21 C
Earth
8
medium small
12,100 km
solid rock
thick carbon
dioxide
very hot 480 C
Venus
9
tiny 4878 km
solid rock
none (helium)
EL8_2016
6786
M-DCPS Department of Science
variable range 180 to 400 C
Mercury
131
Teacher
PLANET CHARACTERISTICS
Size
Surface Type
and
Composition
Atmosphere
Temperature
Name
1
2
3
4
5
6
7
8
9
EL8_2016
M-DCPS Department of Science
132
Teacher
PLANETARY EXPLORATION & EXTREME LIFE FORMS
(Differentiated Lab)
Revised by: University of Miami – Science Made Sensible Fellows
Next Generation Sunshine State Standards:
SC.8.E.5.1 Recognize that there are enormous distances between objects in space and apply our
knowledge of light and space travel to understand this distance.
SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies
relative to solar system, galaxy, and universe, including distance, size, and composition.
SC.8.E.5.7 Compare and contrast the properties of objects in the solar system including the Sun, planets,
and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement,
temperature, and atmospheric conditions.
SC.7.L.15.3 Explore the scientific theory of evolution by relating how the inability of a species to adapt
within a changing environment may contribute to the extinction of that species.
SC.7.L.16.2 Determine the probabilities for genotype and phenotype combinations using Punnett Squares
and pedigrees.
SC.7.L.17.3 Describe and investigate various limiting factors in the local ecosystem and their impact on
native populations, including food, shelter, water, space, disease, parasitism, predation, and nesting sites.
Objective: Students will research a planet in our solar system, including information about the
atmosphere, surface conditions, etc. Then they will have to design an alien life form that would be
adapted to live on their planet. They will present their planet research and alien life forms to the class.
They will also use a Punnett Square to predict offspring genotype and phenotype.
Engage: Introduce adaption and extreme environments. Scientists are finding organisms on Earth that
live in extreme conditions previously thought not able to support life. Some of these extreme
environments include the harsh, dry, cold valleys of Antarctica and the bottom of the ocean under high
pressure, no oxygen and no light. If life forms on other planets were to exist, what conditions would they
face? How would they survive? What type of adaptations might they need? Explain that students will
first research a planet, and then create a life form that had adapted to survive the conditions on their
planet.
Materials:
 computers with internet access
 books on the planets
 construction paper
 markers/crayons/colored pencils
Teacher Notes: Assign one group to each planet excluding Earth. For the first part of the activity,
students will research their planet, filling in a data sheet. All information can be found on the websites
provided on the student handouts. Emphasize the importance of using appropriate internet sources, no
Wikipedia. Once students have completed their planet worksheet, they should start on the alien life form
worksheet. They will also draw their life form on construction paper. Groups will present both their
planet research and their aliens including explanations of its specific adaptations that allow it to survive
on their planet. Upper level students could be required to do a PowerPoint presentation.
EL8_2016
M-DCPS Department of Science
133
Teacher
Name: ____________________________________ Date: ___________________ Pd: __________
Planet Research Worksheet
Fill in the worksheet below about your assigned planet; be sure to include units where necessary. Some
helpful websites for your research are:
http://nineplanets.org/
http://solarsystem.nasa.gov/index.cfm
www.windows2universe.org/our_solar_system/solar_system.html
www.exploratorium.edu/ronh/weight/index.html
Planet: _____________________________ Planetary Symbol: ___________________________
Diameter: ___________________________ Mass: _____________________________________
Order from the Sun: ___________________ Distance from the Sun: _______________________
Gravity: ____________________________ Gravity compared to Earth: ___________________
If you weigh 100 lbs. on Earth, how much would you weigh on your planet? _________________
Temperature Range: ___________________ Average Temperature ________________________
Length of Day (rotation period): _________ Length of year (revolution period): ______________
Tilt of axis: __________
Eccentricity of Orbit: ________
Number of Satellites: ________
What is the atmosphere like on your planet? What gases? Poisonous? Dry? Etc.
Describe the surface of your planet.
EL8_2016
M-DCPS Department of Science
134
Teacher
Describe what your planet looks like including any unique features such as rings.
In complete sentences, list 5 additional interesting facts about your planet that are not already discussed
on this worksheet.
EL8_2016
M-DCPS Department of Science
135
Teacher
Name: ____________________________________ Date: ___________________ Pd: __________
Extreme Alien Life Forms
You will create an alien life form that has adaptations enabling it to survive on your assigned planet.
Keep in mind the information you learned about your planet during your research. Complete the
questions below, and then draw your life form on the provided construction paper. Make sure to label the
aspects of your life form that let it survive on your planet. Include your life form’s name, your planet, and
your name and class period on the front of your drawing. You will be presenting your drawings to the
class.
Your Planet:
The name of your life form:
Describe the habitat and climate in which your life form lives:
How does it move? Include both the form and method of locomotion. (For example: The miniature Mars
Gopher leaps on powerful hind legs.)
What does it eat or use as nutrients? Is it herbivorous, carnivorous, omnivorous, or other? What is its main
food and how does it acquire this food?
EL8_2016
M-DCPS Department of Science
136
Teacher
What other creatures does it prey on, if any? How does it defend itself against predators?
Describe other adaptations your life form has developed to cope with your planet’s unique environment.
Suppose two alien creatures mated. One was tall and the other was short. Using a Punnett Square,
predict the offspring’s possible heredity of the tall gene. Each parent has two alleles for the height gene.
Dad is homozygous tall (TT) and mom is homozygous short (tt). Predict the genotype (genetic make-up)
and phenotype (physical characteristics) for the offspring.
Dad →
EL8_2016
______
______
M-DCPS Department of Science
137
Teacher
______
Offspring
______
Mom ↑
The resulting offspring:
Genotype:
__________% TT
Phenotype:
__________% tall
Genotype
TT (homozygous tall)
tt (homozygous short)
Tt (heterozygous)
EL8_2016
__________% tt
__________% Tt
__________% short
Phenotype
Tall
Short
Tall
M-DCPS Department of Science
138
Teacher
Anti-Discrimination Policy
Federal and State Laws
The School Board of Miami-Dade County, Florida adheres to a policy of nondiscrimination in employment and
educational programs/activities and strives affirmatively to provide equal opportunity for all as required by:
Title VI of the Civil Rights Act of 1964 - prohibits discrimination on the basis of race, color, religion, or
national origin.
Title VII of the Civil Rights Act of 1964 as amended - prohibits discrimination in employment on the basis of
race, color, religion, gender, or national origin.
Title IX of the Education Amendments of 1972 - prohibits discrimination on the basis of gender.
Age Discrimination in Employment Act of 1967 (ADEA) as amended - prohibits discrimination on the basis of
age with respect to individuals who are at least 40.
The Equal Pay Act of 1963 as amended - prohibits gender discrimination in payment of wages to women and
men performing substantially equal work in the same establishment.
Section 504 of the Rehabilitation Act of 1973 - prohibits discrimination against the disabled.
Americans with Disabilities Act of 1990 (ADA) - prohibits discrimination against individuals with disabilities
in employment, public service, public accommodations and telecommunications.
The Family and Medical Leave Act of 1993 (FMLA) - requires covered employers to provide up to 12 weeks of
unpaid, job-protected leave to "eligible" employees for certain family and medical reasons.
The Pregnancy Discrimination Act of 1978 - prohibits discrimination in employment on the basis of
pregnancy, childbirth, or related medical conditions.
Florida Educational Equity Act (FEEA) - prohibits discrimination on the basis of race, gender, national origin,
marital status, or handicap against a student or employee.
Florida Civil Rights Act of 1992 - secures for all individuals within the state freedom from discrimination
because of race, color, religion, sex, national origin, age, handicap, or marital status.
Title II of the Genetic Information Nondiscrimination Act of 2008 (GINA) - prohibits discrimination against
employees or applicants because of genetic information.
Boy Scouts of America Equal Access Act of 2002 – no public school shall deny equal access to, or a fair
opportunity for groups to meet on school premises or in school facilities before or after school hours, or
discriminate against any group officially affiliated with Boy Scouts of America or any other youth or
community group listed in Title 36 (as a patriotic society).
Veterans are provided re-employment rights in accordance with P.L. 93-508 (Federal Law) and Section 295.07
(Florida Statutes), which stipulate categorical preferences for employment.
In Addition:
School Board Policies 1362, 3362, 4362, and 5517 - Prohibit harassment and/or discrimination against
students, employees, or applicants on the basis of sex, race, color, ethnic or national origin, religion, marital
status, disability, genetic information, age, political beliefs, sexual orientation, gender, gender identification,
social and family background, linguistic preference, pregnancy, and any other legally prohibited basis.
Retaliation for engaging in a protected activity is also prohibited.
Revised: (07.14)
EL8_2016
M-DCPS Department of Science
139