Download Test Thermodynamics Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Thermal expansion wikipedia , lookup

Black-body radiation wikipedia , lookup

Entropy in thermodynamics and information theory wikipedia , lookup

Conservation of energy wikipedia , lookup

T-symmetry wikipedia , lookup

State of matter wikipedia , lookup

H-theorem wikipedia , lookup

Heat equation wikipedia , lookup

Heat transfer wikipedia , lookup

Black body wikipedia , lookup

Pressure wikipedia , lookup

Heat transfer physics wikipedia , lookup

Thermoregulation wikipedia , lookup

Thermal conduction wikipedia , lookup

Calorimetry wikipedia , lookup

Van der Waals equation wikipedia , lookup

First law of thermodynamics wikipedia , lookup

Heat wikipedia , lookup

Temperature wikipedia , lookup

Non-equilibrium thermodynamics wikipedia , lookup

Internal energy wikipedia , lookup

Equation of state wikipedia , lookup

Gibbs free energy wikipedia , lookup

Chemical thermodynamics wikipedia , lookup

Second law of thermodynamics wikipedia , lookup

History of thermodynamics wikipedia , lookup

Thermodynamic system wikipedia , lookup

Otto cycle wikipedia , lookup

Adiabatic process wikipedia , lookup

Transcript
Solutions Thermodynamics Test Term 2, 2015
Define:
i.
System: the object(s) or physical situation that is being studied
Boundary: is what separates the system from the environment
Environment: everything external to the system that has bearing on the system
ii.
Thermodynamic process
A process that changes from one state (p,v, and t) to another state examples include: isobaric,
isovolumetric, isothermal, adiabatic, and polytrophic.
iii.
Adiabatic
A thermodynamic process where no heat is exchanged between the system and the
environment, Ξ”Q = 0
iv.
Polytrophic
Thermodynamic process where the relationship between pressure, volume is 𝑝𝑣 𝑛 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
v.
The four laws of thermodynamics
0th Law of thermodynamics: There exists a useful scalar quantity called temperature that is a
property of all thermodynamics systems. When 2 bodies (A and B) are in thermal equilibrium
(same temperature) with a third body (C), then all bodies (AC, BC, AB) are in equilibrium with
each other.
1st Law of thermodynamics: Energy is neither created or destroyed, energy can only change form.
π‘‘π‘ˆ
𝑑𝑄
There is exists a useful quantity called internal energy. π‘‘π‘ˆ = 𝑑𝑄 βˆ’ π‘‘π‘Š π‘œπ‘Ÿ ∫ 𝑑𝑑 = ∫ 𝑑𝑑 βˆ’ ∫
π‘‘π‘Š
𝑑𝑑
2nd Law of thermodynamics: Heat must flow from hot to cold. The second law deals with entropy
or the measure of the quality of energy in natural processes and states if a process can happen in
nature.
3rd Law of thermodynamics: it is impossible by any procedure, no matter how idealized, to reduce
any system to absolute zero temperature in finite number of operations.
List as many as you know:
i.
System variables
Pressure, Volume, Temperature, Mass/Moles and Internal Energy
ii.
Equations of state
βˆ†π‘ˆ = βˆ†π‘„ βˆ’ βˆ†π‘Š
𝑝𝑣 = 𝑛𝑅𝑇
𝑝𝑣 𝑛 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
π‘Ž
) (𝑣 βˆ’ 𝑏) = 𝑅𝑇
𝑣2
π‘π‘‰π‘š
𝑍=
𝑅𝑇
(𝑝 +
iii.
Thermodynamic processes
A process that involves heat transfer, work or a change in internal energy of a system.
1. Sketch the following processes on a pV diagram, Isobaric, isovolumetric, isothermal and
adiabatic
Pressure
A
Process A to B: Isothermal
Process A to C: Adiabatic
Process A to D: Isovolumetric
B
D
Process B to D: Isobaric
C
Volume
2. A gas expands from an initial state where p1 = 400 kPa and V1 = 0.2 m3 to a final state where p2 =
200 kPa. The relationship between pressure and volume during the process is pV = constant.
Sketch the process on a p-V diagram and determine the work, in kJ.
Pressure
p1V1
p2V2
Volume
𝑝𝑉 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝑝1 𝑉1 = 𝑝2 𝑉2
𝑝1 𝑉1
𝑉2 =
𝑝2
400 π‘˜π‘ƒπ‘Ž × 0.2 π‘š3
= π‘š3
200 π‘˜π‘ƒπ‘Ž
π‘½πŸ
400 × 0.2 π‘š3
= 𝟎. πŸ’ π’ŽπŸ‘
200
𝑉 πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝑉
1
π‘Š = ∫ 𝑝 𝑑𝑉 = βˆ«π‘‰ 2
= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ ln
= 𝑝1 𝑉1 ln
𝑉2
𝑉1
𝑑𝑉
𝑉2
𝑉1
𝑾 = 400(0.02) ln
0.4
= πŸ“πŸ“. πŸ“ 𝑱𝒐𝒖𝒍𝒆𝒔
0.2
3. One thousand kg of natural gas at volume of 10 m3 and 255 K is stored in a tank. If the pressure,
p, specific volume, v and temperature, T, of the gas are related by the following expression
𝑝 = [(5.18 π‘₯ 10βˆ’3 ) {
π‘˜π‘ƒπ‘Ž π‘š3
}
π‘˜π‘” 𝐾
𝑇
]βˆ’
π‘š3
(𝑣 βˆ’ 0.002668
)
π‘˜π‘”
(8.91 π‘₯ 10βˆ’3 ) π‘˜π‘ƒπ‘Ž π‘š9
{
}
𝑣2
π‘˜π‘”2
where v is in m3/kg, T is in K, and p is in bar, determine the pressure of the tank.
𝑝 = [(5.18 π‘₯ 10
βˆ’3 )
π‘˜π‘ƒπ‘Ž π‘š3
{
}
π‘˜π‘” 𝐾
𝑝 = [(5.18 π‘₯ 10βˆ’3 )
𝑝 = [(5.18 π‘₯ 10βˆ’3 )
𝑉
π‘š
𝑣=
10 π‘š3
π‘š3
= 0.01
1000 π‘˜π‘”
π‘˜π‘”
(8.91 π‘₯ 10βˆ’3 ) π‘˜π‘ƒπ‘Ž π‘š9
]βˆ’
2 { π‘˜π‘”2 }
π‘š3
π‘š3
π‘š3
(0.01
βˆ’ 0.002668
)
(0.01
)
π‘˜π‘”
π‘˜π‘”
π‘˜π‘”
255 𝐾
(8.91 π‘₯ 10βˆ’3 ) π‘˜π‘ƒπ‘Ž π‘š9
255
π‘˜π‘ƒπ‘Ž
]{
}βˆ’
2 { π‘˜π‘”2 }
(0.01 βˆ’ 0.002668 )
π‘š3
(0.01
)
π‘˜π‘”
(8.91 π‘₯ 10βˆ’3 ) π‘˜π‘ƒπ‘Ž π‘š9
255
π‘˜π‘ƒπ‘Ž
]{
}βˆ’
{
}
π‘š9
(0.01 βˆ’ 0.002668 )
π‘˜π‘”2
(0.0001
)
π‘˜π‘”2
𝑝 = [(5.18 π‘₯ 10βˆ’3 )
(8.91 π‘₯ 10βˆ’3 ) π‘˜π‘ƒπ‘Ž
255
π‘˜π‘ƒπ‘Ž
]{
}βˆ’
{
}
(0.01 βˆ’ 0.002668 )
(0.0001 )
𝑝= [
𝒑= [
𝑣=
(89.1 ) π‘˜π‘ƒπ‘Ž
1.32
π‘˜π‘ƒπ‘Ž
]{
}βˆ’
{
}
(0.007332 )
180.0
]{
π‘˜π‘ƒπ‘Ž
}βˆ’
(89.1 ) π‘˜π‘ƒπ‘Ž
{
} = πŸ—πŸ. 𝟏 π’Œπ‘·π’‚
4. One mole of a monatomic gas goes in a cycle ABCA as in figure 3. Let (P0, V0, T0) be the
parameters at A and 2T0 the temperature at B. Solve algebraically:
i.
The values of TC and PB
ii.
The work done in each part: AB, BC and CA
iii.
The heat input in each part: AB, BC and CA
Given:
State
A
B
C
Pressure
P0
P0
Volume
V0
V0
2V0
Temperature
T0
2T0
Find: PB
𝑝𝑉 = 𝑛𝑅𝑇
Ideal Gas Law allows us to write
𝑃0 𝑉0 = 𝑃𝐡 𝑉𝐡 (1)
Also, at A
𝑃0 𝑉0 = 𝑛𝑅𝑇0 (2)
From the table above at B
𝑃𝐡 𝑉0 = 𝑛𝑅(2𝑇0 ) (3)
Thus, (2) ÷ (3) yields
𝑃0 𝑉0
𝑛𝑅𝑇0
=
𝑃𝐡 𝑉0 𝑛𝑅(2𝑇0 )
Canceling
𝑃0 1
= π‘œπ‘Ÿ 𝑷𝑩 = πŸπ‘·πŸŽ
𝑃𝐡 2
Given
State
A
B
C
Pressure
P0
πŸπ‘·πŸŽ
P0
Volume
V0
V0
2V0
Temperature
T0
2T0
Find: TC
𝑝𝑉 = 𝑛𝑅𝑇
Ideal Gas Law allows us to write
𝑃0 𝑉0 = 𝑃𝐢 𝑉𝐢 (1)
Also, at A
𝑃0 𝑉0 = 𝑛𝑅𝑇0 (2)
From the table above at C
𝑃0 (2𝑉0 ) = 𝑛𝑅𝑇𝐢 (3)
Thus, (2) ÷ (3) yields
𝑃0 𝑉0
𝑛𝑅𝑇0
=
𝑃0 2𝑉0 𝑛𝑅𝑇𝐢
Canceling
1 𝑇0
=
π‘œπ‘Ÿ 𝑻π‘ͺ = πŸπ‘»πŸŽ
2 𝑇𝐢
State
A
B
C
Pressure
P0
πŸπ‘·πŸŽ
P0
Volume
V0
V0
2V0
Temperature
T0
2T0
πŸπ‘»πŸŽ
πŸπ‘·πŸŽ
πŸπ‘»πŸŽ
πŸπ‘»πŸŽ
Find the work done and heat input in each process
Process A -> B
βˆ†π‘ˆ = βˆ†π‘„ βˆ’ βˆ†π‘Š
𝑉𝐡
π‘Š = ∫ 𝑝 𝑑𝑉 = ∫ 𝑝 𝑑𝑉
𝑉𝐴
Inputting values
π‘½πŸŽ
𝑾 = ∫ 𝒑 𝒅𝑽 = 𝟎
π‘½πŸŽ
βˆ†π‘ˆ =
3𝑛𝑅(𝑇𝐡 βˆ’ 𝑇𝐴 )
3(1)𝑅(2𝑇0 βˆ’ 𝑇0 )
=
2
2
3𝑅𝑇0
βˆ†π‘ˆ =
2
Plugging into Energy equation
3𝑅𝑇0
= βˆ†π‘„ βˆ’ 0
2
or
βˆ†π‘Έ =
πŸ‘π‘Ήπ‘»πŸŽ
𝟐
State
A
B
C
Pressure
P0
πŸπ‘·πŸŽ
P0
Volume
V0
V0
2V0
Temperature
T0
2T0
πŸπ‘»πŸŽ
πŸπ‘·πŸŽ
πŸπ‘»πŸŽ
πŸπ‘»πŸŽ
Process B -> C
βˆ†π‘ˆ = βˆ†π‘„ βˆ’ βˆ†π‘Š
𝑉𝐢
π‘Š = ∫ 𝑝 𝑑𝑉 = ∫ 𝑝 𝑑𝑉
𝑉𝐡
Because pV = constant
𝑉𝐢
π‘Š= ∫
𝑉𝐡
πΆπ‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝑑𝑉
𝑉
= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ ln
𝑉𝐢
𝑉𝐡
Because 𝑝𝐡 𝑉𝐡 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘
𝑉𝐢
= 𝑝𝐡 𝑉𝐡 ln
𝑉𝐡
Putting in values for pB, VB and VC
2𝑉0
= 2𝑝0 𝑉0 ln
𝑉0
𝑾 = πŸπ’‘πŸŽ π‘½πŸŽ π₯𝐧 𝟐
βˆ†π‘ˆ =
3𝑛𝑅(𝑇𝐢 βˆ’ 𝑇𝐡 )
3(1)𝑅(2𝑇0 βˆ’ 2𝑇0 )
=
2
2
βˆ†π‘Ό = 𝟎
Plugging into Energy equation
0 = βˆ†π‘„ βˆ’ 2𝑝0 𝑉0 ln 2
or
βˆ†π‘Έ = πŸπ’‘πŸŽ π‘½πŸŽ π₯𝐧 𝟐
State
A
B
C
Pressure
P0
πŸπ‘·πŸŽ
P0
Volume
V0
V0
2V0
Temperature
T0
2T0
πŸπ‘»πŸŽ
πŸπ‘·πŸŽ
πŸπ‘»πŸŽ
πŸπ‘»πŸŽ
Process C -> A
βˆ†π‘ˆ = βˆ†π‘„ βˆ’ βˆ†π‘Š
π‘Š = ∫ 𝑝 𝑑𝑉
Because pressure is constant C -> A
𝑉𝐴
π‘Š = 𝑝 ∫ 𝑑𝑉 = ∫
𝑑𝑉
𝑉𝐢
= 𝑝(𝑉𝐴 βˆ’ 𝑉𝐢 )
= 𝑝0 (𝑉0 βˆ’ 2𝑉0 )
𝑾 = βˆ’π’‘πŸŽ π‘½πŸŽ
βˆ†π‘ˆ =
3𝑛𝑅(𝑇𝐴 βˆ’ 𝑇𝐢 )
3(1)𝑅(𝑇0 βˆ’ 2𝑇0 )
=
2
2
3𝑅𝑇0
βˆ†π‘ˆ = βˆ’
2
Plugging into Energy equation
βˆ’
3𝑅𝑇0
= βˆ†π‘„ βˆ’ (βˆ’)𝑝0 𝑉0
2
or
βˆ†π‘Έ = βˆ’
πŸ‘π‘Ήπ‘»πŸŽ
βˆ’ π’‘πŸŽ π‘½πŸŽ
𝟐