* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physiology Lab - University of Warwick
Survey
Document related concepts
Transcript
University of Warwick Headstart Summer School Physiology Lab Practical manual Testing Breathing and Heart Rate In the first part of this laboratory session, you will be introduced to spirometry as a technique for recording respiration. In the second part, you will be introduced to ECG as a method of measuring heart rate. If we have time in groups you will come up with your own hypothesis for which you will design and experiment using one or both of these techniques. Part 1: Respiratory Airflow and Volume Background Gas exchange between air and blood occurs in the alveolar air sacs. The efficiency of gas exchange is dependent on ventilation. Cyclical breathing movements alternately inflate and deflate the alveolar air sacs (Figure 1). Inspiration provides the alveoli with some fresh atmospheric air, and expiration removes some of the stale air, which has reduced oxygen and increased carbon dioxide concentrations. Figure 1: Basic Lung Anatomy Spirometry is becoming more important as respiratory diseases are increasing worldwide. Spirometry is the method of choice for a fast and reliable screening of patients suspected of having Chronic Obstructive Pulmonary Disease (COPD). COPD is the 12th leading cause of death worldwide and the 5th leading cause in Western countries. Studies suggest COPD could climb to be the 3rd leading killer by 2020. Most COPD cases are completely avoidable as 85-90% of cases are caused by tobacco smoking. Many important aspects of lung function can be determined by measuring airflow and the corresponding changes in lung volume. Airflow can be measured directly with a pneumotachometer (from Greek roots meaning “breath speed measuring device”). The PowerLab pneumotachometer is shown in Figure 2. Figure 2: The PowerLab pneumotachometer. The flow head measures the difference in pressure either side of a mesh membrane with known resistance. This resistance gives rise to a small pressure difference proportional to flow rate. Two small plastic tubes transmit this pressure difference to the Spirometer Pod, where a transducer converts the pressure signal into a changing voltage that is recorded by the PowerLab and displayed in LabChart. The volume, V, is then calculated as the integral of flow: V= F dt This integration represents a summation over time. Sometimes the measurements drift due to differences in temperature and humidity between inspiration and expiration. Computer software corrections used in the Spirometry Extension can reduce drift but cannot eliminate it. Spirometry allows many components of pulmonary function to be visualized, measured, and calculated (Figure 3). Respiration consists of repeated cycles of inspiration followed by expiration. During the respiratory cycle, a volume of air is drawn into and then expired from the lungs. This volume is the tidal volume (V T). In normal ventilation, the breathing frequency (ƒ) is approximately 15 respiratory cycles per minute. This value varies with the level of activity. The product of ƒ and VT is the expired minute volume (VE), the amount of air exhaled in one minute of breathing. This parameter also changes according to the level of activity. Figure 3: Lung volumes and capacities. Other parameters include Inspiratory and Expiratory Reserve Volumes (IRV and ERV), which is the volume of extra air you inspire or expire when breathing in and out as hard as possible. The Vital Capacity (VC) is the total volume is the total amount of air that can be expired after fully inhaling. Even when a person exhales completely, there is still air left in the lungs. This leftover air is the Residual Volume (RV), which cannot be measured by spirometry. The Total Lung Capacity (TLC) is the sum of the Vital Capacity and Residual Volume (VC + RV). Term Breathing Frequency Expired Minute Volume Lung Volumes Tidal Volume Inspiratory Reserve Volume Expiratory Reserve Volume Residual Volume Lung Capacities Inspiratory Capacity Expiratory Capacity Vital Capacity Total Lung Capacity Abbreviation / Symbol f VE = f x V T Units Resp. cycles/min L/min VT IRV ERV RV (predicted) L L L L IC = VT + IRV EC = VT + ERV VC = IRV + ERV + VT TLC = VC + RV L L L L Table 1: Summary of Spirometry terms 4. Procedures If you are suffering from a respiratory infection, do not volunteer for this experiment. A. Equipment Setup Make sure the PowerLab is turned off and the USB cable is connected to the computer. Connect the Spirometer Pod to Input 1 on the front panel of the PowerLab (Figure 4). Turn on the PowerLab. Note: Since the Spirometer Pod is sensitive to temperature and tends to drift during warm-up, it is recommended the PowerLab (and therefore the Spirometer Pod) is turned on for at least 10 minutes before use. To prevent temperature drift, place the Spirometer Pod in a shelf or beside the PowerLab, away from the PowerLab power supply to avoid heating. Figure 4: Equipment Setup for PowerLab 26T Connect the two plastic tubes from the Respiratory Flow Head to the short pipes on the back of the Spirometer Pod. Attach Clean-bore Tubing, a Filter, and a Mouthpiece to the Flow Head (Figure 4). B. Hygiene NOTE: Each volunteer should use a clean mouthpiece and air filter. The vinyl mouthpiece should be cleaned between uses by soaking it disinfectant provided. A new air filter will be supplied for each volunteer. # 1: Familiarize Yourself with the Equipment In this exercise, you will learn the principles of spirometry and how integration of the flow signal gives a volume. The equipment should already be calibrated, the next section is for reference, and you should start at ‘Using the Equipment’. Calibrating the Spirometer Pod – we will set this for you – but if you accidentally power down the computer of stop the programme this will need to be reset The Spirometer Pod must be calibrated before starting this exercise. The Flow Head must be left undisturbed on the table during the zeroing process. 1. Launch LabChart and open the settings file in “Respiratory Airflow & Volume” from the Experiments tab in the Welcome Center. It will be located in the folder for this experiment. Select Spirometer Pod from the Channel 1 Channel Function pop-up menu. Make sure the Range is 500 mV and the Low Pass is 10 Hz; then select Zero. When the value remains at 0.0 mV, have the volunteer breathe out gently through the Flow Head, and observe the signal (Figure 5). If the signal shows a downward deflection (it is negative), you can return to the Chart View. If the signal deflects upward, you need to invert it. Click the Invert checkbox once. Figure 5: Spirometer Pod Dialog with Downward Deflection Note: The signal can also be inverted by reversing the orientation of the Flow Head or by swapping the connections to the Spirometer Pod. The Invert checkbox is more convenient. Using the Equipment 2. Have the volunteer put the Mouthpiece in their mouth and hold the Flow Head carefully with both hands. The two plastic tubes should be pointing upward. Put the nose clip on the volunteer’s nose. This ensures that all air breathed passes through the Mouthpiece, Filter, and Flow Head (Figure 6). Figure 6: Proper Positioning of the Flow Head After the volunteer becomes accustomed to the apparatus and begins breathing normally, you are ready to begin. Start recording. Have the volunteer breathe normally and record the volunteer’s tidal breathing for one minute. At the end of one minute, have the volunteer perform a full expiration. Observe the data being recorded in the “Flow” channel. Stop recording. The volunteer can stop breathing through the Flow Head and can remove the Nose Clip. Setting Up the Spirometry Extension: This is for reference The Spirometry Extension processes the raw voltage signal from the Spirometer Pod, applies a volume correction factor to improve accuracy, and displays calibrated Flow (L/s) and Volume (L) traces. It takes over from Units Conversion. The trace you recorded in this exercise will provide reference points for the Spirometry Extension that allow it to calculate and perform corrections on the trace. 3. Drag across the Time axis at the bottom of the Chart View to select the data you recorded. Select Spirometry Flow from the Channel 1 Channel Function pop-up menu. Make sure the settings are the same as those in Figure 7. Select Spirometry Volume from the Channel 2 Channel Function pop-up menu. Make sure Channel 1 is selected in the Spirometry Flow Data pop-up menu. Click the Apply Volume Correction checkbox to turn it on. Then select Apply to allow the extension to use the volume correction ratio that is has calculated from your data (Figure 8). The Chart View should now appear with calculated volume data on Channel 2. This can be problematic if the initial tidal breathing recorded is erratic. Figure 7: Spirometry Flow Dialog Figure 8: Spirometry Volume Dialog Select Set Scale from the Scale pop-up menu in the Amplitude axis for the “Flow” channel. Make the top value 15 L/s and the bottom value -15 L/s. Understanding the Importance of Volume Correction: 4. Drag across the Time axis to select data from both channels, and open Zoom View. Note the relation between Flow and Volume. When the flow signal is positive (inspiration), “Volume” rises and when the flow is negative (expiration), the volume trace falls. 5. In Zoom View, find part of the recording where the flow is zero. Note that at this time, “Volume” does not change (it is horizontal) because integrating a zero signal does not add anything to the integral. 6. The volume trace is calculated by the extension in such a way that the displayed volumes at the end of the two full expirations equal. In subsequent recordings, the volume correction is unlikely to be exact – you will notice a tendency for the volume to drift, typically 1-2 L over 1-2 minutes. To see the effect of having no correction, turn off the Volume Correction checkbox in the Spirometry Volume dialog, and examine the data trace. Remember to turn it back on again afterward. 7. Do not close the file. #2: Spirometry Recording From this recoding, you will examine the respiratory cycle, measure changes in flow and volume - 1) Lung volume capacities; and measure parameters of forced expiration that are used in evaluating 2) Pulmonary function. Note that the Spirometry Extension is not intended for clinical evaluation of lung function. 1. Zero the Spirometer Pod again, using the same procedure as before. Remember to leave the Flow Head undisturbed during the process. 2. Have the volunteer face away from the monitor and relax, get them to read something. This will prevent the volunteer from consciously controlling their breathing during the exercise. 3. When ready, Start recording. After two seconds, have the volunteer replace the Nose Clip and breathe normally into the Flow Head. Record normal tidal breathing for one minute (remember to add a comment with “normal tidal breathing” to the data trace). 4. After the tidal breathing period (at the end of a normal tidal expiration), ask the volunteer to inhale as deeply as possible and then exhale as deeply as possible. The volunteer should focus on depth of breathing not speed (remember to add a comment of “lung volume procedure” at this position). Afterwards, allow the volunteer to return to normal, relaxed, tidal breathing for approximately 30 seconds. 5. When ready, ask the volunteer to inhale maximally and then exhale as rapidly, forcefully and fully as possible (that is, inhale as much as possible and then exhale until no more air can be expired). The volunteer must this time focus on depth and speed. The volunteer should let his or her breathing return to normal then repeat this procedure twice more (remember to add a comment “forced breathing 1”, “Forced breathing 2” and “forced breathing 3”) Figure 9: Sample Data of Forced Breaths 6. Save your data. Do not close the file. 7. You may need to repeat this entire procedure to ensure the data are valid. 8. N.B. On-screen data traces can be copied by performing a screen capture (press Control and print screen keys simultaneously, then paste the copy into a suitable application, e.g. Word, PowerPoint or WordPad, and save the document). In the next section measure and record key spirometry values 3.1 Lung Volumes and Capacities (Record in Table 2, p13) 1. Examine the normal tidal breathing data. Calculate how many respiratory cycles there are in a one minute period. This is the breathing frequency (f); it has units of respiratory cycles per minute (respiratory cycles/min). Record this value in Table 2. 2. Determine the volume of a single tidal inspiration by placing the Marker (bottom left of screen) at the start of a normal tidal inspiration. Place the Waveform Cursor at the peak (Figure 10). This will be about0.5-1.5 s to the right of the marker. The value shown in the Range/Amplitude display for Channel 2 is the tidal volume (VT) for that breath. Record this value in Table 2. Figure 10: Proper Placement of Marker and Waveform Cursor 3. Return the Marker to its box at bottom left of the Chart View, by doubleclicking the Marker, dragging it back, or clicking its box. 4. Using the value for VT and the number of respiratory cycles observed over a one-minute period (f), calculate the minute volume (VE) using Equation 3. Record your value in Table 2. VE = f x V T (L/min) Equation 3 5. Find the “Lung volume procedure” comment in your data trace. Repeat steps 2-3 to determine the inspiratory reserve volume (IRV) (Figure 11) and expiratory reserve volume (ERV) (Figure 12). Record these values in Table 2. Note: the Marker should remain at the start of a normal tidal inspiration (trough) for the ERV, and it should be moved to the end of a normal tidal inspiration (peak) for the IRV. If necessary, refer to Figure 3 for further clarification. Figure 11: Positioning of Marker and Waveform Cursor to Measure IRV Figure 12: Positioning of Marker and Waveform Cursor to Measure ERV Respiratory parameter Breathing frequency Expired Minute Volume Tidal Volume Inspiratory Reserve Volume Inspiratory Capacity Expiratory Reserve Volume Expiratory Capacity Vital Capacity Residual Volume Total Lung Capacity Abbreviation Units f Resp. cycles/min VE = f x V T L/min VT L IRV L IC= VT + IRV L ERV L EC= VT + ERV L VC (from table) VC = IRV + ERV + VT RV = pred. VC x 0.25 L TLC = VC + RV L Experimental & calculated value Spirometry Extension value L L Table 2: Spirometry measurements Part 2. The Electrocardiogram (ECG) In this practical, you will use electrodes placed on the skin of the wrists and ankles to record the ECG from members of your practical group and will relate this recording to the pulse, recorded using a pulse transducer placed on a finger, and to the heart sounds, recorded using a microphone placed on the upper part of the chest. The ECG. The heart beat is initiated in the sinoatrial node and is conducted by electrical means through the heart in such a way that contraction ejects blood efficiently into the aorta (from the left ventricle) and the pulmonary trunk (from the right ventricle). The electrical means of conduction is associated with the flow of current in extracellular fluid, and the effects of this current can be picked up by electrodes placed at appropriate positions on the skin. The ECG can be represented diagrammatically as a graph of recorded voltage against time: QRS P T Figure 1 Idealised ECG, indicating the principal waveforms and the intervals used clinically to assess normal or abnormal conduction of the heart beat. The general form may be familiar to you. The P wave denotes the start of atrial depolarisation; the QRS complex the onset of ventricular depolarisation; and the T wave the repolarisation of the ventricle. Information about diseases of the heart can be obtained clinically from changes in this basic pattern. Since the heart beat is conducted through a complex, three dimensional structure, clinicians use several ‘leads’ to look at its spread from several different aspects. Electrodes attached to the limbs and to the chest are used. You will look at three of the limb leads. Recording the ECG. You will record the ECG using so-called bipolar limb leads. These leads are denoted I, II, and III by clinicians. If at any stage you are unsure, consult a demonstrator. Attaching the recording electrodes 1. With the PowerLab turned off, plug the Bio Amp cable into the Bio Amp. 2. The volunteer should remove his/her watch and any jewellery from his/her wrists. 3. Connect the lead wires to earth, CH1 negative, CH1 positive on the Bio Amp cable. 4. Stick one disposable electrode onto your left wrist and two electrodes onto your right wrist. 5. Connect the: Right wrist to earth Right wrist to CH1 negative Left wrist to CH1 positive These connections will give recordings equivalent to lead I used by a cardiologist (see Fig. 3). 6. Ensure that the volunteer is comfortable and is able to sit still and relaxed during the period of recording (a few s). Activity in skeletal muscle will interfere with the recording, so the quality of your recording will be affected by this ability of the subject to relax. The subject may find it best to sit with his/her hands resting lightly one on each knee. In a clinical recording, the subject would lie flat on a bed. Software set up – the demonstrators will do this for you – but is here for information 1. Turn on the PowerLab 2. Launch Chart7 from the computer. 3. Set up Chart7 so that you can record from Channel 3 (the channel to which the BioAmp lead connects). Click on Setup, then Channel settings. Make sure channels 3 and 4 are on. Set the number in the Range column to 2mV in each case. Set n at the bottom left of the panel to 4. OK these settings to return to the recording chart. 4. Set the digitisation rate (top right of the screen) to 1k/s. Recording the ECG. Objective: To measure the ECG, identify the major elements and measure the heart rate and other (PR, ST, QT) intervals (Fig. 1). Procedure 1. Click the Start button and record for approximately 10s. You will be recording lead I on Channel 3 and lead II on Channel 4. Make sure you get some nice clean data: repeat if noisy. 2. Click the Stop button. 3. Save the results by choosing Save as . . . . from the File menu in Chart. 4. Alter the connections of the electrodes so that the left wrist (rather than the right wrist) is connected to CH2 negative. The other connections should remain as before (right ankle to earth, left ankle to CH2 positive, left wrist still connected also to CH1 positive, right wrist still connected to CH1 negative). On Channel 4 you will now be recording using lead III in the nomenclature used by the cardiologist (see Fig. 3), but will continue to record lead I on Channel 3. Repeat steps 1 – 2. 5. Save the results as in step 3. If you cannot see the ECG, check that the electrodes are correctly attached and that the sensitivity range of the amplifier is sufficient. Adjust the ‘gain’ of the recording if necessary. If the recording is noisy, ensure that the volunteer is relaxed, comfortable, and sitting still. If you still have trouble, remove the connections to CH2 of the Bio Amp cable so that you are recording only lead I. Analysis Timing of the heart beat. Examine the ECGs you have recorded and identify the P wave, the QRS complex, and the T wave. Measure the heart rate as follows. Put the marker cursor (M) at the top of one R wave and move the cursor on several beats to the top of another R wave and note t. Use the difference in time between t t in s) and number of beats (n) to work out the heart rate in beats per minute. This will be given by: rate n 1 60 beats.min-1 t In one of the recordings (lead II, say), measure the other intervals or durations of wave forms in the ECG indicated in Figure 1 and in the Table. Table 1 Resting ECG Subject Heart rate RR (s) (beats.min-1) PR (s) QRS ST (s) QT (s) duration (s) Can you say from your results whether systole or diastole lasts longer in resting conditions? If the P wave was not followed by a QRS what could this signify? What could a long QRS duration signify? What is long QT syndrome? At the end of this manual, there are additional notes on ECG and how to take further measurements Part 3: Experimental Design – TIME PERMITTING! In groups of 4, you will come up with your own hypothesis for which you will design and experiment using one or both of these techniques. (You will be unable to use the techniques simultaneously on 1 person.) Some suggested experiment titles The effect of exercise on heart rate/breathing The effects of holding breath and hyperventilation on ECG The effect of meditation on the heart rate Does posture have an effect on breathing? “The effect of caffeine on heart rate and/or breathing” When you are thinking of what experiment you want to do, consider what conditions you will compare. You may want to compare duration, intensity or type of exercise, or look at individual responses to the same exercise comparing gender, age or fitness level. Note that individual must be disconnected from ECG whilst exercising and quickly reattached once finished. Before you start, you will need to: Write a hypothesis Summarise your experimental methods Work out what results you want to measure and how best to record them Prepare a table for results to be recorded Remember, “The difference between screwing around and science is writing it down”. (Adam Savage, Mythbusters) A note about safety: Before starting any experiment, please check with a lab demonstrator that they are happy that it is safe! Experiment Title: _______________________________________________________ Hypothesis: Experimental Design: Results: Further exercises: The ECG and the heart sounds. Heart sounds. Heart sounds are associated with the shutting of heart valves. Two distinct sounds are normally present. The first, duller sound (often denoted lub) is associated with the shutting of the mitral and tricupsid valves in the left and right sides of the heart, respectively. The second, sharper sound (dub) is associated with shutting of the aortic and pulmonary valves. Even in normal physiological conditions, this second heart sound may be split owing to the aortic and pulmonary valves shutting at slightly different times. Such splitting is normally more prominent during inspiration, when the pulmonary valve shuts slightly later than the aortic. (Why do you think splitting of the second heart sound happens in this way?) Errors of normal heart valve opening or closure generally result in blood flowing turbulently through valves, and this turbulence can be detected as a murmur. A third heart sound can often be detected and is normal, especially in young people. It is associated with rapid, turbulent flow of blood into the ventricles from the atria at the start of diastole. Heart sounds are detected by auscultation using a stethoscope or with a microphone placed in an appropriate position, and you will listen to your own heart sounds in this way during this practical class. Physicians listen in turn at each of four distinct sites on the chest for heart sounds. These positions optimise detection of sounds from particular valves and are shown in Figure 2. In this practical, you will pick up heart sounds from the aortic area. aortic area pulmonary area tricuspid area mitral area Figure 2. Positions used in auscultation. The aortic and pulmonary areas are at the sternal edge at the level of the second intercostal space on right and left sides, respectively. The tricuspid area is at the left sternal edge at the level of the fifth intercostal space; the mitral area is at the level of the fifth intercostal space in the mid clavicular line. In this exercise, you will record the heart sounds from the aortic area, over the second intercostal space at the right edge of the sternum (see Fig. 2). This is the place where the ascending aorta comes closest to the chest wall. First, each member of the group should listen to their own heart sounds using the stethoscope. Place the bell of the stethoscope on the chest under your shirt or top and search for a place where you can readily hear your heart sounds. Identify the first and second of these. Examine the effect of breathing in and holding your breath for a brief period. Can you hear splitting of the second heart sound (this is difficult)? Finding the second intercostal space. First find the clavicle or collar bone. Run your finger along it from lateral to medial until you come to the place where it meets the sternum at the manubrium sterni. The first rib also attaches just below the clavicle. Identify the first intercostal space, then the second rib, and then the second intercostal space in order below the sternal end of the clavicle. Connect the volunteer as follows: 1. Place the microphone over the second intercostal space at the right sternal edge. 2. Tape the microphone into position here, using the tape provided. 3. Reconnect the ECG electrodes to record whichever lead (I, II, or III) gives the largest QRS complex. Software set up 1. Set up Chart so that you can record from Channels 1 and 3. You will use Channel 3 to record the ECG as before. You will use Channel 1 to record the heart sounds. 2. Click on Setup, then on Channel Settings. Make sure channels 1 and 3 are on. Set the number in the Range column to 20mV for Channel 1, and 2mV for Channel 3. Set n to 3. 3. In the Input Amplifier column, click on Input Amplifier for Channel 1. In the menu that then appears, make sure the Channel is recording Input 1. In the Calculation column, make sure the setting for Channel 1 is on No Calculation. 4. OK these settings to return to the recording chart. 5. Set the digitisation rate to 1k/s. 6. Record for about 10s. 7. The heart sounds are difficult to record. You may need to move the microphone slightly to ensure it picks them up. Sometimes filtering the record can help Analysis Identify the waveforms of the ECG. Identify the first and second heart sounds. Use one of the several heart beats you have recorded to make the following measurements. 1. Use the cursor to measure the time at the start of one of the QRS complexes and at the start of the following T-wave of the ECG. Remind yourself what events these signify? 2. Use the cursor to measure the start of the first (S1) and second (S2) heart sounds. 3. Work out the interval between the first and second heart sounds. 4. Work out the intervals between the QRS complex and the first heart sound, between the T wave and the second heart sound. 5. Write these intervals in the following Table. Table 4 Relationship between the ECG and the heart sounds. Subject Interval S1 to S2 Interval QRS and S1 Interval T wave and S2 From the above table: What is the duration of systole? What is the duration of diastole? Why is there a delay between the QRS complex and the first heart sound (S 1)? What links the two? Why is there a delay between the T wave and the second heart sound (S 2)? What links these two events? Electrical axis of the heart. Look at the QRS complexes in the three leads (I, II, and III, the different modes of connecting electrodes to the amplifier). Are they identical in each case? It is unlikely that they will be – why? Measure the amplitude (in mV) of the R wave (relative to the baseline) with the cursor in each of the 3 leads. Table 2 Electrical axis of the heart Subject Amplitude in lead I Amplitude in Lead Amplitude in Lead (mV) II (mV) III (mV) Note that at this time the heart beat will be spreading through the ventricular musculature. In which net direction is the heart beat spreading at this time? The Rwave is often biggest in Lead II (Fig. 3). However, there is a very large variation from one individual to another in the electrical axis of the heart, so do not be concerned if the electrical axis does not fit this prediction. What factors determine the axis of the heart? Figure 3. The connections used for recording leads I, II, and III are shown on the left. The directions in which they are considered to ‘view’ the heart are shown on the right.