* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Quadrilaterals
Technical drawing wikipedia , lookup
Steinitz's theorem wikipedia , lookup
Euler angles wikipedia , lookup
Tessellation wikipedia , lookup
Multilateration wikipedia , lookup
Analytic geometry wikipedia , lookup
Noether's theorem wikipedia , lookup
Problem of Apollonius wikipedia , lookup
Shapley–Folkman lemma wikipedia , lookup
Riemannian connection on a surface wikipedia , lookup
Line (geometry) wikipedia , lookup
Brouwer fixed-point theorem wikipedia , lookup
Rational trigonometry wikipedia , lookup
History of geometry wikipedia , lookup
Trigonometric functions wikipedia , lookup
Euclidean geometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Integer triangle wikipedia , lookup
Incircle and excircles of a triangle wikipedia , lookup
Tangent lines to circles wikipedia , lookup
Quadrilaterals MA 341 – Topics in Geometry Lecture 22 Theorems 1. A convex quadrilateral is cyclic if and only if the four perpendicular bisectors of the sides are concurrent. 2 A convex quadrilateral 2. d il t l iis cyclic li if and d only if opposite angles are supplementary. l t 21-Oct-2011 MA 341 001 2 Ptolemy’ss Theorem Ptolemy Let a, b, c, and d be the l lengths h of f consecutive sides of a cyclic quadrilateral and let x and y be the lengths of the diagonals. Then ac + bd = xy. Also, b y a x c d x ad + bc = y ab + cd 21-Oct-2011 MA 341 001 3 Ptolemy’ss Theorem Ptolemy This leads to the f ll following: b ((ac +bd)(ad )( + bc)) x= ab + cd y a x c and (ac + bd)(ab + cd) y= ad d +b bc 21-Oct-2011 MA 341 001 d 4 Angles of a cyclic quadrilateral If A is the angle between a and dd a2 + d2 -b2 - c2 cos(A) = 2(ad + bc) ( - a)(s (s )( -b)(s b)( - c)(s )( - d) sin(A) = 2 ad +bc A (s - a)(s - d) tan = 2 (s -b)(s b)(s - c) 21-Oct-2011 MA 341 001 5 Angles of a cyclic quadrilateral The angle, θ, between the diagonals (s -b)(s - d) tan = 2 (s - a)(s - c) The circumradius is 1 (ab + cd)(ac + bd)(ad + bc) R= 4 (s - a)(s -b)(s - c)(s - d) (P (Parameshvara’s h ’ formula) f l ) 21-Oct-2011 MA 341 001 6 Incenters of the triangles The incenters of 4 triangles form a rectangle Sides parallel Sid ll l tto lines through midarc id points i t 21-Oct-2011 MA 341 001 7 Incenters of the triangles The incenters and excenters of 4 triangles form a 4 x 4 grid 21-Oct-2011 MA 341 001 8 Incenters of the triangles Consider quadrilaterals formed by centroids, 9-point circle centers and orthocenters of the 4 triangles 21-Oct-2011 MA 341 001 9 Incenters of the triangles All are similar to ABCD. H2H1H4H3 is congruentt to t ABCD ABCD. 21-Oct-2011 MA 341 001 10 Tangential Quadrilaterals A convex quadrilateral whose sides all lie tangent to inscribed circle – the incircle 21-Oct-2011 MA 341 001 11 Tangential Quadrilaterals Is a rectangle a tangential quadrilateral? Is a square a tangential quadrilateral? Is a parallelogram ll l a tangentiall quadrilateral? 21-Oct-2011 MA 341 001 12 Tangential Quadrilaterals Is a rhombus a tangential quadrilateral? Is a kite a tangential quadrilateral? 21-Oct-2011 MA 341 001 13 Tangential Quadrilaterals In triangle incenter = intersection of angle bisectors Whatt about Wh b t quadrilaterals? 21-Oct-2011 MA 341 001 14 Tangential Quadrilaterals I is equidistant from AD, AB and BC B ∆API ∆AMI PI MI N C M ∆MIB ∆NIB NI MI D P A 21-Oct-2011 MA 341 001 15 Tangential Quadrilaterals I is equidistant from AD, AB BC and CD AB, ∆API ∆AMI PI MI B MA 341 001 C M ∆MIB ∆NIB NI MI etc Thus, there is an inscribed circle! A 21-Oct-2011 N D P 16 Tangential Quadrilaterals If there is an inscribed circle, then center is equidistant from sides. sides 21-Oct-2011 MA 341 001 17 Tangential Quadrilaterals Then, BI, Then BI CI, CI DI, DI and AI are angle bisectors. bisectors 21-Oct-2011 MA 341 001 18 Theorem A quadrilateral is tangential if and only if a + c = b + d. N M O P 21-Oct-2011 MA 341 001 19 Proof BM=BN CN=CO DO DP DO=DP M AP=AM a + c = AM+MB+CO+OD = AP+BN+CN+DP =b+d 21-Oct-2011 MA 341 001 N O P 20 Proof Assume a + c = b + d. B B’ Construct C st t circle i l tangent t t to AB, AD, CD. b Construct CB’’ tangent to circle WLOG AB’<AB a A d D c C 21-Oct-2011 MA 341 001 21 Proof AB’CD D tangential g AB’ + c = d + B’C a +c=d+b Subtraction a - AB AB’ = b – B B’C C BB’ + B’C = b B=B B’ ABCD tangential B B’ a A d b D c C 21-Oct-2011 MA 341 001 22 Result If ABCD tangential quadrilateral then a +b + c + d a +c =b +d = =s 2 21-Oct-2011 MA 341 001 23 Area For inradius r and semiperimeter s N K = rs M O P 21-Oct-2011 MA 341 001 24 Area Trigonometric formula p K = rs D B +D K = abcd b d sin i 2 q 1 2 2 2 K= p q - (ac -bd) 2 21-Oct-2011 MA 341 001 25 Further Results 1 If a line cuts a tangential quadrilateral 1. into two polygons with equal areas and equal perimeters, perimeters the line passes through the incenter 2 If M and N are midpoints of diagonals 2. and incenter = I, then M, I, and N are collinear 21-Oct-2011 MA 341 001 26 Further Results 3 If incircle is tangent to AB, 3. AB BC, BC CD, CD DA at X, Y, Z, W respectively, then lines XY WZ and AC are concurrent XY, 4. If I is incenter then IAIC + IBID = ABBC CDDA 5. Incenter I of ABCD coincides with centroid of ABCD if and only if IAIC = IBID 21-Oct-2011 MA 341 001 27 Further Results Look at the incircles of the triangles of a tangential quadrilateral. 21-Oct-2011 MA 341 001 28 Further Results 21-Oct-2011 MA 341 001 29