Download Powers and Roots of Complex Numbers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Location arithmetic wikipedia , lookup

Large numbers wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Addition wikipedia , lookup

Factorization wikipedia , lookup

Elementary mathematics wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Vincent's theorem wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Transcript
POWERS AND
ROOTS OF
COMPLEX
NUMBERS
DR. SHILDNECK
MULTIPLYING COMPLEX NUMBERS
Remember how to multiply from yesterdayโ€ฆ It follows
Given ๐‘ง1 = ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 = ๐‘Ÿ1 (๐‘๐‘œ๐‘ ๐œƒ1 + ๐‘– ๐‘ ๐‘–๐‘›๐œƒ1 ),
๐‘ง1
๐‘›
๐‘ง1 2 = ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 = ๐‘Ÿ1 ๐‘Ÿ1 ๐‘๐‘–๐‘  ๐œƒ1 + ๐œƒ1 = ๐‘Ÿ1 2 ๐‘๐‘–๐‘ (2๐œƒ1 )
๐‘ง1 3 = ๐‘Ÿ1 2 ๐‘๐‘–๐‘ (2๐œƒ1 ) ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 = ๐‘Ÿ1 2 ๐‘Ÿ1 ๐‘๐‘–๐‘  2๐œƒ1 + ๐œƒ1 = ๐‘Ÿ1 3 ๐‘๐‘–๐‘ (3๐œƒ1 )
๐‘ง1 4 = ๐‘Ÿ1 3 ๐‘๐‘–๐‘ (3๐œƒ1 ) ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 = ๐‘Ÿ1 3 ๐‘Ÿ1 ๐‘๐‘–๐‘  3๐œƒ1 + ๐œƒ1 = ๐‘Ÿ1 4 ๐‘๐‘–๐‘ (4๐œƒ1 )
โ‹ฎ
= ๐‘Ÿ1 ๐‘›โˆ’1 ๐‘๐‘–๐‘ ((๐‘› โˆ’ 1)๐œƒ1 ) ๐‘Ÿ1 ๐‘๐‘–๐‘ ๐œƒ1 = ๐‘Ÿ1 ๐‘›โˆ’1 ๐‘Ÿ1 ๐‘๐‘–๐‘  (๐‘› โˆ’ 1)๐œƒ1 +๐œƒ1 = ๐‘Ÿ1 ๐‘› ๐‘๐‘–๐‘ (๐‘›๐œƒ1 )
DEMOIVREโ€™S THEOREM
If the polar form of a complex number is ๐‘ง = ๐‘Ÿ๐‘๐‘–๐‘ ๐œƒ = ๐‘Ÿ (๐‘๐‘œ๐‘ ๐œƒ + ๐‘– ๐‘ ๐‘–๐‘›๐œƒ),
๐’›๐’ = ๐’“๐’ ๐’„๐’Š๐’”(๐’๐œฝ) = ๐’“๐’ (๐œ๐จ๐ฌ ๐’๐œฝ + ๐’Š ๐ฌ๐ข๐ง ๐’๐œฝ)
EXAMPLE
[Example 1] Find 4 + 4 3๐‘–
6
and express the answer in rectangular form.
ROOTS OF COMPLEX NUMBERS
Remember from the Fundamental Theorem of Algebra that polynomials of degree n
have exactly n zeros (roots) in the complex number system.
This means that x4 = 256, which we can re-write as x4 โ€“ 256 = 0, has exactly FOUR
roots.
This indicates that the number 256 has exactly four 4th roots in the complex numbers
(4, -4, 4i, -4i).
In general, all nonzero complex numbers have exactly n distinct nth roots.
That is, they have two square roots, three cube roots, four fourth roots, etc.
DEMOIVREโ€™S THEOREM (FOR ROOTS)
For a positive integer p, the complex number ๐‘ง = ๐‘Ÿ (๐‘๐‘œ๐‘ ๐œƒ + ๐‘– ๐‘ ๐‘–๐‘›๐œƒ), has exactly p distinct pth
roots. They can be found by
๐Ÿ
๐’“๐’‘
๐œฝ + ๐Ÿ๐’๐…
๐œฝ + ๐Ÿ๐’๐…
๐œ๐จ๐ฌ
+ ๐’Š ๐ฌ๐ข๐ง
๐’‘
๐’‘
Where n = 0, 1, 2, โ€ฆ, (p-1).
EXAMPLE
[Example 2] Find the cube roots of 3 + 4๐‘– . (Round answers to the nearest hundredth if
necessary)
EXAMPLE
[Example 3] Find the fourth roots of 4 โˆ’ 4๐‘– . (Round answers to the nearest hundredth if
necessary)
ROOTS OF COMPLEX NUMBERS
Observations about the roots of complex numbers
The roots of complex numbers all have the same modulus (which can be
thought of as the radius of a circle).
When plotting the roots, you will notice that the roots are equally spaced
around that circle.
ROOTS OF UNITY (SPECIAL CASE)
Finding the pth roots of 1
When written in polar form, one is written as r = 1.
Thus, the modulus is 1, which means the pth roots of 1 lie on the unit circle.
Like all nonzero complex numbers, 1 has p distinct pth roots in the complex
number system.
EXAMPLE
[Example 4] Find the complex fourth roots of 1.
ASSIGNMENT
Handout # 53-75 odd