Download Загрузить этот файл PDF - Геодинамика и тектонофизика

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Schiehallion experiment wikipedia , lookup

Geobiology wikipedia , lookup

Geomorphology wikipedia , lookup

Evolutionary history of life wikipedia , lookup

Spherical Earth wikipedia , lookup

Post-glacial rebound wikipedia , lookup

History of geomagnetism wikipedia , lookup

Magnetotellurics wikipedia , lookup

Nature wikipedia , lookup

Age of the Earth wikipedia , lookup

Geology wikipedia , lookup

History of geology wikipedia , lookup

History of Earth wikipedia , lookup

Earthscope wikipedia , lookup

Mantle plume wikipedia , lookup

Large igneous province wikipedia , lookup

Geophysics wikipedia , lookup

Plate tectonics wikipedia , lookup

Transcript
GEODYNAMICS & TECTONOPHYSICS
PUBLISHED BY THE INSTITUTE OF THE EARTH’S CRUST
SIBERIAN BRANCH OF RUSSIAN ACADEMY OF SCIENCES
2015 VOLUME 6 ISSUE 3 PAGES 387–408
ISSN 2078-502X
http://dx.doi.org/10.5800/GT-2015-6-3-0187
GENETICSOURCESANDTECTONOPHYSICALREGULARITIESOF
S.I.Sherman
InstituteoftheEarth’sCrust,SiberianBranchofRAS,Irkutsk,Russia
Abstract:Thepaperpresentsthefirsttectonophysicalreconstructionofinitialdivisibilityoftheprotolithosphereasa
resultofconvectioninthecoolingprimitivemantle.Initialdivisionoftheprotolithosphereintoseparatemasses,i.e.
prototypesoftheblocks,andtheirsizearepredeterminedbytheemergingRayleigh‐Benardconvectioncells.Instu‐
diesofgeologyandgeodynamics,theRayleigh‐Benardconvectioncellswerefirstreferredtoasafactortoexplainthe
formationofinitialcontinentalcores.ConsideringtheRayleigh‐Benardcellsandtheirstructuralrelicscanhelpclarify
initialdivisibilityoftheprotolithosphereandtheoriginofthemajorlithosphericplates,i.e.prototypesofcontinents.
Inouropinion,theinitialmega‐scaleblockstructureoftheprotolithosphereandtheemerginglithospherewerepre‐
determinedbytheRayleigh‐Benardcellsastheywerepreservedintheemerginglithosphereandtheirlowerbounda‐
riescorrespondedtothecore‐mantleboundary,i.e.oneofthemajordiscontinuitiesoftheplanet.Ourtheoreticales‐
timationsareingoodagreementwiththenumberandsizesoftheEarth'stheorizedfirstsupercontinents,Vaalbara
andUr.
Inourtectonophysicaldiscussionoftheformationofthelithosphericblockstructure,weanalyzeindetailthemap
ofmodernlithosphericplates[Bird,2003]incombinationwiththematerialsfrom[Shermanetal.,2000].Inthehie‐
rarchyoftheblockscomprisingthecontemporarylithosphere,whichsizesarewidelyvariable,twogroupsofblocks
areclearlydistinguished.Thefirstgroupincludesmegablockswiththeaveragegeometricsizeabove6500km.Their
formationisrelatedtoconvectionintheEarthmantleatthepresentstageofthegeodynamicevolutionoftheEarth,
aswellasatallthepreviousstages,includingtheearliestone,whentheprotolithosphereemerged.Thesecondgroup
includesmedium‐sizedblockswiththeaveragegeometricsizeoflessthan4500kmandthosewithminimumsizes,
suchasrocklumps.Theyreflectprimarilythedegradationofmegablocksasaresultoftheirdestructionduetohigh
stressesinexcessofthetensilestrengthofthemedium.Thisgroupmayalsoincludeblockswhichformationisrelated
toconvectionintheuppermantlelayer,asthenosphere.Therearegroundstoassumethatthroughthevastinterme‐
diateintervalofgeologictime,includingsupercyclesofKenorlend,Rodin,andandparticallyPangea,theformationof
thelargelithosphericblockswascontrolledbyconvection,andlateron,theywere'fragmented'underthephysical
lawsofdestructionofsolidbodies.However,itisdifficulttoclearlydistinguishbetweentheprocessesthatpredeter‐
minethehierarchyofformationoftheblockstructuresofvariousorigins–sizesofancientlithosphericblockscannot
beestimatedunambiguously.
Thus, mantle convection is a genetic endogenous source of initial divisibility of the cooling upper cover of the
Earthandmegablockdivisibilityofthelithosphereinthesubsequentandrecentgeodynamicdevelopmentstages.At
thepresentstage,regularpatternsofthelithosphericblockdivisibilityofvariousscalesareobservedatallthehie‐
rarchic levels. The areas of the lithospheric megaplates result from regular changes of convective processes in the
mantle,whichinfluencedtheformationofplatesandplatekinematics.Fragmentationofthemegaplatesintosmaller
onesisaresultofdestructionofthesolidlithosphereunderthephysicallawsofdestructionofsolidbodiesunderthe
impactofhighstresses.
Keywords:lithosphere,tectonicplates,blocks,convection,destruction,tectonophysics,divisibilityofthelithosphere,
Rayleigh‐Benardcells,continents
Discussion
DIVISIBILITYOFTHELITHOSPHEREINTOBLOCKSOFVARIOUSRANKSAT
DIFFERENTSTAGESOFITSFORMATION:TECTONOPHYSICALANALYSIS
RecommendedbyE.V.Sklyarov
For citation: Sherman S.I. 2015. Genetic sources and tectonophysical regularities of divisibility of the
lithosphere into blocks of various ranks at different stages of its formation: tectonophysical analysis.
Geodynamics&Tectonophysics6(3),387–408.doi:10.5800/GT‐2015‐6‐3‐0187.
387
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
ГЕНЕТИЧЕСКИЕИСТОЧНИКИИТЕКТОНОФИЗИЧЕСКИЕ
ЗАКОНОМЕРНОСТИРАЗНОРАНГОВОЙБЛОКОВОЙДЕЛИМОСТИ
ЛИТОСФЕРЫНАРАЗЛИЧНЫХЭТАПАХЕЕФОРМИРОВАНИЯ:
ТЕКТОНОФИЗИЧЕСКИЙАНАЛИЗ
С.И.Шерман
ИнститутземнойкоpыCОPАН,Иpкутcк,Россия
Аннотация: Впервые проводится тектонофизическая реконструкция формирования первичной делимости
протолитосферыврезультатеконвекцииостывающейпримитивноймантии.Формирующиесявнейконвек‐
тивныеячеиРэлея‐Бенарапредопределяютразмерыпервичногоразделенияпротолитосферынаотдельные
массы–прообразыблоков.ЯчеиРэлея‐Бенараневпервыеиспользуютсявгеологииигеодинамике.Первона‐
чально на них ссылались для объяснения формирования первичных континентальных ядер. Обращение к
ячеямРэлея‐Бенараиихструктурнымреликтамспособствуетпониманиютого,какзарождаетсяпервичная
делимостьпротолитосферы,котораятрансформируетсявкрупныелитосферныеплиты–прообразыконти‐
нентов.ИменноконсервирующиесявформирующейсялитосфереячеиРэлея‐Бенара,нижняяграницакото‐
рыхкорреспондироваласоднимизглавныхразделовпланеты–границейядра,–предопределилипервона‐
чальнуюмегамасштабнуюблоковуюструктурупротолитосферыиформирующейсялитосферы.Проведенные
теоретические оценки сопоставлены и хорошо согласуются с количеством и размерами площадей первых
гипотетическихконтинентальныхструктур–суперконтинентовВаальбараиУра.
Продолжениетектонофизическогоразбораформированияблоковойструктурылитосферыреализованона
детальноманализекартысовременныхлитосферныхплит[Bird,2003]спривлечениемфактическихматериа‐
лов[Shermanetal.,2000].ВширокойпоразмерамплощадейиерархииблоковвсовременнойлитосфереЗемли
отчетливо выделяются две группы. Первая – мегаблоки, среднегеометрический размер которых превышает
6500км.ИхформированиенасовременномэтапегеодинамическогоразвитияЗемли,атакженавсехпредше‐
ствующих,втомчислеинасамомраннем,призарождениипротолитосферысвязаносконвекционнымипро‐
цессамивмантииЗемли.Втораягруппа–блокисосреднегеометрическимразмеромменее4500км,вплотьдо
минимального,соответствующегокусковатостигорныхпород,отражают,преждевсего,деструкциюмегабло‐
ков в результате их разрушения под действием высоких внутренних напряжений, превышающих предел
прочности среды. В этой же группе могут быть блоки, формирование которых также связано с конвекцией,
охватывающейверхниймантийныйуровень–астеносферу.Можнопредполагать,чтовгромадномпромежу‐
точном интервале геологического времени, охватывающем суперциклы Кенорленд, Родинию и, частично,
Пангею,формированиекрупныхлитосферныхблоковконтролировалоськонвекцией,аихдальнейшее«дроб‐
ление»регулировалосьфизическимизаконамиразрушениятвердыхтел.Однакочеткуюграницумеждупро‐
цессами,определяющимииерархиюформированияблоковыхструктурразногогенезисавпрошедшиевреме‐
на,провеститрудноиз‐занеопределенностиразмеровлитосферныхблоковдалекогопрошлого.
Такимобразом,конвекциявмантииявляетсягенетическимэндогеннымисточникомпервичнойделимо‐
стиостывающейверхнейоболочкиЗемли,атакжемегаблоковойделимостисобственнолитосферывпосле‐
дующиеэтапыеегеодинамическогоразвития.Насовременномэтапезакономерностиразномасштабнойбло‐
ковойделимостилитосферыпрослеживаютсянавсехиерархическихуровнях.Площадимегаплитлитосферы
–результатзакономерныхизмененийконвективныхпроцессоввмантиииихвоздействиянаформирование
икинематикуплит;деструкциямегаплитнаменьшиепоплощадиблоки–результатзакономерногодробле‐
ниятвердыхтеллитосферыпривысокихнапряжениях.
Ключевыеслова:литосфера,тектоническиеплиты,блоки,конвекция,деструкция,тектонофизика,
делимостьлитосферы,ячеиРелея‐Бенара,континенты
ItisnowevidentthatwithoutunderstandingtheEarth'sevolutionsincetheearlieststages
whenthecoversofourplanetanditscontinentalcrustwereformed,itisdifficulttodetermine
locationswherethemajornaturalresourcesareaccumulatedandtorevealhowvarious
structuralelementsandawidevarietyofigneousrocksweregeneratedandcontinuetheirdevelopment.
1.INTRODUCTION
Initial divisibility of the Earth protolithosphere, i.e.
the cooling outer hard cover of the planet, and its
transformationwithtimeintolithosphericblockshave
388
AcademicianM.I.Kuz'min[2014,p.626]
not been properly studied yet in terms of the geody‐
namicsoffaulting,andtectonicregularitiesindivisibi‐
lityofthelithosphericblocksofvariousranksstillneed
to be clarified. In the outer cover of the Earth, initial
divisibility of the protolithosphere was due to cooling
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
oftheprimitivemantleasaresultofheat‐gravitational
convectionmanifestedbyRayleigh–Bénardcells.Inthis
study, we assess tectonophysical conditions for the
generationofsuchcellsandestimatepotentialsizesof
the cells and amounts of primary proto‐lithospheric
coolingmassesasprototypesoftheblocks.Ourestima‐
tionsareconsistentwiththereconstructedfirstsuper‐
continental cycles of the geodynamic evolution of the
Earth. The block divisibility of the recent continental
lithosphere is analysed in detail with reference to the
map of present tectonic plates and blocks of the litho‐
sphere and the cumulative plate count according to
[Bird, 2003]. In addition to the data from [Bird, 2003]
whichmainlycover megaplatesandblocksofmedium
sizes,weanalysetheparametersspecifiedin[Sherman
et al., 2000] for medium‐ and small‐size blocks resul‐
ting from destruction of megaplates and blocks of the
continental lithosphere. We propose regression equa‐
tions describing divisibility of the continental litho‐
sphereintoblocksinawidescalerange,frommedium‐
to small‐sized blocks and rock fragments in outcrops.
Such fragments result from destruction of medium‐
and small‐sized blocks of the 'solid' lithosphere which
takes place when internal stresses exceed the rock
breakdown point, as described by exponential func‐
tions.
The occurrence of megablocks is related to mantle
convection at the early stage of the evolution of the
protolithosphere and subsequent stages of its trans‐
formation into the lithosphere through the global su‐
per‐cycles of the geodynamic evolution of the Earth.
The scale and organization of mantle convection are
factorsthatpredeterminedivisibilityofthelithosphere
intomegablocksthroughalltherecentstagesofitsde‐
velopment,includingthepresentstage.
2.THEPRIMARYHOTCOVEROFTHEEARTH,
ITSCOMPOSITIONANDTHICKNESS
One of the most recent theoretical reviews of the
early stages in the evolution of the Solar System and
the geological history of the Earth was published by
M.I. Kuz'min [2014] who rightly notes that the global
academicgeologicalcommunityischallengedtoestima‐
tethetimewhenthefirstcontinentalcrustwasformed
on the Earth. He develops the concepts co‐authored
withV.V.Yarmolyuk[Yarmolyuk,Kuz’min,2012]onthe
formation of the outer and deep covers of the Earth,
mantle processes and their impacts on the occurrence
ofsurfacestructures,igneousrocksandores.
Thereview[Kuz’min,2014]isbasedonthelatestda‐
ta on the origin of the Solar System and formation of
the first continental rocks on the Earth, which contain
zircon,theoldestmineralsofardatedontheEarth.Itis
assumedthattheSolarSystemformedfromagas‐and‐
dust nebula 4.568 Ga ago. The continental crust was
gradually growing from its recorded peak size (4.25
Ga)till4.1Ga,i.e.completionofthefirsteoninEarth's
history,theHadean.Itseemstobeacriticalmilestone
intheearlygeologicalhistoryoftheEarth,followedby
theArchaenhistory[Kuz'min,2014]–intensivecooling
oftheoutercoveroftheEarthcommencedinthisperi‐
od.Theheatflowwassupportedbytheinnersupplyof
heatgeneratedduetogravitationalcompressionofthe
planetwhileitssolidbodywasformed[Schubertetal.,
2001].
The estimated average temperatures of the mantle
range from 1250–1350 °С to 1400 °С, and a roughly
estimated temperature of the cooling Earth is 0 °С. In
thepresentstage,themaximumtemperatureoftheas‐
thenospheretopisabout1350–1400°С,andthistem‐
perature level is supported by various endogenous
heatsourcesoftheEarthandcompensatesheatlosses
causedbycooling.AttheearlystageoftheEarthevolu‐
tion, temperatures range from 0°С (or slightly above
0°С) at the Earth's surface to ~1350–1400 °С at the
depthlevelswhereattemperaturechangesintheperi‐
odofcoolingarelesssignificantduetoheatinflux.Un‐
der this assumption, the cover can be viewed as a
gradually cooling low‐viscous fluid body comprising
the lower and upper layers which temperatures are
significantlydifferent.Atthefirststagewhentheouter
coveroftheEarthwasformed,convectionwasthema‐
jormechanismofheatenergydissipation.Itcanbeas‐
sumed that convection commenced in the pre‐Kat‐
archean eon and is underway until now, while the
volumes and forms of convective flows have signifi‐
cantlychangedwithtime.Thistimeperiodagreeswith
the maximum age of about 4.1 Ga determined in
[Kuz’min,2014]forthestartofthedevelopmentofthe
protolithosphere that converted with time into the
lithospherewhichdevelopmentiscontinued.
By its initial composition, the cooling upper cover
of the Earth corresponds to the so‐called primitive
mantle,asevidencedbythecompositionofchondrites,
i.e.stony(non‐metallic)meteorites.Thebulkcomposi‐
tion of the primitive mantle is similar to the silicate
coveroftheEarthwhichwasformedoftheprotoplanet
materialafterthecorehadseparated[Hofmann,1997].
It is noteworthy that variaitons in the composition of
the primitive mantle do not influence estimations of
temperatures at the lower boundaries of the primary
mantlemassesatthecoolingsurfaceoftheEarth.
Physical parameters and the composition of the
primitive mantle changed in the post‐Archean period
[Vrevsky et al., 2010] including several large cycles of
thegeodynamicdevelopmentoftheEarth,whichwere
also related to mantle convection. By the Archean pe‐
riod,theEarth'scrustwascompletelyformed,andthe
upper boundary of the mantle convection processes
wentdownintotheEarthinteriorbydozensofkilome‐
389
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
tres [Artemieva, 2011]. Responses of the upper solid
partofthelithosphereasarheologicalbodytoexternal
impacts,especiallyexternalloadingatdifferentveloci‐
ties, became different. In the former convective medi‐
um,convectioninthecoolingupperlayerofthequasi‐
fluidwasreplacedbyheatconduction/diffusioninthe
solid body. Studies of destruction of solid bodies and
rank‐variable fracturing and faulting are reported in
many papers, including [Peive, 1990; Sherman et al.,
1991,1992,1994;Seminsky,2003;Sherman,2002,2012,
2014a, 2014b; and others], and it is established that
physical laws of deformation and destruction of solid
bodiesareapplicable.
A major challenge is to analyse, in a retrospective,
the origin and initial formation of structures in the
coolingprotolithospherewhichphysicalpropertiesare
assumed similar to those of the cooling low‐viscous
quasi‐liquidmass.Insuchamedium,themaximumdis‐
sipation of energy was ensured by convection of va‐
rious types, from structurally organized (Rayleigh–
Bénard cells) to chaotic.This long‐term process in the
uppercoveroftheEarthhaditsregularfeaturesdueto
convectiveflowsofthemegamassthatwascoolingit.
Thetotalthicknessofthecoolingmassoftheprimitive
mantle can be assumed at 2900 km as the outer core
boundaryislocatedatthisdepth.Belowwereviewhy‐
drodynamic regularities in convection of cooling low‐
viscous materials and relic structures which are im‐
portant for reconstructing the paleogeodynamic set‐
tings of the distant past and estimating probable di‐
mensionsoftheprimaryblocks.
3.KEYREGULARITIESINTHEFORMATIONOFCONVECTIVE
CELLSINCOOLINGLOW‐VISCOUSMATERIALSANDRELIC
STRUCTURES
It is most reasonable to believe that energy in the
cooling low‐viscous medium is dissipated by mantle
convection that is most common manifested by Ray‐
leigh–Bénard cells. The cooling surface of the Earth is
assumedtobehaveasthecoolinglow‐viscousmedium
much time before the Katarchean. Convection is gene‐
rally reviewed below as a prerequisite for an assess‐
ment of conditions for initial divisibility of the outer
coveroftheprotolithosphere.
Generalconvectionequation.Theonsetofconvection
occurs when the Rayleigh number reaches some criti‐
cal value. The Rayleigh number, Ra is a dimensionless
number predetermining the behaviour of gas, fluid or
massofaverylowviscosityataspecifiedtemperature
gradient. When the Rayleigh number exceeds its criti‐
cal value, the equilibrium of the cooling fluid is dis‐
turbed, which leads to the occurrence of convection
flowsandbifurcation.Thebifurcationpointisthecriti‐
calvalueoftheRayleighnumber:
390
Ra
Δ
, 1 wheregisthegravityacceleration;Listhesizeofthe
fluid area; Δ is the difference of temperatures at the
surface and the lower layer of the fluid; is the kine‐
maticviscosityofthefluid; istheheatconductivityof
the fluid; is the coefficient of thermal expansion of
thefluid.
IftheRavalueissmall,convectiondoesnotstart.If
valuesofRaareaverage,conditionsarefavourablefor
heatconvection.ChaosoccursathighvaluesofRa.Va‐
luesofRadependoncombinationsofallotherparame‐
tersinequation1.However,consideringcoolingofthe
primitive mantle in the model discussed here, the dif‐
ference of temperatures and thickness of the cooling
layerarethemainparameters.Itshouldbenotedthat
patternsofconvectivecellsaresignificantlydependent
ondimensionsofthecoolingarea.Insuchcases,anad‐
ditionalparameterneedstobeintroduced–aspectra‐
tio,G[Getling,1998]:
G=L/h,
(2)
whereLishorizontalsizeofanarea(foracircularsec‐
tion,itcorrespondstoaradius);hisverticalsizeofthe
area.
TheGrashof(Gr)andPrandtl(Pr)numbersarealso
widelyusedinstudiesofRayleigh–Bénardcells,butnot
inthisreview.
Inthebelowdiscussionofthenaturalconditions,we
refertocaseswithlargevaluesofG.Horizontalprojec‐
tionsofcellsarecalledplanforms.Theplanformsmay
significantlyvarydependingonparametersoftheme‐
dium.Planformsofthecellswhicharetypicalobserved
in the experimental and natural settings are reviewed
below.
Planformsofconvectivecells,andphysicalconditions
for their formation and stability. Three types of cell
planforms are typically observed in the experiments
[Getling, 1998]: two‐dimensional bars, hexagonal cells
andsquare/rectangularcells(Fig.1).
AsshowninFig.1a,2Dbarsareorientedalongaxis
ХandparalleltoaxisУ(x‐bars)orviceversa,andacell
is formed by a pair of neighbouring bars that occupy
theentirespatialinterval.Inthebars,fluidcirculatesin
verticalplaneX,Zaswellasintheoppositedirections.
Hexagonal cells (Fig. 1, b) are composed by the su‐
perpositionofthreesystemsofbarswhicharelocated
at angles 2π/3 to each other. Such cells are characte‐
rised by periodicity in directions of axes Х and У and
invariant in case of rotation by an angle of 60°. A he‐
xagonal cell is classified in l‐type in liquid convection
cases(Fig.1,b–l)org‐typeingasconvectioncases(Fig.
1, b–g) with regard to a velocity vector, i.e. depending
onwhethertheliquidisascendinginthecentralpartof
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
Fig.1.Schematicsofconvectivecells:a–2Dbars;b–hexagonalcellsofl‐andg‐types(accordingto[Getling,1998]).
Рис.1. Схематическое изображение конвективных ячеек: a – двумерные валы; b – шестиугольные ячейки l‐ и
g‐типа(по[Getling,1998]).
thecellorgasisdescending,which,initsturn,isrela‐
ted to the temperature dependence from the viscosity
of the medium. As known, with higher temperatures,
viscosity of fluids decreases, while viscosity of gases
increases. A velocity vector depends on a sign of deri‐
vativedγ/dTwhichisnegativeforliquidsandpositive
forgases.Intheascendingconvectiveflow,themateri‐
al is always warmer than in the descending flow. Re‐
spectively, the liquid viscosity in the central parts of
l‐cells is lower, while the gas viscosity in the central
partsofg‐cellsishigher.Circulationtendstofollowthe
direction where the viscosity is lower in the centre of
the cell. The stability of circulation trends, as well as
theunchangeabilityofstationaryflowsofbarsinrela‐
tiontovariationsofdefiningparametersareestimated
in a wide range of Rayleigh and Prandtl numbers, ta‐
king into account k=2π/λ, i.e. the number of waves of
lengthλper2πradians,orthenumberofspatialinter‐
valsofwavesperon2πradians.
Square cells form systems which directions are ro‐
tatedbyaπ/4anglewithrespecttothecoordinatesys‐
tem(X,Y).
Cell planforms are significantly influenced by even
minor changes in the physical conditions of the medi‐
um and variations of its parameters included in the
generalequationofconvection(see Equation1).Two‐
dimensionalbarsarethemainformofstationarycon‐
vective structures produced by thermal‐gravitational
or thermocapillary convection mechanisms. In case of
thermal‐gravitational convection, the scale of flow can
increase depending on ΔТ and G (see Equations 1 and
2).
For the geological interpretation of the significance
of cellular structures developing in cooling masses of
the primitive mantle material, two facts are of im‐
portance: (1) relic structures, such as boundaries of
cellularstructuresinthecoolingprotolithosphere,and
subsequently,intheupperpartofthelithosphere,and
(2) relic masses of the deep mantle material, which
were delivered into the Earth's upper horizons and
cooledinzonesofinter‐cellboundaries,i.e.relicstruc‐
tures at the boundaries of the primary cellular for‐
mations. Specialists in the laws of Rayleigh–Bénard
convection believe that two groups of boundaries in
theEarth'supperhorizonsareofimportance:bounda‐
riesbetweenconvectivecellsandborderlinesbetween
orderly fragment‐textures with different orientations
of the bars, which comprise a more complex pattern
(Fig.2).
Themostsignificantstructuralboundariesarelines
bordering fragments‐textures with different orienta‐
tions of the bars [Getling, 1998]. The duration of their
existence predetermines the stability of stationary
convectionflowsandthegeologicalsignificanceofcon‐
vection.Accordingto[Clever,Busse,1996],thehexago‐
nalcellscanbestableatPr≥1.2andRa≥3000.IfPr≤10,
thestabilityareaofthehexagoncellslookslikeaband
stretching from smaller to larger Ra values. If the
391
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
Fig.2.Defectsofbarstructures(linesshowboundariesofbars):a–dislocation;b–disclination(singularitiesofthefocus
typearebelow);c–structuralboundary(accordingto[Getling,1998]).
Рис. 2. Дефекты валиковых структур (линии соответствуют границам валов): a – дислокация; b – дисклинации
(внизусингулярноститипафокуса);c–структурнаяграница(по[Getling,1998]).
Prandtlnumbersarelargerthan10,theareaofstable
hexagoncellsisdisturbed.IntheexperimentswithRa
<3000,nostablehexagonsarerecorded.
The area of stable square cells is wider and covers
the range of Ra from 4000 to 50000 with Pr varying
from 2.5 to 16. When approaching the specified mini‐
mum value, the stability area narrows and becomes
undetectablewhenPr=2.5[Busse,Clever,1998].
The material conveyed by the convective flows is
hardening in places where the flows begin to move
downward due to lower temperatures. Solidification
takes place at the walls of thermal convection cells.
Thus, when the vertical walls of the cells (i.e. surfaces
of basalt prisms) are solidified, thermal convection
continues inside the prisms until complete solidifica‐
tionofallthelavacomponents.AphotoinFig.3shows
the tops of basalt pillars with sagging centres of the
columnswhichwerethelasttocoolandsolidify.
Based on the brief review of convective planforms
and conditions of their formation, it is possible to re‐
vealacommonpatternofconvectionprocessestaking
place during cooling of the homogeneous medium. In
space and time, convection is manifested by a highly
orderedflowofcoolingquasi‐liquidmasses.Thestabi‐
lity area is wide. As the area occupied by the flow is
narrowing, stability is reduced as the characteristic
scale of inhomogeneity of the structure is reducing
[Getling,1998].
In standard experimental conditions, Rayleigh–
Bénard convection cells occupy the entire thickness of
the cooling layer, and their typical horizontal size is
392
comparabletotheverticalsizeorslightlyexceedsit.In
the majority of problems solved by geodynamics, it is
assumedthatconvectioncellsoccupytheentiremantle
orpartiallyoccupythelayeroroccurbetweenthelayers
[Kirdyashkin, Dobretsov, 1991; Dobretsov et al., 2001;
Trubitsyn V.P., Trubitsyn A.P., 2014]. In such conditions,
the main factor predetermining convection is viscosity
ofthemedium,whichisincludedinequationsofinterre‐
latedRayleigh,GrashofandPrandtlnumbers.Itcansig‐
nificantly increase or decrease their values and change
the stability of convection accordingly. When viscosity
varies by two or three orders (which may take place
in the cooling upper part of the protolithosphere), the
mainviscositygradientisinthetopmostlayer,wherein
viscosityisincreasingrelativelyfasterthaninthelower
layers,andahardcoveristhusformed.Convectiongoes
downward. Moreover, in the discussed cases of ascen‐
ding convection, the cooling masses drift towards bor‐
dersofthecellsandsubsideduetogravity,whichleads
tosimultaneousthickeningoftheemergingverticalbor‐
derzone(i.e.aplane),whichsubstanceismoreviscous.
As the process develops further, such planes create fa‐
vourableconditionsforinitialfaultingofthelithosphere,
and the lithospheric plates and large blocks are thus
borderedbyfaultsthatarestableintime.
As a result of gradual cooling, a protective cap is
formedoverthecoolingmass.Astheprocessdevelops,
the solid cap becomes thicker. The merger of the two
descendingcoolingflowsleadstofurtherthickeningof
theemergingcap,andthepartitionbetweenemerging
blocksofthelithosphereisthusfixed.
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
4.THEORIGINOFTHEFIRSTLARGESTLOCALSTRUCTURES
INTHEPROTOLITHOSPHEREASVIEWEDUNDERTHE
CONCEPTOFCONVECTIONINTHECOOLINGPRIMITIVE
MANTLE:ATECTONOPHYSICALAPPROACHTO
PALEOGEODYNAMICRECONSTRUCTIONS
Fig.3.Solidifiedconvectionflowsofbasaltlavawith'sag‐
ging'surfacesinthecentresofcells[Shumilov,2009].
Рис. 3. Застывшие конвекционные потоки базальто‐
вой лавы с «проседанием» поверхностей в центрах
ячей[Shumilov,2009].
Over time, the cap thickens and evolves into the
brittle part of the lithosphere, while convection flows
continue to function in the mantle and gradually drift
tothelowerhypsometriclevels.Theabove‐mentioned
processes take place as the equilibrium of the convec‐
tionsystemunderthecapisdisturbedduetochanges
oftemperatureandviscositygradients.Conditionsthat
are favourable for convection are now found at larger
depths,andheatenergydissipationisfacilitated.Inthis
time period, the dominating convection occupying the
entiremantlemaybeeitherreplacedbyconvectionin
twolayersoroccurinamorecomplicatedpattern.
Regardlessoftheirplanforms,theRayleigh–Bénard
cellsgiveevidencethatconvectionnon‐equilibriumcan
be asource of order.In comparison withthehomoge‐
neous hot mass, convective cells (regardless of their
forms)canberegardedashighlyorganizedstructures
facilitatingthedissipationofenergyandtheformation
of other, more stable forms in the cooling mantle. In
thisregard,thesystemremainsopenandcontinuesto
givetheentropy.
Based on the above, cooling of the pre‐Katarchean
Earth's surface can be analysed with an assumption
thattheenergyofthehotlow‐viscousbodydissipated
by thermal‐gravitational convection. In this case, the
Rayleigh–Bénard cells can be viewed as initial struc‐
tures in the cooling mantle of the Earth, and bounda‐
ries between the cells were the first to get solidified
and thus predetermined the contours of the future
huge masses/blocks of the protolithosphere, which
werethebasisofVaalbaraand,maybe,othertheorized
firstsupercontinentsoftheEarth.
In this study, a tectonophysical approach is pro‐
posed to analyse initial divisibility of the protolitho‐
sphere. The origin of the primary local structures /
blocksisrelatedtocoolingoftheEarth'ssurfacelayer
composed by hot low‐viscous masses of the primitive
mantle.Insuchamedium,arelativelyefficient wayof
heat dissipation is convection that is structurally ar‐
rangedinRayleigh–Bénardcells.Theirrelics,i.e.proto‐
continents, can be regarded as residual structures
giving evidence of intitial atectonic divisibility of the
protolithosphere.Inthisassumption,lawsoftheirfor‐
mationaredeterminedbythelawsofconvection.
Thecoolingupperlayercoveredtheentireprimary
surface of our planet. Its thickness was limited by the
outer boundary of the almost completely formed core
which was located at a depth of about 2900 km. It is
knownthattheevolutionofconvectionanditspatterns
are significantly influenced by dimensions (diameter
and depth) of the area involved in convection (see
Equation 2). For circular cross‐sections in the experi‐
ments, the horizontal size of convection cells corre‐
sponds to the depth of the layer wherein convection
takes place. Original convection experiments are de‐
scribedinthebookbyN.L.Dobretsovetal.[2001]who
estimated the minimum horizontal size of convection
cells in the lower mantle: “As follows from results of
theexperimentsandtheclassicallawsofconvection,a
cellcanbestableifitstransversesizeisonlybyafactor
of1.8times(orless)largerthanitsthickness”(p.161).
Therefore, when convection takes place in a rather
thick layer, a pattern of convection cells is compatible
with the thickness of the layer. In our study of the
mega‐scalecase,thehorizontalsizeofthelayersubject
toconvectionismuchlargerthanitsverticalsize,and
thelayercanthusbeconsideredasacoolingflatbody.
The radius of the first round‐shaped convective cells
can amount to 2900–3000 km, and the distance be‐
tween the emerging cooling boundaries of areas with
descending masses (i.e. cell diameter) can be about
6000km.Inthiscase,thecelldiametercanbenumeri‐
callysimilartotheradiusofthecoolingEarth,andthe
cell area can be determined as the area of a spherical
segment(Ss=2πRh,whereRistheEarthradius,andhis
thethicknessofthecoolinglayer,i.e.R/2).Itamounts
to πR2 or about 3 steradians1. The total area of the
Earthsurfaceis4πR2(or4πΩ).Underidealconditions,
1
Steradian,sr(Ω)asolidangleatthecentreofaspheresubtending
asectiononthesurfaceequalinareatothesquareoftheradiusof
thesphere.
393
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
Fig. 4. Principal scheme of Rayleigh‐Benard cells on the
sphericalsurface.
Рис.4.ПринципиальнаясхемаконвективныхячейРэ‐
лея‐Бенаранасфере.
as a maximum, four mega‐large convective cells with
an average area of about three steradians can form in
thecoolinguppercoveroftheEarth.Itshouldbenoted
thattheboundaryofthebottomsurfacesofthecellsis
the outer core of the Earth, which square area is four
timessmallerthanthatoftheEarthsurface.Asthearea
ofthebottomsurfacesofthecellsisrestricted,thecells
cannot achieve their potential maximum area on the
surface. If a minimum surface area of a cell is one
steradian,12cellsasamaximumcanformattheEarth
surface. Therefore, the total number of the primary
cellspredeterminingtheinitialdivisibilityoftheemer‐
ging protolithosphere can range between 3–4 (mini‐
mum)to12(maximum)(Fig.4).
Paleogeodynamic reconstructions shows that the
firstsupercontinentVaalbara(2.8–3.6Ga)consistedof
two major structures, i.e. protocontinents/cratons
Kaapval and Pilbara [Hazen, 2012], which reflect the
divisibility of the already solid protolithosphere and,
may be, the divisibility of the emerging lithosphere.
Theconceptthatconvectiontookplaceintheprimitive
mantleattheveryearlystagesoftheprotolithosphere
is not denied, although not widely discussed in the
press [Nebel et al., 2014]. An acceptable argument is
proposed by I. Artemieva and B. Mooney [2001] who
considerthe'thermal'ageoftheArcheanformationsof
theEarth.
394
There are grounds to state that convective proces‐
ses in the Earth's mantle played the major role and
were the basic criterion for the formation of the first
largest block structures of the protolithosphere and
alsoforsubsequenttransformationsofsuchblocksinto
the lithospheric structures. According to the recon‐
structions, after Vaalbara supercontinent reconstruct‐
ted Ura (about 3 Ga) and younger Kenorland (2100–
2700 Ma), Columbia (1500–1800 Ma), Rodinia (750–
1050 Ma) and Pangea (200–300 Ma) supercontinents
[Lietal.,2008;Lubnina,2011;Hazen,2012].About200
mln years ago, Pangea broke apart to form Laurasia
and Gondwana, i.e. groups of the southern and north‐
ern continents, respectively. The lithospheric mega‐
blockshavenotbeencompletelyformedanddestruct‐
edyet,andtheseprocessesarestillongoingatthepre‐
sentstagethatistransitionaltotheformationofanew
supercontinent. In the long‐term geological history of
the Earth, the number and dimensions of the litho‐
spheric plates, which were actively involved in super
cycles, were variable, but the blocks and plates per se
have never disappeared completely (!). Since the Ar‐
chean,theseintegrallargebodieshavebeensubjectto
manygeodynamiccatastrophesandreconstructions[Li
et al., 2008], and their initial masses were partially
'lost'insomeofthegeodynamiccycles,regainedinthe
others,convertedintothesixmajorlithosphericplates
and survived! Strongly metamorphosed rocks of the
Archaeanageareobservedinhugeareasofthesixcon‐
tinental lithospheric plates (Africa, Antarctica, North
America,Eurasia,AustraliaandSouthAmerica).
It is challenging to conduct a proper mathematical
analysis of changes in the number of the lithospheric
platesandtheirareasfromonesupercycletoanother.
The major cycles in the geodynamic evolution of the
Earth and corresponding lithospheric plates of dif‐
ferent shapes and kinematics are revealed by paleo‐
geodynamic reconstructions. The lithospheric plates
canprovideforstablemantleconvectionatRa≤106,but
it becomes unsteady at Ra≥107 [Getling, 1998]. In re‐
sponse to changes in the convection pattern, the sys‐
tem of interacting lithospheric plates has to readjust
itself.Numericalsolutionsofequationsofenergy,mass
and momentum transfer suggest that mantle convec‐
tion takes place while a set of plates is self‐generated.
According to [Trubitsyn V.P., Trubitsyn A.P., 2014],
“the set of plates is inevitably generated, without
requiring any additional boundary and initial condi‐
tions” (p. 146). The foregoing explains why the Earth
has been subject to numerous transformations, inclu‐
ding the catastrophic ones, in the natural course of its
geodynamicevolution.Isthisnotaproofofthelawof
self‐organized criticality which is discussed in [Bak,
1996]?
Obviously, mantle convection has been the major
long‐term genetic source providing for the cyclic geo‐
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
dynamicdevelopmentoftheentirelithosphereandits
mega‐blockpattern.
In this regard, results of studies by P. Bird and co‐
authors[Bird,1988,1998,2003;Bird,Rosenstock,1984;
Birdetal.,2002]arenoteworthy–thehierarchyofthe
lithospheric plates and blocks is mathematically ana‐
lyzed and the cumulative‐number/area distribution is
established. In our study, their results are comple‐
mentedbyexperimentaldatapublishedin[Shermanet
al., 2000] (Table) and compared with other quantified
information on the formation of plates and the fault‐
block structure of the lithosphere which vary in ranks
atthepresentstageofdevelopment.Weapplytectono‐
physicalmethodstoanalysethehierarchyofthelitho‐
spheric plates and blocks with regard to their square
areasatthepresentstageofthegeodynamicevolution
of the lithosphere. The analysis is aimed at identifica‐
tionofgeneticsourcesandpatternsofthelithosphere
blockdivisibilityatvarioushierarchicallevelsindiffe‐
rentstagesofthelithosphereevolution.
5.RECENTHIERARCHICDIVISIBILITYOFTHEFAULT‐BLOCK
STRUCTUREOFTHELITHOSPHERE:TECTONOPHYSICAL
ANALYSIS
The subject of our analysis and the basis of further
reconstructionsisthemapoflithosphericblocksofthe
Earth which is published in [Bird, 2003] (Fig. 5). Its
mainoriginalfeaturesare(1)thepatternoftheplates
onthepresentsurfaceoftheEarth,and(2)calculations
of plate areas in steradians (Table). To analyse ratios
between areas and boundaries of the lithospheric
plates, P. Bird showed them on the map close to each
otherinanarbitraryreconstruction(nomore!–S.Sh.)
of the 'intact' surface of the Earth. His map shows 52
plates of various ranks, including ‘Manus microplate’
which area is the smallest (0.0002 sr, see Table). An‐
otherspecificfeatureofthemapistheuseofsteradian,
a dimensionless unit to estimate areas of plates and
blocks, thus avoiding some skewing in quantitative
comparisons of plates and blocks located at different
latitudesofthesphere.Usingthismethod,P.Birdpre‐
sentedindigitalformaglobalsetofboundariesofthe
present lithospheric plates and blocks of various sizes
and ranks and estimated plate sizes. He established a
mathematical regularity in the abrupt, non‐uniform
decrease of plate areas on the present Earth's sphere
(columns2and3inTable).InFigure6,thecumulative
platecountasafunctionofplateareasinsteradiansis
showninthebilogarithmeticscale.
BasedonTable(Nos.1–52,column3)supplemented
bydatafrom[Bird,1988,1998,2003;Bird,Rosenstock,
1984;Birdetal.,2002],regressionequationsshowthat
areas of the plates and blocks are decreasing with in‐
creasing numbers in the hierarchy, i.e. with transition
from mega structures to regional and local ones (Fig.
6). The detailed interpretation of the plot is given in
[Bird, 2003], and a brief is given in the figure caption
(Fig. 6). The main regression line based on the data
fromTablehastwobends.
AccordingtoP.Bird[2003],whenplottedwithloga‐
rithmicscales,theplatesofareasbetween0.002and1
steradian (from the relatively small Jian Fernandes
plate,JZtothelargeSouthAmericaplate,SA)occurin
numbersthatroughlyobeyapowerlaw:
(cumulativecount)N~7(steradians)–1/3
orN≈7Ω–1/3.
(3)
This equation clearly reflects the scale relationship
between the increase in the number of plates and a
proportionalreductionintheirareas.Thisischaracter‐
isticofplateswhichareasaresmallerthanonesteradi‐
an,i.e.plateswithanaveragelateralsizeofabout4000
km(seeTable).
For a more detailed tectonophysical analysis of the
relationships between sizes of the lithospheric plates
and blocks, the data published by P. Bird are supple‐
mented by results of similar studies focused on intra‐
continental areas [Sherman et al., 2000]. The consoli‐
dated database provides for analyses of tectonophysi‐
cal regularities in the block divisibility of the present
'solid' lithosphere. For now, seven major lithospheric
plates (Nos. 1 to 7 in Table) are outside the scope of
analysis and considered below in the closing state‐
ments.Thesemajorplatesareviewedasoriginalindi‐
cators of the initial and subsequent stages of litho‐
sphere divisibility, and it seems more reasonable to
considerthemafterreviewingand'excluding'quantita‐
tivedataonplatesdominatinginnumberinotherhie‐
rarchiclevels.
Table consolidates three data sets – [Bird, 2003]
(Nos.1to52,columns1,2and3),[Cheremnykh,1998]
and [Sherman et al., 2000] (Nos. 53 to 225) and thus
providesforamoredetailedconsiderationoftheratios
ofareasofmedium‐andsmall‐sizedlithosphericplates
from[Bird,2003]andtheratiosofareasofcontinental
lithosphericblocksfromotherpublications.Foranade‐
quate comparison of plate areas in different hierar‐
chicallevels,theareascalculatedinsteradiansarecon‐
verted to measurement system SI and given in square
kilometres and corresponding characteristic linear di‐
mensions (columns 4 and 5, Table). In the recalcula‐
tions, it is assumed that the Earth's radius is R=6371
km, and the equation from [Sadovsky et al., 1987;
Sadovsky, Pisarenko, 1991] is used to calculate linear
dimensionsLbandplate/blockareas,Sb:
.
(4)
Regressionequationsarecalculatedforcomparative
analysesofthethreeabove‐mentioneddatasets:
395
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
Fig.5.LithosphericplatesmappedbyP.Bird[Bird,2003].
The52platesofhismodelPB2002areshownwithcontrastingcolours.Two‐letterplateidentifiersareexplainedinTable.The13cross‐
hatchedareasare‘orogens’inwhichanEulerianplatemodelisnotexpectedtobeaccurate.Labelsofsmallplatesandorogensareoffset
(withleaderlines)forclarity.Mercatorprojection.
Рис.5.КарталитосферныхплитпоП.Бёрду[Bird,2003].
Цветом выделены 52 плиты по модели РВ2002. Наименование плит дано двойными буквами в соответствии с таблицей. За‐
штрихованныеквадратнойсеткойплощади13районовсоответствуют«орогенам»,длякоторыхмодельвращениявокругЭйле‐
ровых полюсов не совсем точна. Двухбуквенное наименование мелких плит вынесено за их границы. Карта дана в проекции
Меркатора.
(1)RegressionbyP.Bird,initsmiddlepartshowing
areasfromJianFernandesplate(JZ)toSouthAmerica
plate(SA),i.e.frommega‐tomedium‐sizedplatesand
blocks (Nos. 8 to 52, Table; equation 3 (in sr), and
Nc=2259.3L–0.67(5)(symbol1inFig.7);
(2) Regression for the additional data on medium‐
and small‐sized blocks (Nos. 53 to 225, Table;
Nc=7049.1L–0.91 (6) (symbol 2 in Fig. 7). An important
indicatorisaninclinationangleoftheregressioncurve.
Equation 6 differs from Equation 5 by an increase of
theinclinationangle.TakingintoaccountthatEquation
6isbasedonnumerousdatafromgeologicalandstruc‐
tural maps of continents in various scales, it can be
notedthat'small‐sized'blocksaremorenumerousthat
'large'ones.Thisisalogicalconsequencefollowingthe
ratioofdataobtainedbydirectfieldobservationsthat
always record more small blocks on sites than large
ones.Thesameisvalidforevenrockoutcropsandevi‐
dencedbytheplotfrom[Bird,2003](seeFig.6)atthe
secondbendoftheregressionline;
396
(3) Regression for the consolidated data on plates
and blocks of different characteristic sizes (No. 8 to
225,Table;Nc=3080.8L–0.72 (7)(symbol3inFig.7).Re‐
gression(7)showsasignificantlysmoothedtransition
fromsmall‐sizedlithosphericblockstointra‐continen‐
talblocksdivisibility.
Ingeneral,equations3,5,6and7aresimilar,which
suggeststhatthefragmentationof'solid'rocksfollows
a physically uniform pattern, and, in more general
terms,thereisatectonophysicallawofthefault‐block
divisibility of the lithosphere which is valid for litho‐
spheric blocks of a wide range of areas, from blocks
whichsizeiscompatiblewithNorthandSouthAmerica
continents, i.e. nearly as big as lithospheric plates, to
lumpofrocksobservedonsmalloutcroppedsites.
With account of our detailed studies of fault‐block
continental lithosphere structures of different ranks
andinviewoftheidentityofthephysicsoftheprocess
andthesimilarityofmathematicalequations5,6and7,
we construct a continuation of the regression curve
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
Areasanddimensionsoflithosphericplatesandblocks
Параметрыплощадейиразмеровлитосферныхплитиблоковлитосферы
#
Namesofplatesandblocks
53
54
55
56
57
58
59
60
61
Angara‐Ilim‐9
Angara‐Ilim‐13
Angara‐Ilim‐3
Angara‐Ilim‐12
Prisayan‐Enisei‐2
Baikal‐Patom‐3
Angara‐Ilim
Mirny
Stanovoy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
Pacific
Africa
Antarctica
NorthAmerica
Eurasia
Australia
SouthAmerica
Somalia
Nazca
India
Sunda
PhilippineSea
Amur
Arabia
Okhotsk
Caribbean
Cocos
Yangtze
Scotia
Caroline
NorthAndes
Altiplano
BandaSea
NewHebrides
Anatolia
BirdsHead
Burma
Kermadec
Woodlark
Mariana
MoluccaSea
NorthBismarck
Timor
Okinawa
AegeanSea
SouthBismarck
Panama
JuandeFuca
Tonga
BalmoralReef
Sandwich
Easter
ConwayReef
SolomonSea
Niuafo’ou
Maoke
Rivera
JuanFernandez
Shetland
Futuna
Galapagos
Manus
Identifiers
PA
AF
AN
NA
EU
AU
SA
SO
NC
IN
SU
PS
AM
AR
OK
CA
CO
YA
SC
CL
ND
AP
BS
NH
AT
BH
BU
KE
WL
MA
MS
NB
TI
ON
AS
SB
PM
JF
TO
BR
SW
EA
CR
SS
NI
MO
RI
JZ
SL
FT
GP
MN
IA9
IA13
IA3
IA12
IPЕ2
IIIBP3
IA7
IM1
IV1
Area,steradian
2.57685
1.44065
1.43268
1.36559
1.1963
1.13294
1.03045
0.47192
0.39669
0.30637
0.21967
0.13409
0.13066
0.12082
0.07482
0.07304
0.07223
0.05425
0.0419
0.03765
0.02394
0.0205
0.01715
0.01585
0.01418
0.01295
0.0127
0.01245
0.01116
0.01037
0.0103
0.00956
0.0087
0.00802
0.00793
0.00762
0.00674
0.00632
0.00625
0.00481
0.00454
0.00411
0.00356
0.00317
0.00306
0.00284
0.00249
0.00241
0.00178
0.00079
0.00036
0.0002
Area,km2
104593416
58475466
58151967
55428808
48557388
45985628
41825596
19155063
16101505
12435448
8916326
5442665
5303442
4904040
3036917
2964667
2931790
2201988
1700706
1528200
971716
832087.6
696112.3
643345.8
575561.1
525635.9
515488.4
505341
452980.4
420914.6
418073.3
388037
353129.9
325528.9
321875.9
309293.1
273574.2
256526.5
253685.3
195236.2
184277
166823.4
144499.1
128669.2
124204.3
115274.6
101068.2
97821.03
72249.56
32065.82
14612.27
8117.928
47520
34120
33620
31430
28100
27450
27380
25113
24000
Averagegeometric
size,km
10227.09
7646.925
7625.744
7445.053
6968.313
6781.27
6467.271
4376.65
4012.668
3526.393
2986.022
2332.952
2302.92
2214.507
1742.675
1721.821
1712.247
1483.91
1304.111
1236.204
985.7566
912.1884
834.3335
802.0884
758.6574
725.0075
717.9752
710.8734
673.0382
648.7793
646.5859
622.9261
594.2473
570.5514
567.341
556.1412
523.0432
506.4845
503.6718
441.8554
429.2749
408.4402
380.1304
358.7048
352.4263
339.5211
317.9123
312.7635
268.7928
179.0693
120.8812
90.09955
218
185
183
177
168
166
165
158
155
397
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
C
ontinuationofTable
П р о д о л ж е н и е т а б л и ц ы #
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
398
Namesofplatesandblocks
Angara‐Ilim
Angara‐Ilim
Prisayan‐Enisei
Aldan
Angara‐Ilim
Selenga‐Yablonovy
Mirny
Mirny
Barguzin
Selenga‐Yablonovy
Angara‐Ilim
Aldan
Baikal‐Patom
Mirny
EastSayan
Selenga‐Yablonovy
Mirny
Selenga‐Yablonovy
Stanovoy
Aldan
Tunguska
Barguzin(IIIБ2)
Mirny
Mirny
Aldan
Selenga‐Yablonovy
Angara‐Ilim
Aldan
Baikal‐Patom
Selenga‐Yablonovy
Khentei‐Dauria
Mirny
Barguzin
Angara‐Ilim
EastSayan
EastTransbaikalie
Barguzin
Selenga‐Yablonovy
Stanovoy
Mirny
Selenga‐Yablonovy
Angara‐Ilim
Angara‐Ilim
Sayan‐Altai
Selenga‐Yablonovy
Stanovoy
Mirny
Mirny
Baikal‐Patom
Selenga‐Yablonovy
EastSayan
Selenga‐Yablonovy
Baikal‐Patom
Sayan‐Altai
Barguzin
Barguzin
Baikal‐Patom
Stanovoy
EastTransbaikalie
Mirny
Barguzin
Baikal‐Patom
Identifiers
IA11
IA5
IPЕ1
II1
IA10
IIISYa18
IM21
IM25
IIIB3
IIISYa15
IA15
II2
IIIBP1
IM11
IIIES2
IIISYa5
IM7
IIISya21
IV2
II6
IT1
IIIB2
IM5
IM23
II5
IIISYa19
IA1
II16
IIIBP6
IIISYa13
VKhD2
IM2
IIIB13
IA4
IIIES10
VET3
IIIB5
IIISYa4
IV10
IM9
IIISYa20
IA16
IA8
IIISA3
IIISYa16
IV7
IM3
IM14
IIIBP4
IIISYa23
IIIES9
IIISYa14
IIIBP11
IIISA2
IIIB1
IIIB11
IIIBP12
IV8
VET1
IM6
IIIB19
IIIBP2
Area,steradian
Area,km2
23790
21770
20700
20680
18940
17730
17480
17300
17060
16780
16380
16370
15700
15340
15500
15200
14820
14810
14580
14360
13900
13875
13800
13460
13400
13470
13280
13150
13320
13200
13260
13053
12700
12470
12400
12100
11700
11600
11450
11170
11220
11020
10570
10320
10260
10300
9800
9730
9800
9420
9190
9200
8900
8530
8490
8550
8500
8530
8600
8250
8100
8100
Averagegeometric
size,km
154
148
144
144
138
133
132
131
131
129
128
128
125
124
124
123
122
122
121
119
118
118
117
116
116
116
115
115
115
115
115
114
113
112
111
110
108
108
107
106
106
105
103
101
101
101
99
99
99
97
96
96
94
92
92
92
92
92
92
91
90
90
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
C
ontinuationofTable
П р о д о л ж е н и е т а б л и ц ы #
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
Namesofplatesandblocks
Selenga‐Yablonovy
Selenga‐Yablonovy
Barguzin
Baikal‐Patom
Aldan
Aldan
Angara‐Ilim
Barguzin
Baikal‐Patom
Selenga‐Yablonovy
Barguzin
EastSayan
Barguzin
Baikal‐Patom
EastTransbaikalie
Dzhida
Khentei‐Dauria
EastTransbaikalie
EastTransbaikalie
Angara‐Ilim
Mirny
Aldan
Barguzin
Mirny
Barguzin
Baikal‐Patom
Selenga‐Yablonovy
Selenga‐Yablonovy
Baikal‐Patom
Dzhida
Mirny
Stanovoy
Stanovoy
Barguzin
Barguzin
Stanovoy
Angara‐Ilim
Aldan
Aldan
Stanovoy
Mirny
Pribaikalskyfaultzone
Stanovoy
EastTransbaikalie
Angara‐Ilim
EastSayan
Baikal‐Patom
Mirny
Aldan
Barguzin
Mirny
Baikal‐Patom
Selenga‐Yablonovy
EastTransbaikalie
EastTransbaikalie
Barguzin
Stanovoy
EastTransbaikalie
Aldan
Barguzin
Stanovoy
EastTransbaikalie
Identifiers
IIISYa24
IIISYa7
IIIB7
IIIBP5
II9
II18
IA14
IIIB21
IIIBP15
IIISYa9
IIIB23
IIIES12
IIIB15
IIIBP7
VET20
(IIID1)
(VKhD1)
(VET16)
(VET17)
(IA2)
(IM24)
(II13)
(IIIB10)
(IM4)
(IIIB14)
(IIIBP8)
(IIISYa11)
(IIISYa12)
(IIIBP9)
(IIID2)
(IM22)
(IV13)
(IV14)
(IIIB12)
(IIIB22)
(IV5)
(IA18)
(II8)
(II17)
(IV6)
(IM16)
VET8
IA6
IIIES8
IIIBP13
IM13
II12
IIIB20
IM26
IIIBP10
IIISYa8
VET12
VET15
IIIB8
IV4
VET13
II10
IIIB24
IV12
VET7
Area,steradian
Area,km2
8080
8000
7700
7600
7315
7400
7180
7200
7200
7300
6850
6750
6750
6700
6800
6600
6500
6500
6500
6400
6400
6075
6000
5800
5800
5850
5800
5800
5625
5600
5300
5380
5140
5100
5000
5000
4900
4855
4700
4700
4490
4500
4500
4500
4350
4400
4275
4040
4050
4150
4040
4000
4000
4000
4000
3800
3800
3800
3740
3600
3590
3590
Averagegeometric
size,km
90
89
88
87
86
86
85
85
85
85
83
82
82
82
82
81
81
81
81
80
80
78
77
76
76
76
76
76
75
75
73
73
72
71
71
71
70
69
69
69
67
67
67
67
66
66
65
64
64
64
63
63
63
63
63
62
62
62
61
60
60
60
399
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
EndofTable
Окончаниетаблицы
#
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
Namesofplatesandblocks
Aldan(II11)
Baikal‐Patom
Aldan
EastTransbaikalie
EastTransbaikalie
Aldan
EastSayan
EastSayan
Barguzin
Stanovoy
Angara‐Ilim
Mirny
Mirny
EastSayan
EastSayan
Barguzin
Selenga‐Yablonovy
Khentei‐Dauria
EastTransbaikalie
Mirny
EastSayan
Selenga‐Yablonovy
Khentei‐Dauria
EastSayan
Selenga‐Yablonovy
Selenga‐Yablonovy
Mirny
Barguzin
EastSayan
Barguzin
Mirny
Selenga‐Yablonovy
Mirny
Barguzin
Barguzin
EastTransbaikalie
EastTransbaikalie
Mirny
Mirny
EastTransbaikalie
Identifiers
Area,steradian
II11
IIIBP14
II15
VET4
VET21
II14
IIIES11
IIIES6
IIIB16
IV11
IA17
IM10
IM15
IIIES7
IIIES13
IIIB4
IIISYa17
VKhD4
VET9
IM17
IIIES3
IIISYa1
VKhD3
IIIES4
IIISYa22
IIISYa3
IM18
IIIB9
IIIES5
IIIB17
IM27
IIISYa10
IM8
IIIB6
IIIB18
VET5
VET11
IM19
IM12
VET10
Area,km2
3350
3350
3200
3300
3230
3100
3000
2900
2900
2900
2680
2690
2690
2700
2700
2700
2700
2690
2690
2470
2475
2400
2400
2250
2240
2100
2000
1800
1700
1600
1570
1500
1390
1300
1200
1100
1100
898
540
494
Averagegeometric
size,km
58
58
57
57
57
56
55
54
54
54
52
52
52
52
52
52
52
52
52
50
50
49
49
47
47
46
45
42
41
40
39
39
37
36
35
33
33
30
23
22
N o t e s.Thetableconsolidatesthefollowingdata:Nos.1to52–from[Bird,2003]withrecalculationforareaandlinearsizes;Nos.53to
225–accordingto[Cheremnykh,1998;Shermanetal.,2000].Namesofthelargestplatesareboldprinted;thegenerallawsofdestructionof
solid bodies do not apply to such plates. Names and two‐letter identifiers of megablocks correspond to [Bird, 2003]. Names of regional
blocksarefromthecataloguebyA.V.Cheremnykh.
П р и м е ч а н и е. Данные с № 1 по 52 – по [Bird, 2003] с пересчетом на площадные и линейные меры; с № 53–225 – по
[Cheremnykh, 1998; Sherman et al., 2000]. Жирным шрифтом выделены самые крупные литосферные плиты, не вписывающиеся в
общиезакономерностидеструкциитвердоготела.Названиямегаблоковсоответствуюткарте[Bird,2003],названиярегиональных
блоковданыпоавторскомукаталогуА.В.Черемных.
derived from equation 3 (Fig. 7) in the direction that
hasbeensubstantiatedbyP.Bird(seeFig.6).Thetwo
regression lines based on equations 3 and 7 have the
same physical meaning in bilogarithmical scales, and
theirmiddlepartsareidenticalinFigure6andgeneral‐
ly similar in Figure 7. The regression lines and the
equations reflect destruction patterns of the 'solid'
lithosphereinawidevarietyofscales.
400
The area estimations obtained by different methods
provide for well‐reasoned general conclusions concer‐
ning regular patterns of the block destruction of the
Earth's lithosphere at specified hierarchical levels. The
reviewedresultscomplementeachotherandextendour
knowledgeofdestructionofthelithosphereasthesolid
coveroftheEarth.Itisnowreasonabletobrieflyreview
theknownlawsofdestructionofsolidbodies,i.e.rocks.
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
Fig.6.Numberofplatesplottedasafunctionofarea[Bird,2003,fig.19].
CurvePB2002(green)referstothemodelinFig.7.Arelativelysteadyslopeofthecurveforplateareasbetween0.002and1steradian
suggestsapowerlawrelationshipbetweenthenumberofplatesandtheirminimumsize.Flatteningintheleftsegmentofthecurveisdue
tothemodelincompleteness,i.e.therearemanyplatesofsmallersizeswhicharenotincludedinmodelPB2002.Anabruptvariationof
theslopeintherightsegmentofthecurvesuggeststhatverylargeplatesarelimitedintheirareabecauseofthefiniteareaoftheEarth,
andperhapsalsobymantleconvectiontractions.
Рис.6.Графиквзаимосвязиколичестваплиткакфункцииихплощади(по[Bird,2003,fig.19]).
КриваяРВ2002(зеленыйцвет)отражаетситуациюподаннымрисунка7.Относительнопостоянныйнаклонкривоймеждугра‐
ницамиплощадей0.002и1.000стерадианотражаетвзаимоотношениямеждучисломплитиихминимальнымразмером.Изме‐
нениеугланаклонавлевойчастиграфикаотражаетнедостаточноечислонаблюдений,тоестьимеютсяещеболеемелкие,не
учтенныевавторскоймоделиблоки.Резкоеизменениеугланаклонавправойчастиграфикапоказывает,чтокрупныеплиты
ограниченывсвоихразмерахконечнойплощадьюЗемли,атакже,возможно,конвекционнымимантийнымипотоками.
6.GENETICSOURCESOFTHELITHOSPHERE
DIVISIBILITYOFVARIOUSRANKS
ItcanbestatedthatEquation7anditsspecificvari‐
ants(seeFig.7)aresufficienttofullydescriberelative‐
lysmalllithosphericplatesandintraplateblocksofthe
'solid'lithosphereupto rocklumps. Theexperimental
methods have yielded similar equations that mathe‐
maticallyreflectthephysicsofdestructionofsolidbo‐
dies in a wide range of scales (from a medium‐size
block which size amounts to a few thousand kilome‐
tres,toarockfragmentwhichdiameterisadozencen‐
timetres),andtherearegroundtostatethattheblock
divisibilityofthelithospherefollowslawsofself‐simi‐
larity.Inthephysicsofdestructionofsolidandviscoe‐
lastic bodies, self‐similarity patterns have been noted
longagoatdifferentscalelevels.However,self‐simila‐
rityinaverywidespectrumofhierarchicallevels,from
centimetrestomegasizes,hasnotbeenconsideredyet,
andthispaperisthefirstattemptinthisrespect.
Based on results of independent studies, A.N. Kol‐
mogorov [1941] and A.F. Filippov [1962] established
thatrocksaresubjecttofragmentationaccordingtothe
law of destruction of solid bodies, and the following
exponentialexpressionislinearincoordinateslgNand
lgL:
lgN=f(lgL),
(8),
where L is the sample's arbitrary size, and N is the
numberofsamples.
This conclusion includes the above‐described em‐
pirical relationships that refer to large‐size objects,
suchaslithosphereblocksofvariousranksand,partly,
401
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
Fig.7.Curvesofrelationshipsbetweenmediumlateraldimensionsoflithosphericplatesandblocks:1–accordingto[Bird,
2003];2–accordingto[Cheremnykh,1998;Shermanetal.,2000];3–integratedregressionlinebasedondata(1)and(2);
4–extrapolatedregressionlineaccordingtoequation1;5–extrapolatedregressionlineaccordingtoequation3.3.Nc –
rowoflithosphericplatesandblocksbyaveragecharacteristicsizesL,km(analoguestoreconstructionsbyP.Birdinstera‐
dians).
Рис. 7. Графики взаимосвязи средних поперечных размеров плит и блоков литосферы по: 1 – по данным [Bird,
2003];2–поданным[Cheremnykh,1998;Shermanetal.,2000];3–совмещеннаялиниярегрессииподанным[1и2];
4 – экстраполяция линии регрессии по данным уравнения (1); 5 – экстраполяция линии регрессии по данным
уравнения(3).Nc–последовательностьлитосферныхплитиблоковвпорядкеувеличенияусредненныххарактер‐
ныхразмеровL,км(поаналогииспостроениямиП.Бёрдавстерадианах).
faults in the upper brittle layer of the lithosphere,
whichcrosseachothertoformthecorrespondinghier‐
archic group of the fault‐block structures of the solid
coveroftheEarth[Sherman,1977;Shermanetal.,2000,
2004; Seminsky, 2001, 2003; and many others]. Obvi‐
ously, this property mitigates issues related to 'buck‐
ling' of the regression lines at the boundaries of Juan
Fernandez (JZ) and Shetland (SL) plates (0.00241 and
0.00178 sr, respectively). Buckling occurs due to the
lack of quantitative data. In our study, this issue is
completely eliminated after the additional data are
supplemented(Table).
Itcanthusbestatedthatdeformationanddestruc‐
tion of the Earth's solid cover under the influence of
external loads take place according to a regular pat‐
tern.Fromcertainhierarchicallevels,residualdestruc‐
tion (in the form of blocks varying in ranks) is distri‐
butedinaccordancewiththecharacteristicsizesofthe
blocks and their number, as described by Equation 7.
402
Theregressionisbucklingatthetransitionfrommedi‐
um‐sizedplatestolargeones(seeFig.6and7)dueto
otherreasons.
In terms of physics, buckling of the regression line
showingthehierarchyofplatesizesversusplateareas
(seeFig.6and7)isrelatedtosourcesofrank‐variable
destruction of the lithosphere as a solid body. The
buckle occurs abruptly at the transition from a few
very large lithospheric plates to medium‐sized plates
and small blocks that are statistically abundant. The
regressioncurveisbuckledfromaverysteepangletoa
moregentleoneattheboundarybetweenSouthAme‐
rica(areaof1.03sr)andSomaliplates(areaof0.47sr).
Ajumpoccurswhenthesquareareaisdoubled.Forsix
largeplates(Africa,Antarctica,NorthAmerica,Eurasia,
Australia and South America; data on Pacific plate are
nottakenintoaccount),theregressioncurveisasteep,
almostverticalline.Theirareasarenearlysimilarand
almost unchangeable. Naturally, they are governed by
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
another law of formation of solid lithospheric masses,
whichisnotconsistentwiththelawsofdestructionof
solid bodies. In this respect, P. Bird [2003] also notes
thatthefactthatlargeplatesareclearlyestablishedis
indicative of a very weak dependence of plate areas
fromanyquantitativeparameters,exceptfortheEarth
radius. When the Earth radius is used as a natural in‐
dependentunittomeasuresolidanglesinsteradians,it
is clearly revealed that very large areas of the above‐
mentionedsixplates(Pacificplateisanexception)are
almost similar. According to P. Bird [2003], typical
areas of the large lithospheric plates correlate with
mantle convection: “….this characteristic size seems
more consistent with whole mantle convection than
with layered convection”. Indeed, the formation of the
largestblocks(i.e.primarylithosphericplatesoriginat‐
ingatthestagewhentheprotolithospherewasformed
andlaterperiods)ismoreinlinewithmantleconvec‐
tionthandestructionofthesolidbody.Theauthorfully
shares these assumptions by P. Bird as they are sup‐
portedbyalltheabovediscusseddata,argumentsand
tectonophysicalcalculations.
As shown by the analysis of areas of the rank‐
variable present lithospheric plates (see Table), the
totalareaofthesevenlargestplates(lessthan14%of
the total number of plates) is about 10.15 steradians,
and they occupy almost 81 % of the entire surface of
theEarth.Theareaofthesixcontinentalplates(Africa,
Antarctica,NorthAmerica,Eurasia,AustraliaandSouth
America) is more than 60 % of the planet's surface
area.TheyarewelltracedinthehistoryofPangeaand
less evidently in the more distant past. Through the
history of the Earth, these huge integral bodies were
subject to numerous geodynamic catastrophes and
transformations.Some ofthemlost muchoftheinitial
mass, others completely 'disappeared' in the mantle,
whilesomeoftheplateshavegrowninsize.Therefore,
fromonesuper‐continentalcycletoanother,thelitho‐
sphericblocksdifferinnumberandkinematics.Based
on the available data, it is impossible to state for sure
which of them were formed before the Archaean and
arestillinplace,andwhichofthemweremoreorless
transformed.Itischallengingtorestorethe genesisof
structural relics in the cooling medium of the proto‐
lithosphere and those in the lithosphere medium with
referencetotheverydistantpast.Itisaninverseprob‐
lem with unambiguous solutions. As a definite and in‐
disputable conclusion cannot be drawn, one can only
assumethatconvectionisthemostprobableandbetter
argumented physical process that took place when
the low‐viscous medium of the protolithosphere was
cooling down to form large masses in the first hypo‐
thetical(?)supercyclesofVaalbaraandUr,and,finally,
convection can be viewed as a mechanism predeter‐
miningthepresentshapeoftheEarth'scontinents.Itis
most probable that the megablocks were fragmented
in the similar pattern in Kenorlend and later super‐
cycles.However,basedontheavailablematerials,itis
possible only to justify the block structure of the pre‐
sentstage.
ItisreasonableheretoquotethebookbyN.L.Dob‐
retsovetal.[2001]:“InthehistoryoftheEarth,convec‐
tionintwolayerswasreplacedbyconvectionintheen‐
tire mantle and vice versa, and this might have taken
placeseveraltimes…Therefore,itismostlikelythatin
theEarth'shistory,convectionintheentiremantlewas
replaced by two‐layer convection. Another possible
scenario is more complicated: about 2.5 Ga ago, two‐
layerconvectionwasreplacedbyconvectionintheen‐
tiremantle[Maruyama,1994];afteraperiodofonebil‐
lionyears,two‐layerconvectionoccurredagain[Honda,
1995],and,finally,atransitionbacktoconvectioninthe
entire mantle took place in the past 150‐100 Ma [Tru‐
bitsyn, Rykov, 2000]” (p. 111). Convection predeter‐
minesthemajorcyclesinthegeodynamicsoftheEarth
and fragmentation of the lithosphere into megablocks.
The latter are destructed under the physical laws of
destructionofsolidrocks.Currently,destructionofthe
lithosphereisactivelycontinuedinseismiczonesofthe
continental lithosphere and zones of subduction and
spreadingatthemarginsofthelithosphericblocks.
7.DISCUSSION
PublicationsonconvectionintheEarth'smantleand
its role in global geodynamic processes are quite nu‐
merous. In the majority of papers, recent geodynamic
processes are considered with an assumption that the
evolution of convection in the mantle and astheno‐
spheretookplaceintwo‐orthree‐layerormorecom‐
plicatedpatterns[Lobkovsky,1988;Lobkovsky,Kotelkin,
2000; Lobkovsky et al., 2004; Rykov, Trubitsyn, 1994a,
1994b;Trompert,Hansen,1988;Trubitsyn,Rykov,2002;
TrubitsynV.P.,TrubitsynA.P.,2014].Mantleconvection
wasdiscussedinanumberofpublicationsmanyyears
ago, the most famous of which are [Pekeris, 1935;
Molnaretal.,1979].
Accordingto[Molnaretal.,1979],largesizesofcon‐
tinental plates are related to convection in the entire
mantle,andhorizontaldimensionsoftheplatedepend
onthedepthoftheconvectiveprocess.Theiranalysisis
based on the proportional change in the length of the
subduction zone on the surface and the velocity of its
sinking which depends on heat assimilation in the ab‐
senceofabarrierattheborderwiththelowermantle.
Thetwo‐layerconvectionintheEarthmantleisde‐
scribedbyL.P.ZonenshainandM.I.Kuz’min[1993]and
reconstructedinaworld‐knownschemebyS.Maruya‐
ma[1994].
To sum up this very brief information on the two‐
layer models of convection in the Earth mantle, it is
403
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
worthy to refer again to the book by N.L. Dobretsov et
al.[2001]whogivemuchattentiontoconvectionasan
important component of geodynamic processes. In
their book, prior to the geodynamic analysis of pro‐
cesses in the mantle, asthenosphere and lithosphere,
they provide a comprehensive description of the two
mainmodelsofthermal‐gravitationalconvectionwhich
provide the basis for a variety of geodynamic recon‐
structions. In the first model, convection take place in
the entire mantle, from boundaries of the lithosphere
base (30 to 100km) to the upper limit of the core
(about2900km).Thesecondmodelshowsconvection
intheupperandlowermantlewithoutanysignificant
masstransferbetweenthetwolayers.In[Dobretsovet
al., 2001], the authors focus on the complexity of geo‐
dynamicprocessesinthemantleanddiscusstheirevo‐
lution up to the present stage of the Earth develop‐
ment. The concept of two‐layer mantle convection is
convincingly proved by results of many original expe‐
rimentsconductedbytheauthorswiththeuseofspe‐
cially designed installations [Kirdyashkin, Dobretsov,
1991; Dobretsov, Kirdyashkin, 1993]. Besides, they es‐
timated parameters of convection. Specifically, based
on the video records, they revealed flow lines in the
two‐layer fluid convection system and estimated hori‐
zontal and vertical velocities of the flows. Their very
important observation is that convection flows above
and below the interface go in different directions, and
this is an evidence that vector directions of horizontal
convection flows in the layers located one upon ano‐
therarenotinterrelated.Accordingto[Dobretsovetal.,
2001],vectorsoftheverticalflowsaresimilar,andthis
fact emphasises the major role of convection in the
mantle which provides for dissipation of heat energy.
Important are the digital parameters and vectors of
flow velocities and cell sizes. In the bottom layer
(whichisthicker),cellsizesareproportionaltothelay‐
er's thickness, and flow velocities are lower. In [Do‐
bretsov et al., 2001], the concept of the two‐layer con‐
vectionintheEarth'smantleiswellestablishedbythe
experimentalandactualobservationdata.Nonetheless,
the authors note: “In the majority of cases, the geo‐
chemicaldatasupportthetwo‐layerconvectionmodel,
whilemuchgeophysicaldatamaybeinterpretedinfa‐
vourofconvectionintheentiremantle”(p.108).
In [Trubitsyn V.P., Trubitsyn A.P., 2014], a digital
model is described in detail to show that the present
setofthelithosphericplatesisaresultoftheevolution
of convection. It provides an insight into the possible
mode of flows in the entire mantle, movements of the
massesbetweentheupperandlowermantle,aswellas
betweenthecentralandlaterallimitsoftheconvection
cells.Usingequations,V.P.TrubitsynandA.P.Trubitsyn
calculated temperature, viscosity and velocity of
mantle convection flows generated by effective diffu‐
sion‐dislocation creeping in the absence of pseudo‐
404
plastic deformation and in case of the very hard litho‐
sphere. In particular, their temperature distribution
pattern shows that small cold descending flows, i.e.
small‐scale convection, occur under the lithosphere.
The estimated scheme of convection in the entire
mantle in [Trubitsyn V.P., Trubitsyn A.P., 2014] is con‐
sistentwithourideasoftheprimarygeneticallyemer‐
ging block divisibility of the protolithosphere. In the
initial state, the protolithosphere remains uniform at
the surface, has a roughly constant thickness and in‐
creased quasi‐strength at the primary inter‐cell boun‐
daries whereat the viscosity of the medium is increa‐
singduetocoolingoftheprotolithosphere.
Regretfully,initialdivisibilityoftheemergingupper
solid cover of the Earth is taken into account by few
researchersintheirestimations,whilesuchdivisibility
is one of the most likely results of convection in the
cooling protolithosphere. This is obviously due to the
absence of direct geological materials and the lack of
appropriate paleo‐reconstruction methods that can
integrate geological, geophysical and geochemical da‐
tabases. As shown by our study, computational me‐
thodsarehelpful,toacertainextent,insolvingill‐con‐
ditioned inverse problems to reconstruct processes
andstructuresofthedistantpast.
The concept of the single‐layer convection, assu‐
ming that convection took place through the ½‐radius
depth at the initial stage when the Earth lithosphere
was formed, is acceptable and seems quite realistic,
even though the literature is still insufficient on this
subject. This justifies the author's efforts to clarify the
origin of divisibility of the primary non‐solid, almost
continuous cover of the Earth which evolution history
includesperiodsofthePhanerozoicandcontemporary
faultinginthelithosphereanditsfragmentationunder
thelawsofdestructionofsolidbodies.Itcanbenoted
in general that the upper cover of the Earth is subject
to destruction in a regular pattern, from larger to
smallermasses.
8.CONCLUSION
This study is pioneering in tectonophysical recon‐
structionofinitialdivisibilityoftheprotolithosphereas
a result of convection in the cooling primitive mantle.
Initial division of the protolithosphere into separate
masses,i.e.prototypesoftheblocks,andtheirsizewas
predetermined by the emerging Rayleigh–Bénard con‐
vection cells. In studies of geology and geodynamics,
the Rayleigh–Bénard convection cells were first re‐
ferred to as a factor to explain the formation of initial
continental cores. Considering the Rayleigh–Bénard
cells and their structural relics can help clarify initial
divisibilityoftheprotolithosphereandtheoriginofthe
majorlithosphericplates,i.e.prototypesofcontinents.
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
Inouropinion,theinitialmega‐scaleblockstructureof
the protolithosphere and the emerging lithosphere
were predetermined by the Rayleigh–Bénard cells as
they were preserved in the emerging lithosphere and
their lower boundaries corresponded to the core‐
mantle boundary, i.e. one of the major discontinuities
of the planet. Our theoretical estimations are in good
agreement with the number and sizes of the Earth's
theorizedfirstsupercontinents,VaalbaraandUr.
In our tectonophysical discussion of the formation
ofthelithosphericblockstructure,weanalyseindetail
the map of modern lithospheric plates [Bird, 2003] in
combination with the materials from [Sherman et al.,
2000]. In the hierarchy of the blocks comprising the
present lithosphere, which sizes are widely variable,
twogroupsofblocksareclearlydistinguished.Thefirst
groupincludesmegablockswiththeaveragegeometric
sizeabove6500km.Theirformationisrelatedtocon‐
vectionintheEarthmantleatthepresentstageofthe
geodynamicevolutionoftheEarth,aswellasatallthe
previous stages, including the earliest one, when the
protolithosphere emerged. The second group includes
medium‐sized blocks with the average geometric size
of less than 4500 km and those with minimum sizes,
suchasrocklumps.Theyreflectprimarilythedegrada‐
tion of the megablocks as a result of their destruction
due to high internal stresses in excess of the tensile
strength of the medium. This group may also include
blocks which formation is related to convection in the
uppermantlelayer,asthenosphere.Therearegrounds
to assume that through the vast intermediate interval
of geologic time, including supercycles of Kenorlend,
Rodin, and Pangea, the formation of the large litho‐
sphericblockswascontrolledbyconvection,andlater
on, they were ‘fragmented’ under the physical laws of
destruction of solid bodies. However, it is difficult to
10.REFERENCES
clearly distinguish between the processes that prede‐
termine the hierarchy of formation of the block struc‐
tures of various origins – sizes of ancient lithospheric
blockscannotbeestimatedunambiguously.
Thus, mantle convection is a genetic endogenous
source of initial divisibility of the cooling upper cover
of the Earth and megablock divisibility of the litho‐
sphere in the subsequent and recent geodynamic de‐
velopmentstages.Inthepresentstage,regularpatterns
of the lithospheric block divisibility of various scales
are observed at all the hierarchic levels. The areas of
the lithospheric megaplates result from regular chan‐
gesofconvectionprocessesinthemantle,whichinflu‐
enced the formation of plates and plate kinematics.
Fragmentation of the megaplates into smaller ones is
primarilyaresultofdestructionofthesolidlithosphere
under the physical laws of destruction of solid bodies
undertheimpactofhighstresses.
9.ACKNOWLEDGEMENTS
The author wishes to express his sincere gratitude
to his colleagues: M.I.Kuz'min, Academician of RAS,
E.V.Sklyarov, Corresponding Member of RAS,
V.A.San'kov, Head of the Laboratory of Recent Geody‐
namics, IEC SB RAS, professor R.M. Lobatskaya and
Ph.D.A.I.Kiselevforconstructivescientificdiscussions
thatwerehelpfulforimprovingthepaper.The author
appreciates the help provided by A.V.Cheremnykh in
consolidatingtheinputdataandmeasurementsofcon‐
tinentallithosphericblocksvaryinginhierarchiclevels.
The study was conducted under the Research Plan
oftheLaboratoryofTectonophysics,IECSBRASwitha
partialfinancialsupportbytheRussianFoundationfor
BasicResearch(GrantNo.15‐55‐53023).
ArtemievaI.M.,2011.Thelithosphere:Aninterdisciplinaryapproach.CambridgeUniversityPress,Cambridge,794p.
Artemieva I.M., Mooney W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere; a global study.
JournalofGeophysicalResearch106(B8),16387–16414.http://dx.doi.org/10.1029/2000JB900439.
BakP.,1996.HowNatureWorks:TheScienceofSelf‐OrganisedCriticality.CopernicusPress,NewYork,212p.
BirdP.,1988.FormationoftheRockyMountains,westernUnitedStates:Acontinuumcomputermodel.Science239
(4847),1501–1507.http://dx.doi.org/10.1126/science.239.4847.1501.
Bird P., 1998. Kinematic history of the Laramide orogeny in latitudes 35°–49°N, Western United States. Tectonics
17(5),780–801.http://dx.doi.org/10.1029/98TC02698.
BirdP.,2003.Anupdateddigitalmodelofplateboundaries.GeochemistryGeophysicsGeosystems4(3),1027.http://
dx.doi.org/10.1029/2001GC000252.
BirdP.,KaganY.Y.,JacksonD.D.,2002.Platetectonicsandearthquakepotentialofspreadingridgesandoceanictrans‐
form faults. In: S. Stein, J.T. Freymueller (Eds.), Plate Boundary Zones. AGU Geodynamics Series, vol. 30. AGU,
Washington,D.C.,p.203–218.http://dx.doi.org/10.1029/GD030p0203.
BirdP.,RosenstockR.W.,1984.KinematicsofpresentcrustandmantleflowinsouthernCalifornia.GeologicalSocietyof
AmericaBulletin95(8),946–957.http://dx.doi.org/10.1130/0016‐7606(1984)95<946:KOPCAM>2.0.CO;2.
405
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
BusseF.H.,CleverF.M.,1998.AsymmetricsquaresasanattractingsetinRayleigh‐Benardconvection.PhysicalReview
Letters81(2),341–344.http://dx.doi.org/10.1103/PhysRevLett.81.341.
CheremnykhА.V.,1998.TectonophysicalAnalysisofFault‐BlockDivisibilityoftheLithosphereinSouthernRegionof
EastSiberia.Thesis,PhDinGeologyandMineralogy.IECSBRAS,Irkutsk,206p.(inRussian)[ЧеремныхА.В.Тек‐
тонофизический анализ разломно‐блоковой делимости литосферы юга Восточной Сибири: Дис. … канд.
геол.‐мин.наук.Иркутск:ИЗКСОРАН,1998.206с.].
Clever R.M., Busse F.H., 1996. Hexagonal convection cells under conditions of vertical symmetry. Physical Review E
53(3),R2037–R2040.http://dx.doi.org/10.1103/PhysRevE.53.R2037.
DobretsovN.L.,KirdyashkinA.G.,1993.Experimentalmodelingoftwo‐layermantleconvection.Ofioliti18(1),61–81.
Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep Geodynamics. Second edition. GEO Branch, Publishing
HouseofSBRAS,Novosibirsk,409p.(inRussian)[ДобрецовН.Л.,КирдяшкинА.Г.,КирдяшкинА.А.Глубинная
геодинамика.2‐едополн.изд.Новосибирск:Изд‐воСОРАН,филиал«ГЕО»,2001.409с.].
FilippovA.F.,1962.Onthescatterofparticlesizesduringfragmentation.In:Thetheoryofprobabilityanditsapplica‐
tion.Vol.VI,Iss.3.PublishingHouseoftheUSSRAcad.Sci.,Moscow,p.14–19(inRussian)[ФилипповА.Ф.Орас‐
пределенииразмеровчастицпридроблении//Теориявероятностейиееприменения.М.:Изд‐воАНСССР,
1962.Т.VI.Вып.3.С.14–19].
GetlingA.V.,1998.Rayleigh–BénardConvection:StructuresandDynamics.WorldScientific,Singapore–NewJersey–
HongKong,245p.
HazenR.M.,2012.TheStoryofEarth:TheFirst4.5BillionYears,fromStardusttoLivingPlanet.PenguinGroup,New
York,320p.
Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385 (6613), 219–229.
http://dx.doi.org/10.1038/385219a0.
HondaS.A.,1995.SimpleparameterizedmodelofEarth’sthermalhistorywiththetransitionfromlayeredtowhole
mantle convection. Earth and Planetary Science Letters 131 (3–4), 357–369. http://dx.doi.org/10.1016/0012‐
821X(95)00034‐A.
KirdyashkinA.G.,DobretsovN.L.,1991.Modelingofthedouble‐layeredmantleconvection.DokladyANSSSR318(4),
946–949(inRussian)[КирдяшкинА.Г.,ДобрецовН.Л.Моделированиедвухслойноймантийнойконвекции//
ДокладыАНСССР.1991.T.318.№4.C.946–949].
KolmogorovA.N.,1941.Onthelog‐normallawofdistributionofparticlesduringfragmentation.DokladyANSSSR31
(2), 99–101 (in Russian) [Колмогоров А.Н. О логарифмически‐нормальном законе распределения частиц
придроблении//ДокладыАНСССР.1941.Т.31.№2.С.99–101].
Kuz’minM.I.,2014.ThePrecambrianhistoryoftheoriginandevolutionof theSolarSystemandEarth.Part1. Geo‐
dynamics & Tectonophysics 5 (3), 625–640 (in Russian) [Кузьмин М.И. Докембрийская история зарождения
и эволюции Солнечной системы и Земли. Статья I // Геодинамика и тектонофизика. 2014. Т. 5. № 3.
С.625–640].http://dx.doi.org/10.5800/GT‐2014‐5‐3‐0146.
Li Z.X., Bogdanova S.V., Collins A.S., Davidson A.B., Waele D., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P.,
Jacobs J., Karlstrom K.E., Lul S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly,
configuration,andbreak‐uphistoryofRodinia:Asynthesis.PrecambrianResearch160(1–2),179–210.http://dx.
doi.org/10.1016/j.precamres.2007.04.021.
Lobkovsky L.I., 1988. Geodynamics of zones of spreading, subduction and double‐layered plate tectonics. Nauka,
Moscow,252p.(inRussian)[ЛобковскийЛ.И.Геодинамиказонспрединга,субдукцииидвухъяруснаятекто‐
никаплит.М.:Наука,1988.252с.].
LobkovskyL.I.,KotelkinV.D.,2000.Double‐layeredthermo‐chemicalmodelofconvectioninthemantleanditsgeody‐
namicconsequences.In:ProblemsofGlobalGeodynamics.GEOS,Moscow,p.29–53(inRussian)[ЛобковскийЛ.И.,
Котелкин В.Д. Двухъярусная термохимическая модель конвекции в мантии и ее геодинамические след‐
ствия//Проблемыглобальнойгеодинамики.М.:ГЕОС,2000.С.29–53].
LobkovskyL.I.,NikishinА.M.,KhainV.Е.,2004.ModernProblemsofGeotectonicsandGeodynamics.NauchnyMir,Mos‐
cow,610p.(inRussian)[ЛобковскийЛ.И.,НикишинА.М.,ХаинВ.Е.Современныепроблемыгеотектоники и
геодинамики.М.:Научныймир,2004.610с.].
LubninaN.V.,2011.SupercontinentsintheEarth'shistory(inRussian)[ЛубнинаН.В.Суперконтинентывистории
Земли.2011].Availablefrom:http://www.ises.su/2011/pdf_lectures/lubnina‐lecture.pdf(lastaccessedJune22,
2015).
MaruyamaS.,1994.Plumetectonics.TheJournaloftheGeologicalSocietyofJapan100(1),24–49.
MolnarP.,FreedmannD.,ShihJ.S.F.,1979.Lengthofintermediateanddeepseismiczonesandtemperatureindown
goingslabsoflithosphere.GeophysicalJournaloftheRoyalAstronomicalSociety56(1),41–54.http://dx.doi.org/
10.1111/j.1365‐246X.1979.tb04766.x.
NebelO.,CampbellI.H.,SossiP.A.,VanKranendonkM.J.,2014.HafniumandironisotopesinearlyArcheankomatiites
record a plume‐driven convection cycle in the Hadean Earth.Earth and Planetary Science Letters 397, 111–120.
http://dx.doi.org/10.1016/j.epsl.2014.04.028.
406
Geodynamics & Tectonophysics 2015 Volume 6 Issue 3 Pages 387–408
PeiveА.V.,1990.SelectedWorks.DeepFaultsandTheirRoleinConstructionandDevelopmentoftheEarth'sCrust.
Nauka,Moscow,352p.(inRussian)[ПейвеА.В.Избранныетруды.Глубинныеразломыиихрольвстроении
иразвитииземнойкоры.М.:Наука,1990.352с.].
PekerisG.L.,1935.ThermalconvectionintheinterioroftheEarth.MonthlyNoticesoftheRoyalAstronomicalSociety,
GeophysicalSupplements3(suppl.8),343–367.http://dx.doi.org/10.1111/j.1365‐246X.1935.tb01742.x.
RykovV.V.,TrubitsynV.P.,1994a.Digitalmodelingofmantleconvectionandtectonicsofcontinentalplates.In:Geody‐
namics and earthquake prediction. Computational Seismology, vol. 26. Nauka, Moscow, p. 94–102 (in Russian)
[Рыков В.В., Трубицын В.П. Численное моделирование мантийной конвекции и тектоники континенталь‐
ных плит // Геодинамика и прогноз землетрясений. Вычислительная сейсмология. Вып. 26. М.: Наука,
1994.C.94–102].
RykovV.V.,TrubitsynV.P.,1994b.Athree‐dimensionalmodelofmantleconvectionwithmobilecontinents.In:Theo‐
reticalproblemsofgeodynamicsandseismicity.ComputationalSeismology,vol.27.Nauka,Moscow,p.21–41(in
Russian)[РыковВ.В.,ТрубицынВ.П.Трехмернаямодельмантийнойконвекциисдвижущимисяконтинен‐
тами // Теоретические проблемы геодинамики и сейсмологии. Вычислительная сейсмология. Вып. 27.
М.:Наука,1994.C.21–41].
Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process.
Nauka,Moscow,100p.(inRussian)[СадовскийМ.А.,БолховитиновЛ.Г.,ПисаренкоВ.Ф.Деформированиегео‐
физическойсредыисейсмическийпроцесс.М.:Наука,1987.100с.].
SadovskyM.A.,PisarenkoV.F.,1991.Seismicprocessintheblockenvironment.Nauka,Moscow,96p.
Schubert G., Turcotte D.L., Olson P., 2001. Mantle convection in the Earth and Planets. Cambridge University Press,
Cambridge,940p.
SeminskyK.Zh.,2001.TectonophysicalregularitiesofdestructionofthelithosphereasexemplifiedbytheHimalayan
compressionzone.Tikhookeanskayageologiya20(6),17–30(inRussian)[СеминскийК.Ж.Тектонофизические
закономерностидеструкциилитосферынапримереГималайскойзонысжатия//Тихоокеанскаягеология.
2001.Т.20.№6.С.17–30].
SeminskyK.Zh.,2003.TheInternalStructureofContinentalFaultZones.TectonophysicalAspect.GEOBranch,Publishing
HouseofSBRAS,Novosibirsk,244p.(inRussian)[СеминскийК.Ж.Внутренняяструктураконтинентальныхраз‐
ломныхзон.Тектонофизическийаспект.Новосибирск:Изд‐воСОРАН,филиал«ГЕО»,2003.244с.].
ShermanS.I.,1977.PhysicalRegularitiesofFaultingintheEarth'sCrust.Nauka,Moscow,102с.(inRussian)[Шерман
С.И.Физическиезакономерностиразвитияразломовземнойкоры.Новосибирск:Наука,1977.102с.].
ShermanS.I.,2002.DevelopmentofM.V.Gzovsky'sconceptsinrecenttectonophysicalstudiesoffaultingandseismici‐
tyinthelithosphere.In:Tectonophysicstoday(totheJubileeofM.V.Gzovsky).InstituteofPhysicsoftheEarth,
Moscow,p.49–59(inRussian)[ШерманС.И.РазвитиепредставленийМ.В.Гзовскоговсовременныхтекто‐
нофизических исследованиях разломообразования и сейсмичности в литосфере // Тектонофизика сего‐
дня(кюбилеюМ.В.Гзовского).М.:ИнститутфизикиЗемлиРАН,2002.С.49–59].
Sherman S.I., 2012. Destruction of the lithosphere: Fault‐block divisibility and its tectonophysical regularities.
Geodynamics & Tectonophysics 3 (4), 315–344 (in Russian) [Шерман С.И. Деструкция литосферы: разломно‐
блоковая делимость и ее тектонофизические закономерности // Геодинамика и тектонофизика. 2012.
Т.3.№4.С.315–344].http://dx.doi.org/10.5800/GT‐2012‐3‐4‐0077.
ShermanS.I.,2014a.SeismicProcessandtheForecastofEarthquakes:TectonophysicalConception.AcademicPubli‐
shingHouse“Geo”,Novosibirsk,359p.(inRussian)[ШерманС.И.Сейсмическийпроцессипрогнозземлетря‐
сений:тектонофизическаяконцепция.Новосибирск:Академическоеиздательство«Гео»,2014.359с.].
ShermanS.I.,2014b.TectonophysicalregularitiesofdestructionofthecontinentallithosphereoftheEarth.In:Geody‐
namicevolutionofthelithosphereintheCentralAsianmobilebelt:fromoceantocontinent.Issue12.Instituteof
theEarth’scrustSBRAS,Irkutsk,p.333–336(inRussian)[ШерманС.И.Тектонофизическиезакономерности
деструкции континентальной литосферы Земли // Геодинамическая эволюция литосферы Центрально‐
Азиатскогоподвижногопояса:отокеанакконтиненту.Вып.12.Иркутск:ИЗКСОРАН,2014.C.333–336].
ShermanS.I.,LysakS.V.,Dem’yanovichV.M.,2004.Activefaults,seismicityandrecentfracturinginthelithosphereof
theBaikalriftsystem.Tectonophysics380(3–4),261–272.http://dx.doi.org/10.1016/j.tecto.2003.09.023.
ShermanS.I.,SeminskyK.Zh.,BornyakovS.A.,BuddoV.Yu.,LobatskayaR.M.,AdamovichA.N.,TruskovV.A.,BabichevA.A.,
1991.FaultingintheLithosphere.ShearZones.Nauka,SiberianBranch,Novosibirsk,261p.(inRussian)[Шерман
С.И.,СеминскийК.Ж.,БорняковС.А.,БуддоВ.Ю.,ЛобацкаяР.М.,АдамовичА.Н.,ТрусковВ.А.,БабичевА.А.Разло‐
мообразованиевлитосфере.Зонысдвига.Новосибирск:Наука.Сибирскоеотделение,1991.261с.].
ShermanS.I.,SeminskyK.Zh.,BornyakovS.A.,BuddoV.Yu.,LobatskayaR.M.,AdamovichA.N.,TruskovV.A.,BabichevA.A.,
1992.FaultingintheLithosphere.TensileStressZones.Nauka,SiberianBranch,Novosibirsk,227p.(inRussian)
[ШерманС.И.,СеминскийК.Ж.,БорняковС.А.,БуддоВ.Ю.,ЛобацкаяР.М.,АдамовичА.Н.,ТрусковВ.А.,Бабичев
А.А.Разломообразованиевлитосфере.Зонырастяжения.Новосибирск:Наука.Сибирскоеотделение,1992.
227с.].
ShermanS.I.,SeminskyK.Zh.,BornyakovS.A.,BuddoV.Yu.,LobatskayaR.M.,AdamovichA.N.,TruskovV.A.,BabichevA.A.,
1994.FaultingintheLithosphere.CompressionZones.Nauka,SiberianBranch,Novosibirsk,262p.(inRussian)
407
S.I. Sherman: Genetic sources and tectonophysical regularities of divisibility of the lithosphere…
[Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сжатия. Новосибирск: Наука. Сибирское отделение, 1994.
262 с.].
Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 2000. Destructive zones and fault-produced block structures of Central
Asia. Geology of Pacific Ocean 16, 231–252.
Shumilov V., 2009. The origin of the basalt pillars (in Russian) [Шумилов В. Происхождение базальтовых столбов.
2009]. Available from: http://shumilov.kiev.ua/geofizika/proisxozhdenie-bazaltovyx-stolbov.html (last accessed
June 22, 2015).
Trompert R., Hansen U., 1988. Mantle convection simulations with rheologies that generate platelike behaviour. Nature
395 (6703), 686–689. http://dx.doi.org/10.1038/27185.
Trubitsyn V.P., Rykov V.V., 2000. Mantle convection with mobile continents. In: Problems of global geodynamics. GEOS,
Moscow, p. 7–28 (in Russian) [Трубицын В.П., Рыков В.В. Мантийная конвекция с плавающими континентами
// Проблемы глобальной геодинамики. М.: ГЕОС, 2000. С. 7–28].
Trubitsyn V.P., Rykov V.V., 2002. Digital models of the evolution of mantle convection. In: N.L. Dobretsov (Ed.), Global
changes of environment. V. 3, Ch. 2, p. 42–56 (in Russian) [Трубицын В.П., Рыков В.В. Численные модели эволюции мантийной конвекции // Глобальные изменения природной среды / Ред. Н.Л. Добрецов. Новосибирск:
Наука, 2002. Т. 3, гл. 2. С. 42–56].
Trubitsyn V.P., Trubitsyn A.P., 2014. Numerical model for the generation of the ensemble of lithospheric plates and
their penetration through the 660-km boundary. Izvestiya, Physics of the Solid Earth 50 (6), 853–864. http://dx.
doi.org/10.1134/S106935131406010X.
Vrevsky A.B., Glebovitsky V.А., Goncharov А.G., Nikitina L.P., Pushkarev Yu.D., D., 2010. The continental lithospheric
mantle beneath Early Precambrian and Late Proterozoic – Phanerozoic structures of the Earth crust: chemical
composition, thermal state, evolution. Vestnik ONZ RAN 2, NZ6009, 65–75. (in Russian) [Вревский А.Б., Глебовицкий В.А., Гончаров А.Г., Никитина Л.П., Пушкарев Ю.Д. Континентальная литосферная мантия под разновозрастными структурами земной коры: химический состав, термальное состояние, эволюция // Вестник
ОНЗ РАН. 2010. № 2. NZ6009. С. 65–75. http://dx.doi.org/10.2205/2010NZ000027.
Yarmolyuk V.V., Kuzmin M.I., 2012. Late Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: Stages,
provinces, and formation settings. Geology of Ore Deposits 54 (5), 313–333. http://dx.doi.org/10.1134/S1075701
512050054.
Zonenshain L.P., Kuz'min M.I., 1993. Deep geodynamics of the Earth. Geologiya i Geofizika (Russian Geology and Geophysics) 34 (4), 3–13 (in Russian) [Зоненшайн Л.П., Кузьмин М.И. Глубинная геодинамика Земли // Геология и
геофизика. 1993. Т. 34. № 4. С. 3–13].
Sherman, Semen I., Academician of the Russian Academy of Natural Sciences,
Doctor of Geology and Mineralogy, Professor, Chief Researcher
Institute of the Earth’s Crust, Siberian Branch of RAS
128 Lermontov street, Irkutsk 664033, Russia
Tel.: (3952)428261;  e-mail: [email protected]
Шерман Семен Иойнович, академик Российской академии естественных наук,
докт. геол.-мин. наук, профессор, г.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия
Тел.: (3952)428261;  e-mail: [email protected]
408