Download Monocot and Dicot Lab2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Meristem wikipedia , lookup

Plant use of endophytic fungi in defense wikipedia , lookup

Plant nutrition wikipedia , lookup

Botany wikipedia , lookup

Plant physiology wikipedia , lookup

Ecology of Banksia wikipedia , lookup

Plant ecology wikipedia , lookup

Gartons Agricultural Plant Breeders wikipedia , lookup

Evolutionary history of plants wikipedia , lookup

Plant morphology wikipedia , lookup

Leaf wikipedia , lookup

Seed wikipedia , lookup

Ornamental bulbous plant wikipedia , lookup

Plant reproduction wikipedia , lookup

Plant evolutionary developmental biology wikipedia , lookup

Perovskia atriplicifolia wikipedia , lookup

Verbascum thapsus wikipedia , lookup

Flowering plant wikipedia , lookup

Lilioid monocots wikipedia , lookup

Glossary of plant morphology wikipedia , lookup

Monocotyledon wikipedia , lookup

Transcript
__
45
Monocot and Dicot Lab
Name:_________
Background
Flowering plants belong to the phylum Tracheophyta. This phylum consists of only vascular
plants, which means that they have xylem and phloem. The xylem transports water and minerals
and the phloem transports dissolved nutrients, such as glucose produced in the leaves. The
phylum Tracheophyta is divided into two classes: Gymnospermae and Angiospermae.
Angiospermae are further divided into two sub-classes: Monocotyledonae (aka Monocots) and
Dicotyledonae (aka Dicots). Monocots include palms, orchids, irises, and lilies. Dicots include
oaks, mustards, cacti, blackberries, and sunflowers. Dicots are more diverse and include many
more species than Monocots.
Monocots are mostly herbaceous (green) plants with long, narrow leaves that have
parallel veins. The flower parts of monocots occur in threes or multiples of three. Monocot
seeds have a single cotyledon, or embryonic “seed leaf”, and endosperm (nutritive tissue) is
usually present in mature seeds. In monocots, the vascular bundles of in the stem cross-section
are usually scattered. The roots systems of monocots are usually fibrous, many small roots.
Dicots can be herbaceous or woody stemmed. Their leaves vary in shape but are usually
broader than monocot leaves. The veins of monocot leaves are netted. Flower parts usually
occur in fours or fives or multiples thereof. Two cotyledons are present in dicot seeds, and
endosperm is usually absent in the mature seed, having been absorbed by the two cotyledons.
The vascular bundles of dicot stems are arranged in a circle or ring. The roots are a taproot
system: one large root with smaller roots coming off the main root (tap root).
Part 1 – Flower Dissection
Procedure:
Step 1: Obtain a lily flower for your group. Handle the plant carefully, it is delicate. Answer
the questions below.
Questions (5 marks)
1. How many petals does your flower have?
2. How many stamen does your flower have?
3. Examine the leaves.
a. Describe the pattern of the veins (vascular system). Is it parallel or net?
b. Describe the shape of the leaves.
4. Based on your findings, is the lily plant a monocot or a dicot?
Step 2: Use the same lily from Part 1. Remove 2 petals and one of the stamens, so
that all of the flower’s reproductive parts are visible.
In the space below draw the flower, neatly and in pencil!
(10 marks)
Label: petal, sepal, anther, filament, stamen, stigma, style, ovary
Step 3: Using a scalpel, carefully slice the stigma, style and ovary down the center.
longitudinally.
In the space below draw the internal features of the female reproductive organs, neatly
and in pencil.
(10 marks)
Label the sigma, style, ovary, ovules
Part 2 – Growing Monocots & Dicots
(20 marks)
We have already carried out the lab described below.
Now you need to examine your observations made over the month of
growing your plants and answer the questions on the next page.
Purpose:To determine whether a germinating seed indicates if a plant is a monocot or a dicot.
Materials:
glass or plastic jar
bean seed
paper towels
corn seed
two other seeds
Procedure:
1) Line each jar with a double layer of wet paper towels. Leave 2cm of water in the bottom of
the jar. IT IS IMPORTANT THAT THE TOWELS BE KEPT WET THROUGHOUT THE
ACTIVITY!
2) Position the seeds so they are wedged between the wall of the jar and the wet towels. Label
the name of the seed using masking tape on the outside of the jar.
3) Predict which seeds are monocots and which seeds are dicots. Record your predictions in
PEN and show them to your teacher.
4) Examine the germinating seeds daily until the roots and shoot are established.
5) Allow a month for the completed activity. Record your observations and drawings in a daily
log. Be sure to label your drawings.
Observations:
Create a Table in your notebook as follows:
Day:
Date:
Notes:
Sketches (labelled)
Monocot/Dicot Lab
Name:__________________
1) Why do the seeds need to be soaked in water before planting?
/1
2) Why is it important to keep the paper towel lining of the cup wet during the lab?
/1
3) Which of the species you germinated was a monocot? Which one was/were a dicot?
/1
4) Which of the species were the first to germinate in your experiment?
/1
5) Suggest a way that being an “early bloomer” might be an advantage for an annual plant
(a plant that only lives for one year)?
/1
6) Suggest a way that being an “late bloomer” might be an advantage for an annual ?
/1
7) Did you have any seeds that did not germinate at all? Suggest a reason why, for the same
species, one seed might germinate, and one not germinate, despite being kept in identical
conditions.
/1
8) In your opinion, what advantage do plants with woody stems have over herbaceous
(non-wood) stems?
/1
9) How does the arrangement of vascular bundles in a monocot stem differ from a dicot stem?
/1
10) How does the arrangement of vascular bundles in a monocot root differ from a dicot root?
/1
11) How do the veins in a monocot leaf differ from a dicot leaf?
/1
Conclusion:
What are the differences between monocots and dicots, as seen when their seeds germinate?
Remember when stating differences, include the characteristics of both to show how they are
different.
/2
Attach your observations to this lab and hand it all in together.
(13 marks + 7 marks)