* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download SPC560B4x/5x, SPC560C4x/5x, SPC560B54/6x, SPC560D30/40
Phase-locked loop wikipedia , lookup
Operational amplifier wikipedia , lookup
Integrating ADC wikipedia , lookup
Crystal radio wikipedia , lookup
Regenerative circuit wikipedia , lookup
Index of electronics articles wikipedia , lookup
Schmitt trigger wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Radio transmitter design wikipedia , lookup
Standby power wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Current mirror wikipedia , lookup
Voltage regulator wikipedia , lookup
Charlieplexing wikipedia , lookup
Surge protector wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Power electronics wikipedia , lookup
Power MOSFET wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Rectiverter wikipedia , lookup
AN3024 Application note SPC560B4x/5x, SPC560C4x/5x, SPC560B54/6x, SPC560D30/40 hardware design guideline Introduction This application note complements the information in the device datasheet (see Section A.1: Reference documents) by describing requirements useful for a hardware implementation of the development board features such as power supply, reset control, clock management, boot mode setting, debug management and I/Os settings. It shows how to use the product and defines the minimum hardware resources required to start an application development. Sections of this document describe certain device features in brief without describing the device blocks in detail. For a detailed description of these features, refer to the device datasheet, the reference manual or the errata sheet, or all three documents (see Section A.1: Reference documents). This application note applies to the devices listed in Table 1. Table 1. Device summary Reference Part number SPC560B4x SPC560B40L3, SPC560B40L5, SPC560B44L3 SPC560B5x SPC560B50L3, SPC560B50L5, SPC560B50B2 SPC560C4x SPC560C40L3, SPC560C44L3 SPC560C50 SPC560C50L3 SPC560B54x SPC560B54L3, SPC560B54L5 SPC560B60x SPC560B60L3, SPC560B60L5, SPC560B60L7 SPC560B64x SPC560B64L5, SPC560B64L7 SPC560D30x SPC560D30L3 SPC560D40x SPC560D40L1, SPC560D40L3 September 2013 Doc ID 16127 Rev 5 1/34 www.st.com Contents AN3024 Contents 1 2 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Current consumption and voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Power-on reset (POR) and low voltage detectors (LVDs) . . . . . . . . . . . . . 10 2.3 System reset pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 3 4 2.3.1 Input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Reset scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 ADC performances optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 External oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Fast external crystal oscillator (4 to 16 MHz) . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Slow external crystal oscillator (32 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.3.1 4.4 5 6 2/34 Some recommended crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Boot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.3 Boot pin scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.2 JTAG I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Doc ID 16127 Rev 5 AN3024 Contents 6.3 7 8 9 JTAG connector scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.2 I/O types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.3 I/Os configuration after reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.4 Maximum output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.5 I/O characteristic in STANDBY mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.6 General consideration for I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 EMC guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.1 SPC560Bx/Dx software configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 27 8.2 Hardware guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Reference schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix A Document management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 A.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 A.2 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Doc ID 16127 Rev 5 3/34 List of tables AN3024 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. 4/34 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ADC module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Recomanded crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Debug features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I/O supply segment - SPC560B50x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 I/O weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Doc ID 16127 Rev 5 AN3024 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical layout for VDD/VSS pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 System reset and low power circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Reference reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ADC input scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reference oscillator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Low power oscillator and resonator connection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Oscillator circuitry layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Boot mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Boot mode selection implementation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 JTAG connector scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical application schematic of SPC560B40x-LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . 29 Typical application schematic of SPC560B64-LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical application schematic of SPC560D40-LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Doc ID 16127 Rev 5 5/34 Power supplies AN3024 1 Power supplies 1.1 Introduction The device requires a 3.3 V or 5.0 V operating voltage supply (high voltage). An embedded regulator is used to supply the internal 1.2 V digital power (low voltage). Three different high voltage pin supply types are used: ● VDD_HV—high voltage external power supply for internal voltage regulators, I/O pins and Flash ● VDD_BV—high voltage external power supply for internal voltage regulator ballast transistors ● VDD_HV_ADCx—high voltage external power supply for each analog-to-digital converter Three different independent voltage regulators provide the 1.2 V digital power supply: ● HPREG—high power internal voltage regulator used during normal operations. It can be switched off in STOP mode and is automatically switched off in STANDBY mode. ● LPREG—low power internal voltage regulator used when HPREG is off. It can be switched off in STOP mode and is automatically switched off in STANDBY mode. ● ULPREG—ultra low power internal voltage regulator. Always switched on and used in STANDBY or in STOP mode when all other regulators are switched off. External capacitors connected between the VDD_LV/VSS_LV pin pairs ensure the stability of the internal 1.2 V HPREG and LPREG regulators. Figure 1. Power supply overview VDD VDD_BV CBAL Peripherals 8-KB SRAM ctrl ULPREG RC WKPU Power Domain 0 Standby VDD VDD_HV ctrl Power Domain 21 24-KB SRAM CDECn LPREG ctrl VDD VDD_HV_ADCx CFlash 16-KB SRAM ADC VSS_HV_ADCx HPREG DFlash Core Peripherals PLL OSC Power Domain 1 Main VDD_LV CREGm 1. PD2 is not developed in SPC560D30x/40x devices. 6/34 Doc ID 16127 Rev 5 AN3024 Power supplies For a detailed list of supply-related pins for all packages, please refer to the voltage supply pins section in device reference manual (see Section A.1: Reference documents). 1.2 Power supply scheme The circuit is powered by a stabilized power supply VDD. ● VDD_HV pins must be connected to VDD with external decoupling capacitors CDECn. ● VDD_BV pin must be connected to VDD with external decoupling capacitor CBAL. ● VDD_HV_ADC pin be connected to VDD with external decoupling capacitor CADC. ● VDD_LV pins must be connected with external decoupling capacitors CREGm placed as close as possible to the device pins. ● VSS_HV and VSS_LV pins must all be connected together to GND. Refer to the voltage regulator electrical characteristics section in the device datasheet (see Section A.1: Reference documents) for exact capacitor values. Figure 2. Power supply scheme SPC560Bx/Dx VDD VDD_BV CBAL VDD CDECn CREGm VDD VDD_HV 1/2/..n VDD_HV_ADCx VSS_HV 1/2/../n VSS_HV_ADCx CADC VDD_LV 1/2/../m VSS_LV 1/2/../m Note: The device cannot be supplied with external 1.2 V. The on-chip regulator must always be used. Caution: All BV and HV and ADCx supplies must be powered with a voltage level in the range VDD 0.1 V, and all grounds must be in the range VSS 0.1 V. 1.3 Current consumption and voltage regulator In order to select a suitable external voltage regulator and design a supply circuit, the designer of the application must consider: 1. The maximum consumption in steady state 2. The maximum inrush current during device start-up Doc ID 16127 Rev 5 7/34 Power supplies AN3024 The maximum consumption in steady state depends on the frequency of the CPU, the usage of the peripheral and the current drawn by the outputs. It can be estimated by referring to the device datasheet (see Section A.1: Reference documents). The inrush current required by the device during power-on reset or exit from STANDBY is clamped at 300 mA and lasts for few microseconds (maximum 20 µs) until the CREGm stabilization capacitors (total value ~1 µF) are charged. This current is drawn from the VDD_BV pin. Note: The inrush current must be considered to dimension the decoupling capacitance of the ballast (C_DEC1) value as during this inrush the application must ensure VDD remains in the voltage range of the application (5 V or 3.3 V ±10 %). The steady current is used to define the voltage regulator capability of the application. 1.4 Layout recommendations All the supply connections, including pads, tracks and vias, must have impedance as low as possible (less than 5 nH). This is typically achieved by using thick and wide Cu tracks and preferably dedicated power supply planes in multilayer PCBs. Moreover, it is recommended to use both low equivalent series resistance (ESR) and low equivalent series inductance (ESL) capacitors. The capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB. Figure 3 shows the typical layout of such a VDD/VSS pair. Figure 3. Typical layout for VDD/VSS pair Via to VDD Via to VSS Capacitor VDD 8/34 VSS Doc ID 16127 Rev 5 AN3024 Reset 2 Reset 2.1 Introduction The device has an integrated POR (power-on reset) to ensure a correct power-up sequence: The device remains in reset state as long as the VDD is below the specified threshold. The device has four low voltage detectors to monitor VDD_HV and VDD_LV: ● LVDHV3—monitors VDD so as to ensure that the device reset occurs for voltage values less than minimum functional supply value ● LVDHV5—monitors VDD when the application uses devices operating in the range 5.0 V ± 10%. By default the LVDHV5 is disabled (to allow 3.3 V operation) and must be activated by the application. ● LVDLVCOR—monitors the voltage provided to the main power domain (core, Flash, PLL, JTAG and peripherals not included in the standby power domain) ● LVDLVBKP—monitors the voltage provided to the power domain in standby mode (8 Kbyte SRAM, optionally 24 Kbyte SRAM, power control unit, reset generation module, voltage regulator, wake-up unit, API, CAN sampler, internal RC oscillators, etc.) The device has a dedicated bidirectional RESET pin (NRST) with Schmitt-Trigger characteristics and noise filter for system reset. For detailed information on reset sequence, please refer to the reset state machine section in device reference manual (see Section A.1: Reference documents). Doc ID 16127 Rev 5 9/34 Reset AN3024 Figure 4. System reset and low power circuitry VDD VDD_BV CBAL ctrl Power Domain 0 Standby ULPReg VDD VDD_HV CDECn ctrl Power Domain 21 LPReg ctrl Power Domain 1 Main HPReg VDD_LV CREGm LVDLVCOR POR LVDHV3 LVDLVBKP LVDHV5 RPU External Reset NRST Filter Internal Reset System RESET Power-on Reset Destructive Reset (LVD & Watchdog) Functional Reset (RGM) 1. PD2 is not developed in SPC560D30/40 devices. 2.2 Power-on reset (POR) and low voltage detectors (LVDs) POR is required to initialize the chip during power-up and works only on the rising edge of the VDD_HV supply. It is asserted when VDD_HV is above VPORUPmin and released when VDD_HV is above VPORH. Once the POR is released, power management modules, including internal LVDs, are up and running. The system remains in reset state until the LVDHV3, LVDLVCOR and LVDLVBKP thresholds are reached. Note: At power-up, although the VDD slope at the VDD_HV pad rises, it must remain in the range of 3 V/s to 0.25 V/µs (see TVDD parameter in the device datasheet—refer to Section A.1: Reference documents). 2.3 System reset pin The device implements a dedicated bidirectional RESET pin (NRST) with Schmitt-Trigger characteristics and noise filter. 10/34 Doc ID 16127 Rev 5 AN3024 2.3.1 Reset Input characteristics The external reset signal (pulse) on the NRST pin must be greater than WNFRST (500 ns). Pulses less than WFRST (50 ns) are ignored. Any pulse between WFRST and WNFRST may or may not generate an internal reset. A noise applied on the reset signal might wrongly put the device in reset. In order to avoid unexpected reset of the device, the NRST pad includes an analog filter which makes the system immune to noise. For additional information about filter characteristics, please refer to the nRSTIN electrical characteristics section in the device datasheet (see Section A.1: Reference documents). Figure 5. Noise filtering on reset signal VRSTIN hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST 2.3.2 Output characteristics The NRST pad, when used as output, behaves as a MEDIUM pad (see the nRSTIN electrical characteristics section in the device datasheet—refer to Section A.1: Reference documents). The duration of the NRST active time depends on the reset source and the device configuration, but the minimum reset duration guaranteed is 80 µs. 2.4 Reset scheme Figure 6 shows a typical circuit for controlling the NRST pin operation. The reset input pin has an internal weak pull-up configured by default exiting from power-on, thus R1 can be omitted. In the case in which an external capacitor is used to filter the NRST external signal, an external pull-up reduces the charging time of this capacitor. Doc ID 16127 Rev 5 11/34 Reset AN3024 Figure 6. Reference reset circuit VDD VDD VDD_HV Open drain reset MR Manual Reset 12/34 RST VSS Doc ID 16127 Rev 5 SPC560Bx/Dx R1 NRST VSS_HV AN3024 ADC 3 ADC 3.1 Introduction Table 2 shows ADC module present in the devices. Table 2. ADC module Devices ADC0 10-bit ADC1 12-bit SPC560B4x/5x, SPC560C4x/5x 1 0 SPC560B54/6x 1 1 SPC560D30x/40x 0 1 The device uses a dedicated supply pair VDD_HV_ADC/VSS_HV_ADC for each ADC analog module so as to decouple the ADC reference voltage from the noise generated either by another part of the device or by the external application components. VDD_HV_ADC must be at the same voltage level as the VDD_HV. There are three different ADC input channels types: ● ANP—internal multiplexed precise channels used for conversion requiring a low TUE ● ANS—internal multiplexed standard channels used for conversion requiring a standard TUE ● ANX—external multiplexed channels used in conjunction with external multiplexer controlled directly by the device ANPs are input only pins. For channel characteristics, please refer to the ADC electrical characteristics section in the device datasheet (see Section A.1: Reference documents). Doc ID 16127 Rev 5 13/34 ADC AN3024 Figure 7. ADC input scheme Up to 32 extended channels through external MUX MUX 8 MUX 8 MUX 8 MUX 8 Digital Interface Analog switch MUX 20 ANX[3] ANX[2] ANX[1] ANX[0] . . . ANS[15] (Ch 47) Up to 20 channels medium accuracy D A 14/34 MUX 16 ANS[0] (Ch 32) . . . Doc ID 16127 Rev 5 ANP[15] (Ch 15) ANP[0] (Ch 0) 16 channels high accuracy (Ch 64–71) (Ch 72–79) 3 (Ch 80–87) ADC system (Ch 88–95) MA[2:0] AN3024 3.2 ADC ADC performances optimization The equivalent analog input interface for both 10-bit and 12-bit ADC channel is shown in Figure 8. Figure 8. Input equivalent circuit EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS Filter RF Current Limiter RL CF VA RS RF CF RL RSW RAD CP CS CP1 Channel Selection Sampling RSW RAD CP CS Source Impedance Filter Resistance Filter Capacitance Current Limiter Resistance Channel Selection Switch Impedance Sampling Switch Impedance Pin Capacitance (two contributions, CP1 and CP2) Sampling Capacitance To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 1: Equation 1 R S + R F + R L + R SW + R AD 1 V A ---------------------------------------------------------------------- --- LSB R EQ 2 Please refer to the analog-to-digital converter (ADC) chapter in device reference manual or type specification versus pins and to the ADC electrical characteristics section in the device datasheet for parameter values (see Section A.1: Reference documents). Doc ID 16127 Rev 5 15/34 External oscillators AN3024 4 External oscillators 4.1 Introduction The product offers four clock sources to cover the various types of application: ● Fast internal RC oscillator ● Fast external crystal oscillator ● Slow internal RC oscillator ● Slow external crystal oscillator An internal PLL is available to optimize the oscillator choice versus the required system frequency. This section is focused on the two external oscillators: 4.2 ● The fast external crystal oscillator for the system clock covering 4 MHz to 16 MHz ● The slow external crystal oscillator for the 32 kHz low power clock Fast external crystal oscillator (4 to 16 MHz) The fast external crystal oscillator must be in the frequency range from 4 MHz to 16 MHz. If the crystal (resonator) is in the range from 4 MHz to 8 MHz, the oscillator margin can be adjusted by using an option bit which reduces the fast external crystal oscillator consumption (low consumption configuration). The default manufacturing oscillator margin is in the range from 4 MHz to 16 MHz. Please refer to the device reference manual (see Section A.1: Reference documents) for additional information about option bits and oscillator margin. To reduce EMC emissions, it is recommended to use the slowest crystal (resonator) together with the internal PLL, thus achieving the proper system operating frequency. The drawback of using a slow crystal is the longer start-up time. Figure 9 shows the external circuit needed for using the oscillator with a crystal or a resonator. Figure 9. Reference oscillator circuit EXTAL EXTAL Crystal Resonator C1 XTAL DEVICE XTAL C2 DEVICE For additional information, please refer to the fast external crystal oscillator (4 to 16 MHz) electrical characteristics section in the device datasheet (see Section A.1: Reference documents). 16/34 Doc ID 16127 Rev 5 AN3024 4.3 External oscillators Slow external crystal oscillator (32 kHz)(a) Figure 10 shows the external circuit needed for using the low power oscillator with a 32 kHz crystal. Figure 10. Low power oscillator and resonator connection scheme OSC32K_EXTAL OSC32K_EXTAL Crystal Resonator C1 OSC32K_XTAL OSC32K_XTAL C2 DEVICE DEVICE For additional information, please refer to the slow external crystal oscillator (32 kHz) electrical characteristics section in the device datasheet (see Section A.1: Reference documents). 4.3.1 Some recommended crystal Table 3 gives the references of recommended crystals certified by resonators suppliers and verified through designer simulation in addition to the ones listed in the DS. x Table 3. Recomanded crystal Part number EXS00A-MU00265 Family name NX3215SA 1TJF0SPFP1AC00E DST310S Freq. CL Supplier 32kHz 15pF NDK 32kHz 15pF KDS However it is suggested to perform matching directly on customer application board, in order to verify board parassitics. 4.4 Layout recommendations The following recommendations should be observed for designing the oscillator circuitry layout: ● A current flow at the crystal fundamental frequency runs through the oscillator circuit. If the oscillator is clipped, then the higher order harmonics are present. To minimize the emissions generated by these currents, the oscillator circuit should be kept as compact as possible. a. 32 KHz external oscillator is not developed on SPC560D30x/40x device Doc ID 16127 Rev 5 17/34 External oscillators AN3024 ● VSS_HV should be connected directly to GND (VSS island) so that return currents can flow easily between VSS_HV and the two capacitors (C1 and C2). ● Avoid other high frequency signals near the oscillator circuitry. ● Use the same GND for oscillator and oscillator driver (VSS_HV is between EXTAL and XTAL, VSS island) ● Layout: configure the GND supply at low impedance. ● Shield the crystal with an additional ground plane underneath the crystal. ● Do not place sensitive signals near the oscillator. Analyze cross-talk between different layers. ● The VSS pins close to the XTAL pin must be connected to GND plane (VSS island) and decoupled from the closest VDD pin. ● Capacitors are placed between both ends of the crystal and GND (guard ring). The ring must be as small as possible. ● If the crystal package is metallic, it should be connected directly to GND. ● For isolating the noise from or to a particular area of the PCB, it is possible to surround this area with a “guard ring.” Figure 11 shows an example of an oscillator circuitry layout. Figure 11. Oscillator circuitry layout 18/34 Doc ID 16127 Rev 5 AN3024 Boot configuration 5 Boot configuration 5.1 Introduction The boot of the device is managed by the boot assist module (BAM). The following boot modes are supported: ● Single chip (SC)—The device boots from the first bootable section of the Flash main array. ● Serial boot (SBL)—The device downloads boot code from either LINFlex_0 or FlexCAN_0 interface and executes it. The boot mode selection is obtained by setting two pins: FAB and ABS[0]. 5.2 Boot mode selection The device detects the boot mode based on external pins (FAB and ABS[0]) and device status. Figure 12 shows the boot sequence. Figure 12. Boot mode selection 0/2 &!"- 9 !"3 . &LASH"OOT)$ INANYBOOTSECTOR !"3 3ERIAL"OOT3", ,).&LEX !"3 3ERIAL"OOT3", &LEX#!. &LASH"OOTFROM LOWESTSECTOR NO"OOT)$ 3TATIC-ODE '!0'2) In Figure 12, the grey blocks represent hardware-implemented functions, while the white ones are software-implemented functions in ROM memory. Doc ID 16127 Rev 5 19/34 Boot configuration AN3024 To boot either from FlexCAN_0 or LINFlex_0, the device must be forced into an alternate boot loader mode via FAB pin (pad PA[9]). The type of alternate boot mode (CAN or LIN) is selected according to the ABS[0] pin (pad PA[8]). FAB and ABS[0] pins must be forced in the required state before initiating the reset sequence. . Table 4. Boot mode selection FAB (pad PA[9]) ABS[0] (pad PA[8]) Boot ID Boot mode 1 0 X LINFlex_0 1 1 X FlexCAN_0 0 X Valid Single chip 0 X Not valid Static mode In single-chip mode, hardware searches the Flash boot sector for a valid boot ID. As soon as the device detects a bootable sector, it reads the 32-bit word at offset 0x4 at the detected sector. Single-chip mode is managed by hardware and BAM is not used. BAM is executed only in the following cases: ● Serial boot mode has been selected by FAB pin. ● Hardware has not found a valid Boot-ID in any Flash boot locations. If booting is not possible with the selected configuration (for example, if no Boot ID is found in the selected boot location) then the device enters the static mode. Please refer to the boot assist module (BAM) chapter in device reference manual (see Section A.1: Reference documents) for additional information. 5.3 Boot pin scheme To make all boot configurations possible, it is recommended to use external switches connected to the FAB and ABS[0] pins, as shown in Figure 13. Figure 13. Boot mode selection implementation example 6$$ 41$#Y%Y K: &!" 6$$ K: !"3;= .OTE4HEPINS&!"AND!"3;=HAVETHEBOOTMODESELECTIONFUNCTIONDURINGRESETPHASE!FTERRESETPHASE THEYARENORMAL)/PINSANDCANBEUSEDACCORDINGTOAPPLICATIONNEEDS '!0'2) 20/34 Doc ID 16127 Rev 5 AN3024 Debug 6 Debug 6.1 Introduction Table 5 shows debug features of the devices. Table 5. Debug features Devices JTAG Nexus2+ SPC560B4x/5x, SPC560C4x/5x Yes Yes(1) SPC560B54/6x Yes Yes(1) SPC560D30x/40x Yes No 1. Only on the LBGA208 development package. Nexus2+ is not discussed in this document. 6.2 JTAG I/Os The JTAG interface is composed of: ● Test data input (TDI) on pin PC[0] ● Test data output (TDO) on pin PC[1] ● Test mode select (TMS) on pin PH[10] ● Test clock input (TCK) on pin PH[9] Out of reset, all JTAG signals are configured for the JTAG communication. They can be configured by software as user I/Os and made available to the application. If the application needs to combine both the JTAG functionality for debug and programming purposes together with the standard I/O function, some limitations must be considered: ● PC[0], PC[1], PH[9] and PH[10] cannot be debugged using a JTAG debug interface. ● The configuration of PC[0], PC[1], PH[9] or PH[10] as user I/Os prevents the communication with the debugger, making impossible to debug the application. ● These pins can only be set back to the JTAG functionality by means of a hardware or software reset (it cannot be done through the JTAG debugger). An external hardware application connected to those signals might interfere with JTAG signals, making it impossible to enter debug mode without disconnecting the external hardware. It is preferable to use these JTAG pins to define the hardware configuration of the application rather than critical application functions. Doc ID 16127 Rev 5 21/34 Debug 6.3 AN3024 JTAG connector scheme Figure 14. JTAG connector scheme 6$$ 0#;=4$) 0#;=4$/ 0(;=4#+ K: .234 0(;=4-3 K: '!0'2) 22/34 Doc ID 16127 Rev 5 AN3024 I/Os 7 I/Os 7.1 Introduction The device features a unique pad technology to sustain a current injection of IINJPAD (refer to device datasheet , Section A.1: Reference documents) on digital and analog inputs. A simple serial resistor is sufficient to protect the input characteristics. 7.2 I/O types The device features three I/O types with different drive strength: ● SLOW type—This is the most common output type suitable for most of the application output signals and ensuring low electromagnetic emission. It allows to drive up to 2 mA and can sustain a maximum frequency of 2 MHz. ● MEDIUM type—This output type can sustain a higher frequency with a reduced delay to meet the requirements of SPI communication or high speed CAN communication. It allows to drive up to 3.8 mA and can sustain a maximum frequency of 16 MHz. Out of reset, the medium speed outputs are configured as slow. To obtain the medium performance the application must configure the slew rate using the SRC field in the corresponding SIUL pad configuration register (SIUL_PCR). ● FAST type—Only the Nexus MCKO signal features a fast pad which is not a user signal. Maximum output frequency depends directly on the capacitive load connected on the output. Please refer to the device datasheet and Reference manual (see Section A.1: Reference documents), for the detailed electrical characteristics and port mapping. Note: 7.3 1 All output types have a slope control (current) to reduce the EMI. 2 TDO pad is medium speed only. Writing the SRC field in the corresponding SIUL_PCR has no effect. I/Os configuration after reset To avoid activating external components while under reset, all pads are forced to high impedance inputs, with the following exceptions: ● RESET is driven low ● Boot mode pins ● – FAB is pull-down – ABS[0] is pull-up JTAG pins – TCK, TMS and TDI are pull-up – TDO is high impedance Doc ID 16127 Rev 5 23/34 I/Os 7.4 AN3024 Maximum output current The application must not modify the maximum current drive expected on each I/O type and I/O segment. An I/O segment is a group of pads supplied by the same VDD_HV/VSS_HV pair. Table 6. I/O supply segment - SPC560B50x Supply segment Package 1 LBGA208(1) 2 3 4 Equivalent to LQFP144 segment pad distribution 5 6 MCKO MDOn/MSEO LQFP144 pin20–pin49 pin51–pin99 pin100–pin122 pin123–pin19 — — LQFP100 pin16–pin35 pin37–pin69 pin70–pin83 pin84–pin15 — — 1. LBGA208 available only as development package for Nexus2+. In order to keep the maximum current on each segment in specification, both static and dynamic consumptions must be considered: ● The maximum static current must remain below maximum IAVGSEG value so as to ensure device reliability. The parameter IAVGSEG represents the average current drawn by all outputs belonging to the same segment. For example, if VDD = 5 V then IAVGSEG = 70 mA. So, for example, if a body application uses loads that totally draw more than 70mA, these loads should be distributed over more than one segment. ● 24/34 The maximum dynamic current must guarantee that the sum of the weight of concurrent (per clock cycle) switching I/Os on a single segment should remain below the 100%. For example, consider I/O’s weight in Table 7 related to segment 4 on SPC560B40x device. Suppose we use the following concurrent switching I/Os for LQFP144 package: PB3, PC9, PC14, PC15, PG5, PG4, PG3, PG2, PA2, PE0, PA1 – if the pads are configured as slow (SRC=0), device functionality is guaranteed in case of VDD=5 V (sum of weights=96%) but not for VDD=3.3 V (sum of weights=114%) Doc ID 16127 Rev 5 AN3024 I/Os I/O weight(1) Table 7. LQFP64(2) LQFP144/LQFP100 Supply segment Pad LQFP LQFP LQFP 144 100 Weight 5 V Weight 3.3 V Weight 5 V Weight 3.3 V SRC(3) = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 64 PB[3] 10% — 12% — 10% — 12% — PC[9] 10% — 12% — 10% — 12% — — PC[14] 9% — 11% — — — — — — PC[15] 9% 13% 11% 12% — — — — — — PG[5] 9% — 11% — — — — — — — PG[4] 9% 12% 10% 11% — — — — — — PG[3] 9% — 10% — — — — — — — PG[2] 8% 12% 10% 10% — — — — 3 PA[2] 8% — 9% — 8% — 9% — — PE[0] 8% — 9% — — — — — 3 PA[1] 7% — 9% — 7% — 9% — — PE[1] 7% 10% 8% 9% — — — — — PE[8] 7% 9% 8% 8% — — — — — PE[9] 6% — 7% — — — — — — PE[10] 6% — 7% — — — — — 3 PA[0] 5% 8% 6% 7% 5% 8% 6% 7% — PE[11] 5% — 6% — — — — — 3 4 4 4 4 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to125 °C, unless otherwise specified. 2. All LQFP64 information is indicative and must be confirmed during silicon validation. 3. SRC: “Slew Rate Control” bit in SIU_PCR. Please refer to the I/O pad current specification section in the device datasheet and device reference manual (see Section A.1: Reference documents) for the detailed electrical characteristics and port mapping. The dynamic consumption is caused by the output driver transistors during the output switch and therefore is present only during the transition phase of the output (rising or falling edge). 7.5 I/O characteristic in STANDBY mode In STANDBY mode the I/Os are disconnected from supply and they are in high impedance state. Only the wake-up lines can be configured as: ● High-impedance input (default configuration) ● Input with weak pull-up Doc ID 16127 Rev 5 25/34 I/Os AN3024 The configuration of the wake-up lines is supported in the wake-up unit. Please refer to the wakeup unit (WKPU) chapter in reference manual (see Section A.1: Reference documents) for additional information. Note: All wake-up lines left floating cause additional consumption due to their Schmitt Trigger logic. To avoid unnecessary consumption all wake-up lines should be kept to VSS or VDD either by the application or using the internal weak pull-up. The TDO pad is part of the STANDBY domain in order to provide a handshaking mechanism with a debugger in STANDBY mode. However, in STANDBY mode the TDO pin is configured as input without pull-resistor and as a consequence, when no debugger is connected, the TDO pad is floating causing additional current consumption. In order to avoid additional consumption, TDO must be tied to VDD or GND by means of an external pull-up (or pull-down) resistor in the range of 47–100 k. If the PA[1] pin is configured as NMI the pull-up is automatically activated, but this has no effect during STANDBY mode. In this case pull-up is then correctly configured through the WKPU_WIPUER register; no external resistor is necessary. 7.6 General consideration for I/O To avoid excess consumption and to improve the reliability of the application it is recommended to configure unused I/Os as input with pull-up. During the application design the absolute maximum voltage on I/O must be considered: ● respect to ground: +6 V ● respect to VDD: Voltage of each pin must remain in the range from VDD 0.3 and VDD + 0.3 For more details refer to the device datasheet (see Section A.1: Reference documents). 26/34 Doc ID 16127 Rev 5 AN3024 8 EMC guidelines EMC guidelines This section summarizes recommendations for the system designers to improve the EMC (electromagnetic compatibility) and, in particular, to reduce the radiant emissions of a system based on the SPC560Bx/Dx devices. Obviously, not all EMC techniques are covered. Therefore, it is recommended to refer to other, more general EMC documentation in parallel to the present application note. 8.1 SPC560Bx/Dx software configurations The SPC560Bx/Dx family offers some features that allow, with software configurations, to cover some requests for reduction in the electromagnetic interference (or EMI) emissions: 8.2 ● The system clock should be chosen to avoid overlapping with known frequency (bands of interest) ● The FMPLL gives the possibility to modulate the system clock so to reduce the picks of emission. ● Choose the lowest possible slew rate of pins accordantly with the functionality choose for the pins ● The peripherals that are not used in the application should be disabled and clock gated ● Configuring the unused pins as input weak pull-up (default configuration) Hardware guidelines Some recommendations to design a system layout are listed below: ● VDD decoupling capacitors Decoupling capacitors must be used to decouple BV and all HV and ADC supply pins from GND. To avoid that the decoupling capacitors’ parasitic inductance couples with the capacitance plane of the supply planes, certain measures of precaution should be taken: ● – Place the capacitors as close as possible to the VDD pins on the SPC560Bx/Dx device. – Use power planes or wide traces to connect from the SPC560Bx/Dx device to the capacitor. – Use as many vias as possible in the connections from the SPC560Bx/Dx device to the capacitors. For example, use at least two vias to connect the positive side of the capacitor to the power plane. Fast external crystal oscillator To reduce EMC emissions, it is recommended to use the slowest crystal (resonator) together with the internal PLL, thus achieving the proper system operating frequency. The drawback of using a slow crystal is the longer startup time. In order to minimize the amount of emissions, generated from the currents flowing in the oscillator circuit at the crystal's fundamental frequency, the oscillator circuit should be kept as compact as possible. Doc ID 16127 Rev 5 27/34 EMC guidelines ● AN3024 Grounding Usually in a system it is possible identify different parts of circuits including digital, analog, high current switching circuitry, I/O, and the main power supply. If these different parts of the circuit use isolated grounds, they will be connected together at a single point. ● 28/34 PCB considerations: – For single-chip applications, a minimum of four layers is used. For expanded mode applications, a minimum of six layers is used. – There is at least one ground plane. – There is at least one power plane. – From the power and ground planes have not be present structures which obstruct the flow of current, such as via overlapping (it is not allowed three via anti-pads to merged). Furthermore, vias should be staggered as much as possible because aligned vias create slots that obstruct the flow of current. Doc ID 16127 Rev 5 Reference schematic AN3024 9 Figure 15 shows a typical application schematic. Figure 15. Typical application schematic of SPC560B40x-LQFP144 Doc ID 16127 Rev 5 Reference schematic 29/34 GAPGRI00208 6 4 2 SMBJ5339B 100uF 100uF C10 0.1uF 5V LED VDD_HV_ADC1 VSS_HV_ADC1 J12 TP1 GND TP2 GND TP3 GND TP4 GND 1 2 + C7 C2 0.1uF + C1 D1 POWER 2-BLOCK 1 2 3 4 5 6 7 8 9 1 2 VDD_BV P5V_MCU P3V3 P1V2_MCU VDD_HV_ADC0 VSS_HV_ADC0 D2 ORANGE 1 2 2 R1 510Ohm 2 - P5V 1 2 5 3 1 1 1 + FUSE J18 PI0 PI2 PI4 PI6 PI8 PI10 PI12 PI14 K1 POWER SW P1 PI1 PI3 PI5 PI7 PI9 PI11 PI13 PI15 2 1 4 3 6 5 8 7 9 10 11 12 13 14 15 16 1nF 0.33uF 1nF 0.33uF 1nF P5V_MCU C5 32KHz CLOCK CIRCUIT Rs1 0 Ohm 10pF C32 470pF C35 0.1uF C34 470pF C33 0.1uF C6 P5V_MCU P5V J3 Rf1 Y2 2 4 1 3 32KHz_EN 10pF 3 P5V Rs2 0 Ohm CFS206-32.768KDZF-UB P5V_MCU DO NOT POPULATE C31 0.1uF J17 2 V_DBUG J16 J14 R19 8 Ohm 1/4W 1 P5V_MCU P5V P5V J8 2 PA9 R6 0805 DO NOT POP 3 R7 10k R5 10k R3 10k P5V_MCU FB1 VDD_HV_ADC0 P5V_MCU FB3 R17 10k EVTI JCOMP 2 PA8 ABS0 FAB V_DBUG V_DBUG 1 1 J7 C51 470pF C50 0.1uF R4 10k R2 10k 3 Doc ID 16127 Rev 5 VDD_BV P3V3 R18 0805 DO NOT POP VDD_HV_ADC1 FERRITE BEAD FERRITE BEAD C4 C3 10uF 0.1 uF C11 C15 10uF 0.1 uF VSS_HV_ADC1 VSS_HV_ADC0 FB2 FERRITE BEAD C8 FB4 FERRITE BEAD Rs 0 Ohm 10pF NX8045GB-8.000M C9 Rf 1M Ohm Y1 DO NOT POPULATE 10pF CLOCK CIRCUIT J10 1 3 2 4 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 39 40 176 1 88 91 92 93 61 60 62 97 101 103 105 107 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 154 149 145 144 159 158 44 45 175 2 36 35 173 174 3 4 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 77 78 79 80 81 82 83 84 87 94 95 96 100 102 104 106 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 18 20 156 157 160 161 167 168 21 22 23 25 133 127 136 137 XTAL EXTAL 56 58 RESET TMS TCK 29 148 155 PB[0] PB[1] PB[2] PB[3] PB[4] PB[5] PB[6] PB[7] PB[8] PB[9] PB[10] PB[11] PB[12] PB[13] PB[14] PB[15] PG[0] PG[1] PG[2] PG[3] PG[4] PG[5] PG[6] PG[7] PG[8] PG[9] PG[10] PG[11] PG[12] PG[13] PG[14] PG[15] PC[0] PC[1] PC[2] PC[3] PC[4] PC[5] PC[6] PC[7] PC[8] PC[9] PC[10] PC[11] PC[12] PC[13] PC[14] PC[15] PH[0] PH[1] PH[2] PH[3] PH[4] PH[5] PH[6] PH[7] PH[8] PH[11] PH[12] PH[13] PH[14] PH[15] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PD[9] PD[10] PD[11] PD[12] PD[13] PD[14] PD[15] PE[0] PE[1] PE[2] PE[3] PE[4] PE[5] PE[6] PE[7] PE[8] PE[9] PE[10] PE[11] PE[12] PE[13] PE[14] PE[15] XTAL EXTAL CLK_EN TCKOUT R15 0Ohm VDD_BV 32 26 RESET PH[10] PH[9] PI[0] PI[1] PI[2] PI[3] PI[4] PI[5] PI[6] PI[7] PI[8] PI[9] PI[10] PI[11] PI[12] PI[13] PI[14] PI[15] PJ[0] PJ[1] PJ[2] PJ[3] PJ[4] VSS_HV_ADC0 VDD_HV_ADC0 VSS_HV_ADR1 VDD_HV_ADR1 VDD_HV_FLA0 VDD_HV_IO0_E1 VDD_HV_IO0_S3 VDD_HV_OSC0REG0 VDD_HV_FLA1 VDD_HV_IO0_W1 VSS_HV_IO0_N0 VSS_HV_IO0_E0 VSS_HV_IO0_S2 VSS_HV_IO0_S0 VSS_HV_IO0_W0 VSS_HV_IO0_W1 VDD_LV_FLA0 VDD_LV_PLL0 VDD_LV_COR0_W0 VDD_BV_FLA1COR0 VSS_LV_COR0_N0 VSS_LV_PLL0 VSS_26 VSS_LV_FLA1 BOLERO_176_2 122 PG0 121 PG1 16 PG2 15 PG3 14 PG4 13 PG5 38 PG6 37 PG7 34 PG8 33 PG9 138 PG10 139 PG11 116 PG12 115 PG13 134 PG14 135 PG15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 39 40 176 1 88 91 92 93 61 60 62 97 101 103 105 107 117 PH0 118 PH1 119 PH2 120 PH3 162 PH4 163 PH5 164 PH6 165 PH7 166 PH8 140 PH11 141 PH12 9 PH13 10 PH14 8 PH15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 154 149 145 144 159 158 44 45 175 2 36 35 173 174 3 4 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 77 78 79 80 81 82 83 84 87 94 95 96 100 102 104 106 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 18 20 156 157 160 161 167 168 21 22 23 25 133 127 136 137 172 PI0 171 PI1 170 PI2 169 PI3 143 PI4 142 PI5 11 PI6 12 PI7 108 PI8 109 PI9 110 PI10 111 PI11 112 PI12 113 PI13 76 PI14 75 PI15 74 73 72 71 5 PJ0 PJ1 PJ2 PJ3 PJ4 89 VSS_HV_ADC0 90 VDD_HV_ADC0 98 VSS_HV_ADC1 99 VDD_HV_ADC1 151 P5V_MCU 124 P5V_MCU 85 P5V_MCU 59 P5V_MCU 27 P5V_MCU 6 P5V_MCU 150 123 86 57 28 7 152 P1V2_MCU 54 P1V2_MCU 31 P1V2_MCU 153 VSS_LV_153 55 VSS_LV_55 30 VSS_LV_30 XTAL EXTAL 56 58 RESET TMS TCK 29 148 155 VDD_BV 32 26 PA[0] PA[1] PA[2] PA[3] PA[4] PA[5] PA[6] PA[7] PA[8] PA[9] PA[10] PA[11] PA[12] PA[13] PA[14] PA[15] PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PF[8] PF[9] PF[10] PF[11] PF[12] PF[13] PF[14] PF[15] PB[0] PB[1] PB[2] PB[3] PB[4] PB[5] PB[6] PB[7] PB[8] PB[9] PB[10] PB[11] PB[12] PB[13] PB[14] PB[15] PG[0] PG[1] PG[2] PG[3] PG[4] PG[5] PG[6] PG[7] PG[8] PG[9] PG[10] PG[11] PG[12] PG[13] PG[14] PG[15] PC[0] PC[1] PC[2] PC[3] PC[4] PC[5] PC[6] PC[7] PC[8] PC[9] PC[10] PC[11] PC[12] PC[13] PC[14] PC[15] PH[0] PH[1] PH[2] PH[3] PH[4] PH[5] PH[6] PH[7] PH[8] PH[11] PH[12] PH[13] PH[14] PH[15] PD[0] PD[1] PD[2] PD[3] PD[4] PD[5] PD[6] PD[7] PD[8] PD[9] PD[10] PD[11] PD[12] PD[13] PD[14] PD[15] PE[0] PE[1] PE[2] PE[3] PE[4] PE[5] PE[6] PE[7] PE[8] PE[9] PE[10] PE[11] PE[12] PE[13] PE[14] PE[15] XTAL EXTAL RESET PH[10] PH[9] PJ 1 PJ 3 PI[0] PI[1] PI[2] PI[3] PI[4] PI[5] PI[6] PI[7] PI[8] PI[9] PI[10] PI[11] PI[12] PI[13] PI[14] PI[15] PJ[0] PJ[1] PJ[2] PJ[3] PJ[4] VSS_HV_ADC0 VDD_HV_ADC0 VSS_HV_ADR1 VDD_HV_ADR1 VDD_HV_FLA0 VDD_HV_IO0_E1 VDD_HV_IO0_S3 VDD_HV_OSC0REG0 VDD_HV_FLA1 VDD_HV_IO0_W1 VSS_HV_IO0_N0 VSS_HV_IO0_E0 VSS_HV_IO0_S2 VSS_HV_IO0_S0 VSS_HV_IO0_W0 VSS_HV_IO0_W1 VDD_LV_FLA0 VDD_LV_PLL0 VDD_LV_COR0_W0 VDD_BV_FLA1COR0 VSS_LV_COR0_N0 VSS_LV_PLL0 VSS_26 VSS_LV_FLA1 63 PF0 64 PF1 65 PF2 66 PF3 67 PF4 68 PF5 69 PF6 70 PF7 42 PF8 41 PF9 46 PF10 47 PF11 43 PF12 49 PF13 126 PF14 125 PF15 R12 V_DBUG C12 0Ohm C14 C13 J9 PB5 RESET PC1 TCKOUT TMS PC0 JCOMP P12V 117 PH0 118 PH1 119 PH2 120 PH3 162 PH4 163 PH5 164 PH6 165 PH7 166 PH8 140 PH11 141 PH12 9 PH13 10 PH14 8 PH15 R16 VCONN J5 2 4 6 8 10 12 14 GND TDI GND TDO GND TCK NC EVTI ~RESET TMS GND VDDE7 ~RDY JCOMP TMS JCOMP JTAG 4.7uF 0.1uF 0.01uF 122 PG0 121 PG1 16 PG2 15 PG3 14 PG4 13 PG5 38 PG6 37 PG7 34 PG8 33 PG9 138 PG10 139 PG11 116 PG12 115 PG13 134 PG14 135 PG15 J6 NEXUS CONNECTOR(MICTOR) 2 RSVD2 RSVD1 4 RSVD4 RSVD3 6 VEN_IO0 CLKOUT 8 VEN_IO2 VEN_IO3 10 EVTI RESET 12 VREF TDO 14 RDY VEN_IO4 16 MDO7 TCK 18 MDO6 TMS 20 MDO5 TDI 22 MDO4 TRST 24 MDO3 VEN_IO1 26 MDO2 TOOL_IO3 28 MDO1 TOOL_IO2 30 MDO0 TOOL_IO1 32 EVTO UBATT 34 MCKO UBATT 36 TOOL_IO0 MSEO1 38 MSEO0 VALTREF 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 10K 172 PI0 171 PI1 170 PI2 169 PI3 143 PI4 142 PI5 11 PI6 12 PI7 108 PI8 109 PI9 110 PI10 111 PI11 112 PI12 113 PI13 76 PI14 75 PI15 74 73 72 71 5 1 PC0 3 PC1 TCKOUT 5 7 EVTI RESET 9 VCONN 11 13 R13 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PA0 0Ohm VCONN EVTI PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 G1 G2 G3 G4 G5 0.33uF 2 4 6 39 40 41 42 43 C49 U2 R8 4.7K C19 0.1uF R11 510 Ohm R9 4.7K R10 RESET U5 SN74LVC1G08 1 A RESET_MB 2 B 3 PJ0 PJ1 PJ2 PJ3 PJ4 Y GND VCC PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 RED LED D3 P5V P5V P5V 4 3 4 1 5 U4 RSTLED 4.7K VCC MR RESET 2 J13 RESET 2X1 HEADER GND ADM6315-26D3ARTZ P5V RESET CIRCUIT 89 VSS_HV_ADC0 90 VDD_HV_ADC0 98 VSS_HV_ADC1 99 VDD_HV_ADC1 151 P5V_MCU 124 P5V_MCU 85 P5V_MCU 59 P5V_MCU 27 P5V_MCU 6 P5V_MCU 150 123 86 57 28 7 1 J15 153 VSS_LV_153 55 VSS_LV_55 30 VSS_LV_30 BOLERO_176_2 P1V2 2X1 HEADER CT1 CT2 J11 5 2 152 P1V2_MCU 54 P1V2_MCU 31 P1V2_MCU PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13 PG14 PG15 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11 PI12 PI13 PI14 PI15 P2 DO NOT POPULATE SMA CONNECTOR EXTAL CLK_EXT_EN 4 C30 470pF C47 C48 24 19 17 114 51 146 147 128 129 130 131 132 53 52 50 48 3 C29 0.1uF C45 C46 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 1 C28 470pF C44 C27 0.1uF 63 PF0 64 PF1 65 PF2 66 PF3 67 PF4 68 PF5 69 PF6 70 PF7 42 PF8 41 PF9 46 PF10 47 PF11 43 PF12 49 PF13 126 PF14 125 PF15 2 C26 470pF PF[0] PF[1] PF[2] PF[3] PF[4] PF[5] PF[6] PF[7] PF[8] PF[9] PF[10] PF[11] PF[12] PF[13] PF[14] PF[15] 2 C25 0.1uF PA[0] PA[1] PA[2] PA[3] PA[4] PA[5] PA[6] PA[7] PA[8] PA[9] PA[10] PA[11] PA[12] PA[13] PA[14] PA[15] 1 C24 470pF U1 1 P1V2_MCU P5V_MCU 24 19 17 114 51 146 147 128 129 130 131 132 53 52 50 48 2 C23 0.1uF C22 470pF C21 0.1uF C20 470pF PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 1 3 5 PORT_J PORT_I 9-PIN-HEADER P5V_MCU J19 PJ0 PJ2 PJ4 2XAMP120 2XAMP120.Sch PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 PG8 PG9 PG10 PG11 PG12 PG13 PG14 PG15 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 PH12 PH13 PH14 PH15 PI0 PI1 PI2 PI3 PI4 PI5 PI6 PI7 PI8 PI9 PI10 PI11 PI12 PI13 PI14 PI15 PJ0 PJ1 PJ2 PJ3 PJ4 EVTI TMS TCKOUT RESET_MB RESET P12V P5V P3V3 P1V2 GND PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 Reference schematic 30/34 Figure 16. Typical application schematic of SPC560B64-LQFP176 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PF0 PF1 PF2 PF3 PF4 PF5 PF6 PF7 PF8 PF9 PF10 PF11 PF12 PF13 PF14 PF15 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 PH12 PH13 PH14 PH15 PJ0 PJ1 PJ2 PJ3 PJ4 EVTI TMS TCKOUT RESET_MB RESET P12V P5V P3V3 P1V2 R14 100R DO NOT POPULATE CT3 GAPGRI00361 AN3024 R11 V_DBUG 0Ohm C12 C13 C14 4.7uF 0.1uF 0.01uF 1 3 P5V 1 FUSE R1 2 D2 ORANGE 510Ohm + C1 10uF C2 0.1uF 5V LED SMBJ5339B VDD5B_CFLA_CORE 1 P5V_MCU 2 3 P3V3 4 P1V2_MCU AVDDSUPPLY 5 6 AVSSSUPPLY 7 J12 TP1 TP2 TP3 TP4 GND GND GND GND P12V R12 VCONN 10K EVTI VCONN 7-PIN-HEADER 39 40 41 42 43 6 4 2 D1 TMS JCOMP G1 G2 G3 G4 G5 POWER SW J6 NEXUS CONNECTOR(MICTOR) 2 RSVD1 RSVD2 4 RSVD3 RSVD4 6 CLKOUT VEN_IO0 8 VEN_IO2 VEN_IO3 10 EVTI RESET 12 VREF TDO 14 VEN_IO4 RDY 16 MDO7 TCK 18 MDO6 TMS 20 MDO5 TDI 22 TRST MDO4 24 VEN_IO1 MDO3 26 TOOL_IO3 MDO2 28 MDO1 TOOL_IO2 30 TOOL_IO1 MDO0 32 EVTO UBATT 34 UBATT MCKO 36 MSEO1 TOOL_IO0 38 VALTREF MSEO0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 TCKOUT TMS PC0 JCOMP 5 K1 2 4 6 8 10 12 14 GND TDI TDO GND GND TCK NC EVTI ~RESET TMS VDDE7 GND ~RDY JCOMP JTAG RESET PC1 P1 1 P1 + 1 + 2 2 POWER 2-BLOCK POWER 2-BLOCK J5 1 PC0 PC1 3 TCKOUT 5 7 EVTI 9 RESET VCONN 11 13 AN3024 Figure 17. Typical application schematic of SPC560D40-LQFP100 P5V_MCU C23 0.1uF C25 0.1uF C26 470pF C27 0.1uF P5V_MCU C28 470pF C29 0.1uF C31 0.1uF C30 470pF P5V_MCU P1V2_MCU C34 470pF C35 0.1uF C44 C45 C46 1nF 0.33uF C47 C48 C49 1nF 0.33uF 1nF P5V_MCU 1 J17 2 V_DBUG J16 VDD5B_CFLA_CORE 2 C51 C50 3 0.1uF 470pF P5V V_DBUG R6 0805 DO NOT POP 1 J7 J8 2 PA9 FAB 2 PA8 ABS0 3 R5 10k P5V_MCU FB1 AVDDSUPPLY R21 10k R7 10k 10uF C3 0.1 uF AVSSSUPPLY EVTI JCOMP C4 R22 0805 DO NOT POP FB2 FERRITE BEAD Do not Populate R3 10k V_DBUG FERRITE BEAD R4 10k 1 R2 10k J14 2X1 HEADER P5V_MCU P3V3 P5V P5V 1 P5V 3 C33 0.1uF 0.33uF 3 Doc ID 16127 Rev 5 C32 470pF PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 87 82 78 77 92 91 25 26 99 2 22 21 97 98 3 4 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 41 42 43 44 45 46 47 48 49 56 57 58 60 62 64 66 EXTAL XTAL 36 34 R17 4.7K U1 PA[0]_eMIOS0_CLKOUT PA[1]_eMIOS1_NMI PA[2]_eMIOS2_ABS[1] PA[3]_eMIOS3_TXD_5 PA[4]_eMIOS4_RXD_5 PA[5]_eMIOS5_TXD_4 PA[6]_eMIOS6_RXD_4 PA[7]_eMIOS7_TXD_3 PA[8]_eMIOS8_RXD_3 _ABS[0] PA[9]_eMIOS9_FAB PA[10]_eMIOS10_SDA_0 PA[11]_eMIOS11_SCL_0 PA[12]_SIN_0 PA[13]_SOUT_0 PA[14]_SCK_0_PCS_0.0 PA[15]_PCS_0.0 _SCK_0 PB[0]_CNTX_0 PB[1]_CNRX_0 PB[2]_TXD_0_SDA_0 PB[3]_RXD_0_SCL_0 PB[4]_AN0 PB[5]_AN1 PB[6]_AN2 PB[7]_AN3 PB[8]_XTAL32_AN16 PB[9]_EXTAL32_AN17 PB[10]_AN18 PB[11]_eMIOS3_AN19_PCS_0.0 PB[12]_eMIOS4_AN32_PCS_1.0 PB[13]_eMIOS5_AN33_PCS_2.0 PB[14]_eMIOS6_AN34_PCS_3.0 PB[15]_eMIOS7_AN35_PCS_4.0 PC[0]_TDI PE[0]_eMIOS16_CNRX_5 PC[1]_TDO PE[1]_eMIOS17_CNTX_5 PC[2]_SCK_1_CNTX_4 PE[2]_eMIOS18_SIN_1 PC[3]_PCS_0.1_CNRX_4_CNRX_1 PE[3]_eMIOS19_SOUT_1 PC[4]_SIN_1_CNRX_3 PE[4]_eMIOS20_SCK_1 PC[5]_SOUT_1 _CNTX_3 PE[5]_eMIOS21_PCS_0.1_MA2 PC[6]_TXD_1 PE[6]_eMIOS22_PCS_3.0_MA1 PC[7]_RXD_1 PE[7]_eMIOS23_PCS_2.0_MA0 PC[8]_TXD_2 PE[8]_CNTX_2_eMIOS22_CNTX_3 PC[9]_RXD_2 PE[9]_CNRX_2_eMIOS23_CNRX_3 PE[10]_TXD_3 _PCS_3.1 PC[10]_CNTX_1_CNTX_4 PC[11]_CNRX_1_CNRX_4 PE[11]_RXD_3 _PCS_4.1 PC[12]_eMIOS12_SIN_2 PE[12]_SIN_2_eMIOS47 PC[13]_eMIOS13_SOUT_2 PC[14]_eMIOS14_SCK_2 TEST_VPP PC[15]_eMIOS15_PCS_0.2 RESET TMS PD[0]_AN4 TCK PD[1]_AN5 VDD5_IO_W0 PD[2]_AN6 PD[3]_AN7 VDD5_IO_S0 PD[4]_AN8 VDD5_IO_E0 VDD5_IO_N0 PD[5]_AN9 PD[6]_AN10 VDD12_CORE_W0 VDD12_CORE_S0 PD[7]_AN11 PD[8]_AN12 VDD12_CORE_N0 VDD5B_CFLA_CORE PD[9]_AN13 PD[10]_AN14 AVDDSUPPLY PD[11]_AN15 PD[12]_PCS_5.0_AN20_eMIOS24 VSS5_IO_W0 PD[13]_PCS_0.1_AN25_eMIOS25 VSS5_IO_S0 PD[14]_PCS_1.1_AN26_eMIOS26 VSS5_IO_N0 PD[15]_PCS_2.1_AN27_eMIOS27 VSS12_CORE_W0 VSS12_CORE_S0 EXTAL VSS12_CORE_N0 VSS5_IO_COMP_E0 XTAL AVSSSUPPLY BOLERO 100LQFP 23 24 100 1 50 53 54 55 39 38 40 59 61 63 65 67 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 12 7 5 68 29 79 80 71 72 73 74 75 31 30 28 27 6 8 89 90 93 94 95 96 9 10 11 13 76 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 14 17 81 88 RESET TMS TCK PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 87 82 78 77 92 91 25 26 99 2 22 21 97 98 3 4 15 37 70 84 19 32 85 20 52 P5V_MCU P5V_MCU P5V_MCU P5V_MCU P1V2_MCU P1V2_MCU P1V2_MCU VDD5B_CFLA_CORE AVDDSUPPLY PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 41 42 43 44 45 46 47 48 49 56 57 58 60 62 64 66 EXTAL XTAL 36 34 16 35 83 18 33 86 69 51 AVSSSUPPLY U2 PA[0]_eMIOS0_CLKOUT PA[1]_eMIOS1_NMI PA[2]_eMIOS2_ABS[1] PA[3]_eMIOS3_TXD_5 PA[4]_eMIOS4_RXD_5 PA[5]_eMIOS5_TXD_4 PA[6]_eMIOS6_RXD_4 PA[7]_eMIOS7_TXD_3 PA[8]_eMIOS8_RXD_3 _ABS[0] PA[9]_eMIOS9_FAB PA[10]_eMIOS10_SDA_0 PA[11]_eMIOS11_SCL_0 PA[12]_SIN_0 PA[13]_SOUT_0 PA[14]_SCK_0_PCS_0.0 PA[15]_PCS_0.0 _SCK_0 PB[0]_CNTX_0 PB[1]_CNRX_0 PB[2]_TXD_0_SDA_0 PB[3]_RXD_0_SCL_0 PB[4]_AN0 PB[5]_AN1 PB[6]_AN2 PB[7]_AN3 PB[8]_XTAL32_AN16 PB[9]_EXTAL32_AN17 PB[10]_AN18 PB[11]_eMIOS3_AN19_PCS_0.0 PB[12]_eMIOS4_AN32_PCS_1.0 PB[13]_eMIOS5_AN33_PCS_2.0 PB[14]_eMIOS6_AN34_PCS_3.0 PB[15]_eMIOS7_AN35_PCS_4.0 PC[0]_TDI PE[0]_eMIOS16_CNRX_5 PC[1]_TDO PE[1]_eMIOS17_CNTX_5 PE[2]_eMIOS18_SIN_1 PC[2]_SCK_1_CNTX_4 PE[3]_eMIOS19_SOUT_1 PC[3]_PCS_0.1_CNRX_4_CNRX_1 PC[4]_SIN_1_CNRX_3 PE[4]_eMIOS20_SCK_1 PC[5]_SOUT_1 _CNTX_3 PE[5]_eMIOS21_PCS_0.1_MA2 PC[6]_TXD_1 PE[6]_eMIOS22_PCS_3.0_MA1 PC[7]_RXD_1 PE[7]_eMIOS23_PCS_2.0_MA0 PC[8]_TXD_2 PE[8]_CNTX_2_eMIOS22_CNTX_3 PC[9]_RXD_2 PE[9]_CNRX_2_eMIOS23_CNRX_3 PC[10]_CNTX_1_CNTX_4 PE[10]_TXD_3 _PCS_3.1 PC[11]_CNRX_1_CNRX_4 PE[11]_RXD_3 _PCS_4.1 PE[12]_SIN_2_eMIOS47 PC[12]_eMIOS12_SIN_2 PC[13]_eMIOS13_SOUT_2 TEST_VPP PC[14]_eMIOS14_SCK_2 RESET PC[15]_eMIOS15_PCS_0.2 TMS PD[0]_AN4 TCK PD[1]_AN5 PD[2]_AN6 VDD5_IO_W0 PD[3]_AN7 VDD5_IO_S0 PD[4]_AN8 VDD5_IO_E0 PD[5]_AN9 VDD5_IO_N0 PD[6]_AN10 VDD12_CORE_W0 PD[7]_AN11 VDD12_CORE_S0 PD[8]_AN12 VDD12_CORE_N0 VDD5B_CFLA_CORE PD[9]_AN13 PD[10]_AN14 AVDDSUPPLY PD[11]_AN15 PD[12]_PCS_5.0_AN20_eMIOS24 VSS5_IO_W0 PD[13]_PCS_0.1_AN25_eMIOS25 VSS5_IO_S0 VSS5_IO_N0 PD[14]_PCS_1.1_AN26_eMIOS26 PD[15]_PCS_2.1_AN27_eMIOS27 VSS12_CORE_W0 VSS12_CORE_S0 EXTAL VSS12_CORE_N0 XTAL VSS5_IO_COMP_E0 AVSSSUPPLY BOLERO 100LQFP 23 24 100 1 50 53 54 55 39 38 40 59 61 63 65 67 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 6 8 89 90 93 94 95 96 9 10 11 13 76 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 14 17 81 88 RESET TMS TCK 15 37 70 84 19 32 85 20 52 P5V_MCU P5V_MCU P5V_MCU P5V_MCU R8 4.7K 510 Ohm R16 RESET U5 SN74LVC1G08 1 C19 0.1uF R15 R10 4.7K A RESET_MB 2 Y B 3 GND VCC 4 4 3 1 5 RSTLED 4.7K VCC MR RESET PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 RESET 2X1 HEADER RESET CIRCUIT C5 10pF 0 Ohm J3 3 1 J13 ADM6315-26D3ARTZ P5V PB8 PB9 2 GND Rs1 4 2 32KHz_EN Rf1 Rs2 0 Ohm PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 Y2 C6 10pF 32KHz CLOCK CIRCUIT R9 TCKOUT P1V2 Rs 0Ohm J15 2X1 HEADER XTAL EXTAL 4 2 C8 10pF 0 Ohm J10 Rf 1M Ohm 3 1 Y1 DO NOT POPULATE CLK_EN P1V2_MCU NX8045GB-8.000M TCKOUT TMS C9 10pF VDD5B_CFLA_CORE AVDDSUPPLY 16 35 83 18 33 86 69 51 AVSSSUPPLY U4 CFS206-32.768KDZF-UB C24 470pF 12 7 5 68 29 79 80 71 72 73 74 75 31 30 28 27 RED LED D3 P5V P5V P5V PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 RESET_MB RESET CLOCK CIRCUIT EXTAL P2 DO NOT POPULATE SMA CONNECTOR 1 5 2 J11 CLK_EXT_EN R14 P12V P5V P3V3 P1V2 2XAMP 120 2XAMP 120.Sch PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 TCKOUT TMS RESET_MB RESET_OUT_MB P12V P5V P3V3 P1V2 GND PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12 3 C22 470pF DO NOT POPULATE C21 0.1uF 4 C20 470pF P5V_MCU 100R DO NOT POPULATE GAPGRI00360 Reference schematic 31/34 Document management Appendix A A.1 A.2 AN3024 Document management Reference documents ● 32-bit MCU family built on the Power Architecture® embedded category for automotive body electronics applications (SPC560B54x, SPC560B60x and SPC560B64x datasheet, Doc ID 15131) ● 32-bit MCU family built on the Power Architecture® embedded category for automotive body electronics applications (SPC560D30x, SPC560D40x datasheet, Doc ID 16315) ● 32-bit MCU family built on the Power Architecture® embedded category for automotive body electronics applications (SPC560D30x, SPC560D40x errata sheet, Doc ID 022965) ● 32-bit MCU family built on the Power Architecture® embedded category for automotive body electronics applications (SPC560B4x, SPC560B5x, SPC560C4x, SPC560C5x datasheet, Doc ID 14619) ● 32-bit MCU family built on the Power Architecture® embedded category for automotive body electronics applications (SPC560B4x/50 – SPC560C4x/50 errata sheet, Doc ID 15844) Acronyms Table 8. Acronyms Acronym ADC Analog-to-digital converter BAM Boot assist mode CRC Cyclic redundancy check EMC Electromagnetic compatibility EMI Electromagnetic interference ESL Equivalent series inductance ESR Equivalent series resistance LVD Low voltage detector NVUSRO 32/34 Name Non-volatile user options register POR Power-on reset SIUL System integration unit lite TCK Test clock input TDI Test data input TDO Test data output TMS Test mode select Doc ID 16127 Rev 5 AN3024 Revision history Revision history Table 9. Document revision history Date Revision Changes 22-Sep-2009 1 Initial release. 03-Sep-2010 2 Editorial and formatting changes throughout document Updated Section 1.3: Current consumption and voltage regulator and Section 7.5: I/O characteristic in STANDBY mode Added Section 8: EMC guidelines Updated Table 8: Acronyms 04-Jun-2012 3 Added Section 4.3.1: Some recommended crystal. 17-Dec-2012 4 Added following RPN: -SPC560B54/6x -SPC560D30x/40x Updated entire document. 17-Sep-2013 5 Updated Disclaimer. Doc ID 16127 Rev 5 33/34 AN3024 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 34/34 Doc ID 16127 Rev 5