* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 28 Sources of the magnetic field
Electrical resistance and conductance wikipedia , lookup
History of electromagnetic theory wikipedia , lookup
Electrostatics wikipedia , lookup
Neutron magnetic moment wikipedia , lookup
Field (physics) wikipedia , lookup
Maxwell's equations wikipedia , lookup
Magnetic field wikipedia , lookup
Magnetic monopole wikipedia , lookup
Electromagnetism wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Superconductivity wikipedia , lookup
Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field FG mg Gm1m 2 FG rˆ 2 r kQ1Q 2 FE rˆ 2 r Gm g 2 rˆ r kQ E 2 rˆ r Gdm dg 2 rˆ r kdQ dE 2 rˆ r FM ? B? dB ? FE qE FM qv B I B Is dB radial? Does dB have 1/r2 dependence? Biot-Savart Law – Set-Up • The magnetic field is dB at some point P • The length element is ds • The wire is carrying a steady current of I o Ids rˆ dB 4 r 2 Cross product review C AB A C A B sin ˆi C Ax Bx ˆj Ay By kˆ Az Bz B Right Hand Rule Biot-Savart Law o Ids rˆ dB 2 4 r o 7 T m km 1x10 4 A Permeability of free space For a long Wire: ds ˆi ˆj kˆ ds rˆ 0 dy 0 kˆ sin dy sin cos 0 Magnetic field of a long wire o Ids rˆ dB 4 r 2 o I sin ˆ dB k dy 2 4 r R tan y o I sin ˆ Bk dy 2 4 r o I B 2 R Magnetic field due to a straight wire I B r o I B 2 r Compare with: 2k 1 E r 2 o r B for a Curved Wire Segment • Find the field at point O due to the wire segment • I and R are constants μo I B θ 4πR will be in radians Magnetic field due to a current loop o Ids rˆ dB 4 r 2 o Ids dB 2 4 r The perpendicular components cancel by symmetry. o Ids dB// cos 2 4 r o I B// cos ds 2 4 r o IR 2 2R2 x 3 2 2 Magnetic field due to a current loop At the center: B(x 0) o IR 2 2R2 x o I 2R 3 2 2 x 0 Magnetic dipole moment vector for a single loop: IA IAnˆ B o IR 2 2 R 2 x When x>>R: 3 2 2 o 2 R 2 x o B 2x 3 3 2 2 Comparison to an electric dipole -q p 2a + E x 2 a 2 q B Biot-Savart Law: p kp E 3 3 4o x x kp 3 2 o 2 R 2 x 3 2 2 o 2k m B 3 3 2x x o Ids rˆ Id rˆ dB km 2 2 4 r r 5. Determine the magnetic field at a point P located a distance x from the corner of an infinitely long wire bent at a right angle, as shown in Figure P30.5. The wire carries a steady current I. 7. The segment of wire in Figure P30.7 carries a current of I = 5.00 A, where the radius of the circular arc is R = 3.00 cm. Determine the magnitude and direction of the magnetic field at the origin. 10. A very long straight wire carries current I. In the middle of the wire a right-angle bend is made. The bend forms an arc of a circle of radius r, as shown in Figure P30.10. Determine the magnetic field at the center of the arc. Force between two parallel wires FM IL B a o I1 B1 2 a FM FM I2 B1 o I1I2 2 a Force between two parallel wires FM o I1I2 2 a FM I B If the currents are in the same direction, the force is attractive. If the currents are in the opposite direction, the force is repulsive. Historical definition of the Ampere If 2 long parallel wires 1.0 m apart have the same current in them and the force per unit length on each wire is 2.0 x 10-7 N/m, the current is 1.0 Ampere Historical definition of the Coulomb If the current is 1.0 Ampere, then 1.0 Coulomb is the amount of charge passing through a cross section in 1 second. 16. Two long, parallel conductors, separated by 10.0 cm, carry currents in the same direction. The first wire carries current I1 = 5.00 A and the second carries I2 = 8.00 A. (a) What is the magnitude of the magnetic field created by I1 at the location of I2? (b) What is the force per unit length exerted by I1 on I2? (c) What is the magnitude of the magnetic field created by I2 at the location of I1? (d) What is the force per length exerted by I2 on I1? 18. Two long, parallel wires are attracted to each other by a force per unit length of 320 μN/m when they are separated by a vertical distance of 0.500 m. The current in the upper wire is 20.0 A to the right. Determine the location of the line in the plane of the two wires along which the total magnetic field is zero. 63. Two long, parallel conductors carry currents in the same direction as shown in Figure P30.63. Conductor A carries a current of 150 A and is held firmly in position. Conductor B carries a current IB and is allowed to slide freely up and down (parallel to A) between a set of nonconducting guides. If the mass per unit length of conductor B is 0.100 g/cm, what value of current IB will result in equilibrium when the distance between the two conductors is 2.50 cm? Introduction to Ampere’s Law b Recall the definition of electric potential: Vba E ds a What is the value of the integral over a closed path for any electric field? a Vaa E ds E ds ? a Let’s try the same thing for a magnetic field around a current carrying wire. B ds o I o I ds 2r o I 2 r 2 r Ampere’s Law B ds I o enclosed This result has been shown experimentally to be true in general • The integral is around any closed path • The current is that passing through the surface bounded by the path • Like Gauss’s Law, useful in finding fields for highly symmetric problems Applying Ampere’s Law Qenclosed E E dA o • Select a surface – Try to imagine a surface where the electric field is constant everywhere. This is accomplished if the surface is equidistant from the charge. – Try to find a surface such that the electric field and the normal to the surface are either perpendicular or parallel. • Determine the charge inside the surface • If necessary, break the integral up into pieces and sum the results. B ds I o enclosed • Select a path – Try to imagine a path where the magnetic field is constant everywhere. This is accomplished if the surface is equidistant from the charge. – Try to find a path such that the magnetic field and the path are either perpendicular or parallel. • Determine the current inside the surface • If necessary, break the integral up into pieces and sum the results. Example: Magnetic field inside a wire B ds I o enclosed Iencl r I R 2 2 r B 2r o I 2 R 2 o Ir B 2 2R Example: Solenoid B ds I o enclosed Example: Solenoid Bd b c o Ienclosed 0d 0 a Bsmallds B ds B ds B ds NI o a b B o NI c d B o N I o nI Example: Toroid Bd o Ienclosed Inside: B 2r o NI o NI B 2r Outside: B 0 21. Four long, parallel conductors carry equal currents of I = 5.00 A. Figure P30.21 is an end view of the conductors. The current direction is into the page at points A and B (indicated by the crosses) and out of the page at C and D (indicated by the dots). Calculate the magnitude and direction of the magnetic field at point P, located at the center of the square of edge length 0.200 m. 29. A long cylindrical conductor of radius R carries a current I as shown in Figure P30.29. The current density J, however, is not uniform over the cross section of the conductor but is a function of the radius according to J = br, where b is a constant. Find an expression for the magnetic field B (a) at a distance r1 < R and (b) at a distance r2 > R, measured from the axis. 24. The magnetic field 40.0 cm away from a long straight wire carrying current 2.00 A is 1.00 μT. (a) At what distance is it 0.100 μT? (b) What If? At one instant, the two conductors in a long household extension cord carry equal 2.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 40.0 cm away from the middle of the straight cord, in the plane of the two wires. (c) At what distance is it one tenth as large? (d) The center wire in a coaxial cable carries current 2.00 A in one direction and the sheath around it carries current 2.00 A in the opposite direction. What magnetic field does the cable create at points outside? Magnetic Flux • • • • The magnetic field in this element is B dA is a vector that is perpendicular to the surface dA has a magnitude equal to the area dA The magnetic flux B is B B dA • The unit of magnetic flux is T.m2 = Wb – Wb is a weber Gauss’ Law in Magnetism • Magnetic fields do not begin or end at any point – The number of lines entering a surface equals the number of lines leaving the surface • Gauss’ law in magnetism says: B B dA 0 Displacement Current • Ampere’s law in the original form is valid only if any electric fields present are constant in time • Maxwell added an additional term which includes a factor called the displacement current, Id • The displacement current is not the current in the conductor – Conduction current will be used to refer to current carried by a wire or other conductor Bd o Ienclosed dE I d εo dt Ampere’s Law – General Form • Also known as the Ampere-Maxwell law dE B ds μo I I d μo I μoεo dt • Magnetic fields are produced both by conduction currents and by time-varying electric fields Ferromagnetism • Domains • Curie Temperature • Electron orbits align with an external magnetic field