Download BIOL 191 Introductory Microbiology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Marburg virus disease wikipedia , lookup

Canine parvovirus wikipedia , lookup

Avian influenza wikipedia , lookup

Human cytomegalovirus wikipedia , lookup

Canine distemper wikipedia , lookup

Elsayed Elsayed Wagih wikipedia , lookup

Hepatitis B wikipedia , lookup

Orthohantavirus wikipedia , lookup

Henipavirus wikipedia , lookup

Influenza A virus wikipedia , lookup

Plant virus wikipedia , lookup

Transcript
BIOL 191 Introductory Microbiology
Chap. 13 Viruses, Viroids and Prions Outline
I.
General Characteristics of Viruses
a. Intro
i. Table 13.1 p. 368 Comparing Viruses and Bacteria
ii. *Obligatory*intracellular*parasites*: What does this
mean?
iii. Define virus
b. Host Range. What does the host *range* depend on? What is
a bacteriophage?
c. Viral Sizes Fig. 13.1 p. 369
II.
Viral Structure -
Define ‘Virion’
1
a. Nucleic Acid –
i. Genetics
Chap. 8 pp. 211-212, Fig. 8.2 p. 213 The Flow of Genetic
Information
ii. Clinical Focus pp. 370-371 Influenza Virus A
iii. What types of nucleic acids may viruses have? See Table
13.2 p. 375-376
b. Capsid
c. Envelope
d. Spikes
1. H (Hemagglutinin) proteins
Hemagglutinin is one of two virally-coded integral envelope proteins of the influenza
virus. Hemagglutinin is responsible for host cell binding and subsequent fusion of viral
and host membranes after the virus has been taken up. In the first step of infection it
binds to receptor proteins on target cell surfaces and later promotes the release of the flu
virus into the host cytoplasm.
http://www.callutheran.edu/BioDev/omm/jmol/ha/ha.html#intro
2. N (Neuraminidase) proteins2
Projections from surfaces of influenza viruses containing neuraminidase are involved in
the release of viruses from infected cells.
Mosby's Medical Dictionary, 8th edition. © 2009, Elsevier.
2
Helical
Complex
3
III.
Taxonomy of Viruses
a. What is ‘taxonomy’?
b. How does the International Committee on Taxonomy of
Viruses group viruses?
c. What is a viral species?
IV. Isolation, Cultivation and Identification of Viruses
a. How are bacterial and animal viruses grown in the lab?
b. What are some ways viruses are identified?
V. Viral Multiplication: First bacteriophage, then animal viruses
Chap. 8 Microbial Genetics: Using your textbook, in Chap. 8, be sure you know what
DNA replication, Protein synthesis (transcription/translation), mRNA, tRNA, and rRNA
refer to
What genes do viruses have? What enzymes do virions contain?
A. Multiplication of Bacteriophages
a. T-Even Bacteriophage Lytic Cycle
i. Know general info about the T-even bacteriophages
ii. Fig. 13.11 The lytic cycle of a T-even bacteriphage p.
381
4
Know the steps of the lytic life cycle:
Attachment
Penetration
Biosynthesis
Maturation
Release
iii.
iv.
5
b. Bacteriphage Lambda Lysogenic Cycle (temperate phages)
Know the steps and alternatives of the lysogenic cycle:
Fig. 13. 12 The lysogenic cycle of bacteriophage lambda in E. coli
Attachment
Phage DNA circularization
Lytic
Lysogenic
Prophage formation
What happens when the bacterium reproduces?
Can lysogenic viruses be lytic?
What are important possible results of lysogeny?
Chap. 8 Fig. 8.28 p. 239 Generalized transduction, in which any
bacterial DNA can be transferred from one cell to another.
Fig. 13.13 p. 383 Specialized transduction, in which only DNA on
either side of the prophage DNA can be transferred.
6
B. Multiplication of Animal Viruses
a. How do animal viruses differ from phages? Table 13.3 p.
384 and text discussion
b. Why might some people be resistant to a specific virus but
not others? How is ‘attachment’ related to drug
development against viruses?
c. Know the steps and alternatives of animal virus
multiplication
i. Attachment
ii. Entry
iii. Uncoating
iv. Biosynthesis
1. Biosynthesis of DNA Viruses
a. Fig. 13.15 Foundation Fig. Replication of
a DNA-Containing Animal Virus
b. Know text discussion of the Families
Herpesviridae and Papovaviridae
7
2. Biosynthesis of RNA Viruses
a. Fig. 13.17 p. 388 Pathways of
multiplication used by various RNAcontaining viruses
b. Know text discussion of Retroviridae
Fig. 13.19 p. 390
8
v. Maturation and Release
1. Cell Rupture
2. Budding
C. Compare Bacteriophage and Animal Virus Multiplication
Table 13.3 p. 384
D. Comparison of DNA & RNA Viruses
Table 13. 4p. 385
9
VI. Viruses and Cancer
A. Define oncogenes, oncogenic viruses (oncoviruses),
Transformation, Transformed cells
B. What % of cancers is known to be virus-induced?
C. DNA and RNA Oncogenic Viruses: Know examples from the text
discussion
VII. Latent Viral Infections: Define and know examples from text discussion
Fig. 13.21 p. 392 Latent and persistent viral infections
VIII. Prions
See Fig. 13.22 p. 393 How a protein can be infectious
A. Know examples and how they are different from viruses
B. Nervous System Diseases caused by Prions Chap. 22 p. 629-632
IX. Plant Viruses and Viroids
A. Know general info
B. Why are plants somewhat protected against many diseases?
C. Define viroid
10