Download Video Transcript - Rose

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Mechanical filter wikipedia , lookup

Electrical substation wikipedia , lookup

Power inverter wikipedia , lookup

Tube sound wikipedia , lookup

Electrical ballast wikipedia , lookup

Scattering parameters wikipedia , lookup

Three-phase electric power wikipedia , lookup

Capacitor wikipedia , lookup

Electromagnetic compatibility wikipedia , lookup

Rectifier wikipedia , lookup

Voltage optimisation wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Islanding wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Ohm's law wikipedia , lookup

Mains electricity wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Mechanical-electrical analogies wikipedia , lookup

Stray voltage wikipedia , lookup

Two-port network wikipedia , lookup

Earthing system wikipedia , lookup

Distributed element filter wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Alternating current wikipedia , lookup

Opto-isolator wikipedia , lookup

Power MOSFET wikipedia , lookup

Buck converter wikipedia , lookup

Rectiverter wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

Current source wikipedia , lookup

RLC circuit wikipedia , lookup

Nominal impedance wikipedia , lookup

Zobel network wikipedia , lookup

Impedance matching wikipedia , lookup

Transcript
Let’s apply repeated source transformations on this circuit to reduce it to an equivalent
circuit consisting of only a current source in parallel with two series-connected passive
elements.
We need to convert this circuit into its phasor domain equivalent.
We’ll note that the angular frequency is 75 rad/s.
That means our inductor at this frequency has an impedance jωL.
Its impedance is j 5 Ω.
Likewise, we convert the 2.22 mF capacitor using the expression 1 / jωC.
Let me fix that – I had a decimal point in the wrong spot.
We get –j 6 Ω.
I’ll go ahead and swap those values out on the circuit diagram.
Our source voltage has a magnitude of 40 and a phase angle of 0°.
Here’s a candidate for a source transformation.
Before I do that, let me first swap out all of the symbol values for the generic impedance
element using a rectangle symbol.
That’ll help us focus more on the circuit topology since they’re all impedance anyway.
The voltage source in series with the impedance is the same thing as a current source in
parallel with that impedance.
The current source had the voltage value divided by the impedance.
Next, we see these two elements are in parallel.
They can be consolidated into a single impedance value.
The next candidate for source transformation: a current source in parallel with an
impedance.
This would be the same thing as a voltage source in series with that impedance value.
Let’s go ahead first and evaluate that current source value.
We take the product of the current source value and the impedance to find the voltage
source value.
These two elements are in series, so they add together.
We need to switch it back again, so the voltage source converts back to a current source.
We’ll join the two parallel impedances.
The problem statement said we were looking for a current source in parallel with two
series-connected passive elements.
We’ve got our current source in parallel with a single impedance element.
Let’s convert that impedance into rectangular format, and then we can pick out the actual
value of, in this case, the resistance, which would be the real part.
The reactant is whatever is associated with the imaginary part.
The negative sign tells us that it’s a capacitor instead of an inductor.
The capacitor’s impedance is –j 0.859.
I’ll equate that to the generic expression for capacitor impedance.
We see the –js dropping out.
We know the angular frequency is 75 and we can solve that equation for the capacitance.
We find that C is 15.5 mF.
I convert back to a time domain form of the circuit and we are done.