100 Lec11 06
... Inner core of a larger star collapses into a neutron star of very small radius r = rsun = 7 x 105 km, m = 2 msun,, T = 10 d, rn-star = 10 km Assume no mass is lost in collapse. What is n-star’ rate of rotation? ...
... Inner core of a larger star collapses into a neutron star of very small radius r = rsun = 7 x 105 km, m = 2 msun,, T = 10 d, rn-star = 10 km Assume no mass is lost in collapse. What is n-star’ rate of rotation? ...
2. Laws of Motion
... If the resultant force acting on an object is not zero, all the forces are said to be unbalanced. This forms the basis of Newton’s second law of motion, which states: If the forces on an object are unbalanced, two things about the object can change: the speed of the object may change – it may eith ...
... If the resultant force acting on an object is not zero, all the forces are said to be unbalanced. This forms the basis of Newton’s second law of motion, which states: If the forces on an object are unbalanced, two things about the object can change: the speed of the object may change – it may eith ...
2. Laws of Motion
... If the resultant force acting on an object is not zero, all the forces are said to be unbalanced. This forms the basis of Newton’s second law of motion, which states: If the forces on an object are unbalanced, two things about the object can change: the speed of the object may change – it may eith ...
... If the resultant force acting on an object is not zero, all the forces are said to be unbalanced. This forms the basis of Newton’s second law of motion, which states: If the forces on an object are unbalanced, two things about the object can change: the speed of the object may change – it may eith ...
Simple Harmonic Motion and Elasticity
... in a spring or other elastic material. ► Hooke’s Law: The displacement of a spring from its unstretched position is proportional the force applied. ► The slope of a force vs. displacement graph is equal to the spring constant. ► The area under a force vs. displacement graph is equal to the work done ...
... in a spring or other elastic material. ► Hooke’s Law: The displacement of a spring from its unstretched position is proportional the force applied. ► The slope of a force vs. displacement graph is equal to the spring constant. ► The area under a force vs. displacement graph is equal to the work done ...
p14jmacProjectile Motion
... 1. For a projectile, describe the changes in the horizontal and vertical components of its velocity, when air resistance is negligible. 2. Explain why a projectile moves equal distances horizontally in equal time intervals when air resistance is negligible. 3. Describe satellites as fast moving proj ...
... 1. For a projectile, describe the changes in the horizontal and vertical components of its velocity, when air resistance is negligible. 2. Explain why a projectile moves equal distances horizontally in equal time intervals when air resistance is negligible. 3. Describe satellites as fast moving proj ...
Falling Chain Name: Date:
... sensor), paper clip (to hang bucket from force sensor), ring stand, rod (to hold up force sensor), clamps x3 (to hold the ring stand, rod, and ruler in place). ...
... sensor), paper clip (to hang bucket from force sensor), ring stand, rod (to hold up force sensor), clamps x3 (to hold the ring stand, rod, and ruler in place). ...
Rotational Kinematics and Dynamics - Personal.psu.edu
... It is important to notice that circular motion connects the concepts of linear and rotational motion. For any object that is rotating, a particular point on that object is moving in a circle. One of the goals of this lab activity is to explore and understand this connection. The translational motion ...
... It is important to notice that circular motion connects the concepts of linear and rotational motion. For any object that is rotating, a particular point on that object is moving in a circle. One of the goals of this lab activity is to explore and understand this connection. The translational motion ...
ConcepTest 4.1a Newton`s First Law I 1) there is a net force but the
... a1. The same force acts on a different mass m2 giving acceleration a2 = 2a1. If m1 and m2 are glued together and the same force F acts on this combination, what is the resulting acceleration? ...
... a1. The same force acts on a different mass m2 giving acceleration a2 = 2a1. If m1 and m2 are glued together and the same force F acts on this combination, what is the resulting acceleration? ...
Monday, Nov. 3, 2008
... The principle of energy conservation can be used to solve problems that are harder to solve just using Newton’s laws. It is used to describe motion of an object or a system of objects. A new concept of linear momentum can also be used to solve physical problems, especially the problems involving col ...
... The principle of energy conservation can be used to solve problems that are harder to solve just using Newton’s laws. It is used to describe motion of an object or a system of objects. A new concept of linear momentum can also be used to solve physical problems, especially the problems involving col ...
Drop and Do Forces and Changes in Motion: -Force
... Newton’s Laws of Motion • Isaac Newton developed three laws that, together explain how and why objects move they way they do. – Law of Inertia – Acceleration – Action/Reaction ...
... Newton’s Laws of Motion • Isaac Newton developed three laws that, together explain how and why objects move they way they do. – Law of Inertia – Acceleration – Action/Reaction ...
Summary of lesson
... In this experiment, you’re going to drop coffee filters from a height and measure their terminal velocity. A coffee filter has a wide area and will have more wind resistance. (For example, dropping a pencil and a coffee filter will result in the pencil hitting the ground first.) Move to page 2.1. 1. ...
... In this experiment, you’re going to drop coffee filters from a height and measure their terminal velocity. A coffee filter has a wide area and will have more wind resistance. (For example, dropping a pencil and a coffee filter will result in the pencil hitting the ground first.) Move to page 2.1. 1. ...
Powerpoint revew chap4 no solutions
... will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended ...
... will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended ...
Gravity and Motion
... an unbalanced force. • An object in motion will remain in motion at a constant speed and in a straight line unless acted upon by an unbalanced force. ...
... an unbalanced force. • An object in motion will remain in motion at a constant speed and in a straight line unless acted upon by an unbalanced force. ...
Harmonic notes
... maximum value. This is because the velocity of the system is zero. This will occur when the displacement is equal to the amplitude. Once the mass is moving away from maximum displacement, some of the potential energy is converted to kinetic energy. The kinetic energy increases and the potential ener ...
... maximum value. This is because the velocity of the system is zero. This will occur when the displacement is equal to the amplitude. Once the mass is moving away from maximum displacement, some of the potential energy is converted to kinetic energy. The kinetic energy increases and the potential ener ...
Collisions - faculty at Chemeketa
... When two objects collide, they exert forces on one another. If we know the exact forces and time of contact, then we can use Newton’s second law and kinematics equations to predict the subsequent motion of the objects. But the exact forces exerted can be extremely difficult to measure, and they ofte ...
... When two objects collide, they exert forces on one another. If we know the exact forces and time of contact, then we can use Newton’s second law and kinematics equations to predict the subsequent motion of the objects. But the exact forces exerted can be extremely difficult to measure, and they ofte ...