Dynamic forces - Physics Champion
... level track 36km/hr when it collides with and couples up to another coach of mass 20t moving in the same direction at 6km/hr. Both of the coaches continue in the same direction after coupling. What is the combined velocity of the two coaches? ...
... level track 36km/hr when it collides with and couples up to another coach of mass 20t moving in the same direction at 6km/hr. Both of the coaches continue in the same direction after coupling. What is the combined velocity of the two coaches? ...
Chapter 8 – Momentum, Impulse, and Collisions
... firecracker explodes in the block. A 5 kg piece continues in the original direction at 4 m/s. A 3 kg piece travels in a direction perpendicular to the original direction at 6 m/s. How fast and in what direction does the third piece travel? ...
... firecracker explodes in the block. A 5 kg piece continues in the original direction at 4 m/s. A 3 kg piece travels in a direction perpendicular to the original direction at 6 m/s. How fast and in what direction does the third piece travel? ...
Course Review 2
... In a circus act Bimbo, The Human Cannonball, is fired from the muzzle of a cannon that is angled at 600 to the horizontal and sits 3.0 m from the floor. If Bimbo has a mass of 65 kg and leaves the muzzle of the cannon at a velocity of 20 m/s the mechanical energy his body will possess at any time du ...
... In a circus act Bimbo, The Human Cannonball, is fired from the muzzle of a cannon that is angled at 600 to the horizontal and sits 3.0 m from the floor. If Bimbo has a mass of 65 kg and leaves the muzzle of the cannon at a velocity of 20 m/s the mechanical energy his body will possess at any time du ...
Powerpoint for today
... future. Objects only know what is acting directly on them right now Newton's 1st Law An object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the sum of the forces acting on that object is zero. Newton's 2 ...
... future. Objects only know what is acting directly on them right now Newton's 1st Law An object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the sum of the forces acting on that object is zero. Newton's 2 ...
Linear Momentum
... moving at 45 mph than to stop a car moving at 45 mph, even though they both have the same speed. • Both mass and velocity are important factors when considering the force needed to change the motion of an object. ...
... moving at 45 mph than to stop a car moving at 45 mph, even though they both have the same speed. • Both mass and velocity are important factors when considering the force needed to change the motion of an object. ...
Wednesday, June 25, 2008
... Angular Momentum of a Particle If you grab onto a pole while running, your body will rotate about the pole, gaining angular momentum. We’ve used the linear momentum to solve physical problems with linear motions, the angular momentum will do the same for rotational motions. Let’s consider a point-l ...
... Angular Momentum of a Particle If you grab onto a pole while running, your body will rotate about the pole, gaining angular momentum. We’ve used the linear momentum to solve physical problems with linear motions, the angular momentum will do the same for rotational motions. Let’s consider a point-l ...
Effective Force & Newton`s Laws
... Velocity: the rate of positional change of an object Momentum = mass (kg) x velocity (m/s) An object can only have momentum if it is moving To increase momentum, an object must either increase its _________ or its __________ ...
... Velocity: the rate of positional change of an object Momentum = mass (kg) x velocity (m/s) An object can only have momentum if it is moving To increase momentum, an object must either increase its _________ or its __________ ...
Vibrations and Waves
... Equations of Motion • What are the assumptions for which these equations can be used? • What if you have a different situation? x=A cos (2πƒt) = A cos ωt v = -2πƒA sin (2πƒt) = -A ω sin ωt a = -4π2ƒ2A cos (2πƒt) = -Aω2 cos ωt ...
... Equations of Motion • What are the assumptions for which these equations can be used? • What if you have a different situation? x=A cos (2πƒt) = A cos ωt v = -2πƒA sin (2πƒt) = -A ω sin ωt a = -4π2ƒ2A cos (2πƒt) = -Aω2 cos ωt ...
F g - Humble ISD
... object at rest remains at rest, UNLESS acted upon by an EXTERNAL (unbalanced) Force. There are TWO conditions here and one constraint. Condition #1 – The object CAN move but must be at a CONSTANT SPEED Condition #2 – The object is at REST Constraint – As long as the forces are BALANCED!!!!! And if a ...
... object at rest remains at rest, UNLESS acted upon by an EXTERNAL (unbalanced) Force. There are TWO conditions here and one constraint. Condition #1 – The object CAN move but must be at a CONSTANT SPEED Condition #2 – The object is at REST Constraint – As long as the forces are BALANCED!!!!! And if a ...
Fluid Dynamics - AP Physics B, Mr. B's Physics Planet Home
... Fluid Flow Up till now, we have pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: ...
... Fluid Flow Up till now, we have pretty much focused on fluids at rest. Now let's look at fluids in motion It is important that you understand that an IDEAL FLUID: ...
Planetary Properties - University of Dayton
... Existence determined by a tradeoff between the gravitation attraction on particles and the speed of the particles (based upon the their temperature). ...
... Existence determined by a tradeoff between the gravitation attraction on particles and the speed of the particles (based upon the their temperature). ...