• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Cut squares along dotted line then fold in half to make flashcard
Cut squares along dotted line then fold in half to make flashcard

... The path of flying object: the path that a projectile makes through space under the action of given forces such as thrust, wind, and gravity. ...
Newton`s Cradle - Mercer Physics
Newton`s Cradle - Mercer Physics

Homework 2
Homework 2

Physics/Science/Math Days Crossword Puzzle
Physics/Science/Math Days Crossword Puzzle

Word - CBakken Home Page
Word - CBakken Home Page

... Physics/Science/Math Days Crossword Puzzle ...
27. Generalized Newton`s second law
27. Generalized Newton`s second law

P2.3 Rev
P2.3 Rev

... What happens when 2 vehicles collide? ...
14 - AGH
14 - AGH

... A) is the same as the momentum of the projectile immediately before the explosion B) has been changed into kinetic energy of the fragments C) is less than the momentum of the projectile immediately before the explosion D) is more than the momentum of the projectile immediately before the explosion E ...
PHYSICS 211, Exam # 3 April 22, 2013 (Dr. Xinhua Bai`s session
PHYSICS 211, Exam # 3 April 22, 2013 (Dr. Xinhua Bai`s session

The Two-Body problem
The Two-Body problem

Jeopardy - Fair Lawn Schools
Jeopardy - Fair Lawn Schools

... The total momentum in a system cannot change as long as all the forces act only between the objects in the system. ...
PHYS4330 Theoretical Mechanics HW #1 Due 6 Sept 2011
PHYS4330 Theoretical Mechanics HW #1 Due 6 Sept 2011

... where τ is a positive constant, and starts from rest at x = 0 and t = 0. Find the velocity v(t) = ẋ(t) and position x(t) as functions of time. Also find the velocity v(t) for times t � τ . (2) A particle of mass m moves in two dimensions according to plane polar coordinates r and φ. It is acted on ...
Physics 11 Course Outline
Physics 11 Course Outline

Energy Worksheet - Kinetic, Potential, and Elastic
Energy Worksheet - Kinetic, Potential, and Elastic

Law of Conservation of Momentum
Law of Conservation of Momentum

Consider two point particles of mass m1 and m2 with position
Consider two point particles of mass m1 and m2 with position

Variable Mass - Northern Illinois University
Variable Mass - Northern Illinois University

Moving objects have energy. How much energy they have depends
Moving objects have energy. How much energy they have depends

Slide 1
Slide 1

... A 50 kg Christina went running at 5 m/s and a gust of wind slowed her down to 3 m/s. What is the momentum of his new ...
Forces and Motion Study Guide
Forces and Motion Study Guide

... Students will need to know the following: ...
Unit 8: Momentum, Impulse, and Collisions
Unit 8: Momentum, Impulse, and Collisions

< 1 ... 433 434 435 436 437

Relativistic mechanics

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.As with classical mechanics, the subject can be divided into ""kinematics""; the description of motion by specifying positions, velocities and accelerations, and ""dynamics""; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles. There is however a subtlety; what appears to be ""moving"" and what is ""at rest""—which is termed by ""statics"" in classical mechanics—depends on the relative motion of observers who measure in frames of reference.Although some definitions and concepts from classical mechanics do carry over to SR, such as force as the time derivative of momentum (Newton's second law), the work done by a particle as the line integral of force exerted on the particle along a path, and power as the time derivative of work done, there are a number of significant modifications to the remaining definitions and formulae. SR states that motion is relative and the laws of physics are the same for all experimenters irrespective of their inertial reference frames. In addition to modifying notions of space and time, SR forces one to reconsider the concepts of mass, momentum, and energy all of which are important constructs in Newtonian mechanics. SR shows that these concepts are all different aspects of the same physical quantity in much the same way that it shows space and time to be interrelated. Consequently, another modification is the concept of the center of mass of a system, which is straightforward to define in classical mechanics but much less obvious in relativity - see relativistic center of mass for details.The equations become more complicated in the more familiar three-dimensional vector calculus formalism, due to the nonlinearity in the Lorentz factor, which accurately accounts for relativistic velocity dependence and the speed limit of all particles and fields. However, they have a simpler and elegant form in four-dimensional spacetime, which includes flat Minkowski space (SR) and curved spacetime (GR), because three-dimensional vectors derived from space and scalars derived from time can be collected into four vectors, or four-dimensional tensors. However, the six component angular momentum tensor is sometimes called a bivector because in the 3D viewpoint it is two vectors (one of these, the conventional angular momentum, being an axial vector).
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report