Document
... How do you determine the acceleration of an object that is NOT changing its speed, but is changing its direction? ...
... How do you determine the acceleration of an object that is NOT changing its speed, but is changing its direction? ...
Non-Contact Forces Test: Tuesday, October 20, 2015 Non
... What happens when two like poles interact? What happens when opposite poles interact? Between what kinds of objects can magnetic force be exerted? Electrical Force What happens to electrical force if you increase or decrease the distance between charged particles? Recognize the electrical fi ...
... What happens when two like poles interact? What happens when opposite poles interact? Between what kinds of objects can magnetic force be exerted? Electrical Force What happens to electrical force if you increase or decrease the distance between charged particles? Recognize the electrical fi ...
Sample Paper Class IX SECTION A
... When a person jumps directly from a building, the momentum gained by him is instantly transferred when he hits the ground at a high velocity with the velocity coming to zero. However if he jumps with a parachute, the air resistance acting on the parachute considerably reduces the velocity of the per ...
... When a person jumps directly from a building, the momentum gained by him is instantly transferred when he hits the ground at a high velocity with the velocity coming to zero. However if he jumps with a parachute, the air resistance acting on the parachute considerably reduces the velocity of the per ...
Physics 121 Exam Sheet - BYU Physics and Astronomy
... Newton’s Third Law – The Third Law of Motion: If body A exerts a force on body B, then body B exerts a force, equal in magnitude, but opposite in direction, on body A, i.e.., FAB = FBA, where FAB is the force exerted on body B by body A and FBA is the force exerted on body A by body B. This law is ...
... Newton’s Third Law – The Third Law of Motion: If body A exerts a force on body B, then body B exerts a force, equal in magnitude, but opposite in direction, on body A, i.e.., FAB = FBA, where FAB is the force exerted on body B by body A and FBA is the force exerted on body A by body B. This law is ...
Motion in Two Dimensions
... A net torque would produce an angular acceleration. An object spinning at a constant rate will accelerate if the mass is redistributed farther or closer to the axis of rotation. Rotational Inertia is the resistance of a rotating object to changes in its rotational velocity-- it depends on mass, dist ...
... A net torque would produce an angular acceleration. An object spinning at a constant rate will accelerate if the mass is redistributed farther or closer to the axis of rotation. Rotational Inertia is the resistance of a rotating object to changes in its rotational velocity-- it depends on mass, dist ...
香港考試局
... which is free to rotate about the other end O as shown. The object is swung to rotate in a vertical circle so that it attains an angular speed of 6 rad s-1 at its topmost position. What is the force exerted on one end of the rod at this instant ? A. a compressive force of 7.6 N B. a tensional force ...
... which is free to rotate about the other end O as shown. The object is swung to rotate in a vertical circle so that it attains an angular speed of 6 rad s-1 at its topmost position. What is the force exerted on one end of the rod at this instant ? A. a compressive force of 7.6 N B. a tensional force ...
First Semester Final Practice
... 12. A lunar month is about 28 days. If the moon were closer to Earth than it is now, the lunar month would be.. (a) less than 28 days. (b) more than 28 days. (c) unchanged at 28 days. ...
... 12. A lunar month is about 28 days. If the moon were closer to Earth than it is now, the lunar month would be.. (a) less than 28 days. (b) more than 28 days. (c) unchanged at 28 days. ...
Printed 1996 B1 Two identical objects A and B of mass M move on a
... Robert Millikan received a Nobel Prize for determining the charge on the electron. To do this, he set up a potential difference between two horizontal parallel metal plates. He then sprayed drops of oil between the plates and adjusted the potential difference until drops of a certain size remained s ...
... Robert Millikan received a Nobel Prize for determining the charge on the electron. To do this, he set up a potential difference between two horizontal parallel metal plates. He then sprayed drops of oil between the plates and adjusted the potential difference until drops of a certain size remained s ...
Mass versus weight
In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.