Download CLASSROM COPY – DO NOT WRITE ON THIS!!! NCP 505

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Factorization wikipedia , lookup

Transcript
CLASSROM COPY – DO NOT WRITE ON THIS!!!
CW#81:
NCP505, NCP 604, XEI 605
Geometry
NCP 505- Work with squares and square roots of numbers
What do you know about NCP 505??? Mind-mouth it in your notebooks!
A radical is in SIMPLEST FORM when:
1. No perfect square factor other than 1 is under the radical sign.
2. No fraction is under the radical sign.
3. No fraction has a radical in the denominator.
PUSH IT TO THE LIMIT.
NCP 505
Easy
I Do
You Do
1.
25x 2
4.
100x 2
7.
9x 2
2.
36
81
5.
64
49
8.
169x 4
9.
196
144
10.
225
81
17.
(5) 2
169 x8
18.
(  6) 4
81x 7
3.
Medium
11.
Spicy
Groups Do
6.
(3) 2
64 x 2
14.
(5) 2
49 x 4
12. If 36 x  5  13 , then
x=?
15. If 144 x  3  33 ,
then x=?
13.
16.
19. If 64 x  3  21 , then
x=?
20. If 16 x  8  0 , then
x=?
21.
472 x 4 y 5
x 3
23.
975 x 7 y 9
x 4
25.
97 x 3 y 8
x 2
22.
(476) 2 x3 y 9
z12
24.
(896) 2 x 7 y 11
z2
26.
(76) 2 x 2 y 18
z8
NCP 604- Apply rules of exponents (Complex)
What do you know about NCP 604??? Drop some words into your notebooks about it!
NCP 604 I Do
You Do
Groups Do
7
Easy
5. 5 x 4 y 2
3.
1.

4.
2.
PUSH IT TO THE LIMIT.
6.

Medium
7.
8.
3x 7 y 8
x 3
10.
9.
(3 x 5 y 4 ) 3
x6
Spicy
11.
13.
12.
XEI 605- Solve quadratic equations
What do you know about XEI 605??? Tell me about it, in your notebooks!
There is a formula that works when ‘a’ is 1. In other words, we will use this approach whenever the
coefficient in front of x2 is 1.
1.) Identify a, b, and c in the trinomial ax2+bx+c
2.) Write down all factor pairs of c
3.) Identify which factor pair from the previous step sums up to b
4.) Substitute factor pairs into two binomials
PUSH IT TO THE LIMIT.
Six Steps to Factoring Success:
Example: Given 4x 2 +11x - 3 factor by the box method
Steps:
Example:
1.) Create a 2 x 2 box
2.) In the top left corner, put the first term
and in the bottom right corner put the last
term.
3.) a. Multiply first and last term of given
polynomial
b. Find two factors that when added
together will give the middle term
4.) Put factors into the open boxes.
4x 2
-3
a. ® 4x ·-3 = -12x
b. ® Factors are 12x and -x
2
2
4x 2
-x
12x
-3
5.) Factor out the common terms in each
row and in each column.
6.) The sum or difference of the factors for  (4x-1) and (x+3) are the factors of the given polynomial!
the rows and the sum or difference of
factors for the columns are the required
factors
Find the sum of the solutions for the following problems (1-23):
XEI 605
Easy
Medium
I Do
You Do
3.
Groups Do
5.
6.
7.
1.
2.
4.
8.
10.
13.
11.
14.
12.
15.
18.
21.
19.
22.
20.
23.
9.
Spicy
16.
17.
PUSH IT TO THE LIMIT.
Name: _______________________________ TP: _____
1) What is the sum of values of x that satisfy the
equation x 2  4 x  21 ?
a. 7
b. 3
c. -7
d. 4
e. - 4
EXIT SLIP
(15a 5b 3c) 2
2) Simplify:
25a 3b 6
a. 9a 4b5c 2
9a 7b 1c 2
b.
a 3b 6
c. 9a 9 c 2
d.
9a 7 c 2
b12
b12
e. 7 2
9a c
3) Reflect in complete sentences.
A) What are the six steps to factoring success?
B) How do I determine how many seconds a snowboarder is in the air during a jump?
C) What is the relationship between exponents and radicals?
D) How is an exponent represented as repeated multiplication?
PUSH IT TO THE LIMIT.
Score: ______ / 2
CW#82:
FUN 601 & FUN 701
Geometry
CLASSROM COPY – DO NOT WRITE ON THIS!!!
FUN 601- Evaluate composite functions at integer values
What do you know about FUN 601??? Tell me about it, in your notebooks!
****NOTE:
****
So…. In two steps, how to compose a function at integer values:
1.) Evaluate the innermost function, the one on the inside of the parentheses, at
the integer value.
2.) With the value obtained from step one, evaluate the outermost function, the
function that is on the outside of the parentheses.
FUN 601
Easy
I Do
1. Given the functions
f(x)=3x-2 and
g(x)=7x-9, evaluate:
a. f(3)
b. g(5)
You Do
2. Given the functions
f(x)=7x-6 and
g(x)=9x-3, evaluate:
a. f(3)
b. g(3)
c. f(5)
d. g(5)
Groups Do
3. Given the functions
f(x)=3x2 and g(x)=x
evaluate:
a. f(4)
b. g(4)
c. f(8)
d. g(8)
Medium
4. Given the functions
f(x)=9x+7 and
g(x)=3x+8, evaluate:
a. f(g(3))
b. g(f(3))
5. Given the functions
f(x)=11x-19 and
g(x)=13x-7,
evaluate:
a. f(g(5))
b. g(f(6))
c. f(g(3))
d. g(f(7))
6. Given the functions
f(x)=32-6x and
g(x)=17x-3,
evaluate:
a. g(f(5))
b. f(g(5))
c. f(g(9))
d. g(f(9))
Spicy
7. Given the functions
8. Given the functions
9. Given the functions
PUSH IT TO THE LIMIT.
f(x)=x2-3x+2,
g(x)=x2-8, and h(x)=
3x+8 evaluate:
a. f g(10)
b. h(g(f(10)))
f(x)=x3-3x2+5,
g(x)=x2+12, and
h(x)= 3x+2,
evaluate:
a. g f (3)
b. h(f(g(3)))
f(x)= 36x 3 + 4 ,
g(x)= x 3 +x 2 , and
h(x)=3x-12
evaluate:
a. f(g(8))
b. h g f (8)
FUN 701- Write an expression for the composite of two simple functions.
What do you know about FUN 701??? Tell me about it, in your notebooks!
FUN 701
Easy
I Do
1. Given the
functions f(x)=x
and g(x)=12x,
evaluate:
a. f(x)
b. g(x)
You Do
2. Given the
functions f(x)=x
and g(x)=5,
evaluate:
a. f(x)
b. g(x)
Groups Do
3. Given the
functions f(x)=12
and g(x)=18x+3,
evaluate:
a. f(g(x))
b. g(f(x))
Medium
4. Given the
functions
f(x)=3x-12 and
g(x)=2x,
evaluate:
a. f(g(x))
b. g(f(x))
5. Given the
functions
g(x)=3x+4 and
f(x)=12x-3,
evaluate:
a. f(g(x))
b. g(f(x))
6. Given the
functions
g(x)=38-2x and
f(x)=55+32x,
evaluate:
a. f(g(x))
b. g(f(x))
Spicy
7. Given the
functions
f(x)=3x+27 and
g(x)=4x2+2,
evaluate:
a. f(g(x))
b. g(f(x))
8. Given the
functions
f(x)=3x2-2x+4
and g(x)=3x+2,
evaluate:
a. f(g(x))
b. g(f(x))
9. Given the
functions
f(x)=25x2-36x
and g(x)=22x23x, evaluate:
a. f(g(x))
PUSH IT TO THE LIMIT.
Name: _______________________________ TP: _____
EXIT SLIP
Score: ______ / 2
1) If f(x)=3x-5 and g(x)= x  5 , compute g  f (x) .
2) If f(x)=3x+4 and g(x)= x  8 , then g(f(4)) is?
a. x 2
b. x 2  3x  10
c. x 2  30 x  25
d. 9 x 2  30 x  25
e. 9 x 2  30 x  20
a. 8
b. 16
c. 248
d. 256
e. -8
2
2
3) Reflect in complete sentences.
A)What is a composite function?
B) How do I evaluate composite functions at integer values?
C) How do I write an expression for the composite of two simple functions?
PUSH IT TO THE LIMIT.