Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CLASSROM COPY – DO NOT WRITE ON THIS!!! CW#81: NCP505, NCP 604, XEI 605 Geometry NCP 505- Work with squares and square roots of numbers What do you know about NCP 505??? Mind-mouth it in your notebooks! A radical is in SIMPLEST FORM when: 1. No perfect square factor other than 1 is under the radical sign. 2. No fraction is under the radical sign. 3. No fraction has a radical in the denominator. PUSH IT TO THE LIMIT. NCP 505 Easy I Do You Do 1. 25x 2 4. 100x 2 7. 9x 2 2. 36 81 5. 64 49 8. 169x 4 9. 196 144 10. 225 81 17. (5) 2 169 x8 18. ( 6) 4 81x 7 3. Medium 11. Spicy Groups Do 6. (3) 2 64 x 2 14. (5) 2 49 x 4 12. If 36 x 5 13 , then x=? 15. If 144 x 3 33 , then x=? 13. 16. 19. If 64 x 3 21 , then x=? 20. If 16 x 8 0 , then x=? 21. 472 x 4 y 5 x 3 23. 975 x 7 y 9 x 4 25. 97 x 3 y 8 x 2 22. (476) 2 x3 y 9 z12 24. (896) 2 x 7 y 11 z2 26. (76) 2 x 2 y 18 z8 NCP 604- Apply rules of exponents (Complex) What do you know about NCP 604??? Drop some words into your notebooks about it! NCP 604 I Do You Do Groups Do 7 Easy 5. 5 x 4 y 2 3. 1. 4. 2. PUSH IT TO THE LIMIT. 6. Medium 7. 8. 3x 7 y 8 x 3 10. 9. (3 x 5 y 4 ) 3 x6 Spicy 11. 13. 12. XEI 605- Solve quadratic equations What do you know about XEI 605??? Tell me about it, in your notebooks! There is a formula that works when ‘a’ is 1. In other words, we will use this approach whenever the coefficient in front of x2 is 1. 1.) Identify a, b, and c in the trinomial ax2+bx+c 2.) Write down all factor pairs of c 3.) Identify which factor pair from the previous step sums up to b 4.) Substitute factor pairs into two binomials PUSH IT TO THE LIMIT. Six Steps to Factoring Success: Example: Given 4x 2 +11x - 3 factor by the box method Steps: Example: 1.) Create a 2 x 2 box 2.) In the top left corner, put the first term and in the bottom right corner put the last term. 3.) a. Multiply first and last term of given polynomial b. Find two factors that when added together will give the middle term 4.) Put factors into the open boxes. 4x 2 -3 a. ® 4x ·-3 = -12x b. ® Factors are 12x and -x 2 2 4x 2 -x 12x -3 5.) Factor out the common terms in each row and in each column. 6.) The sum or difference of the factors for (4x-1) and (x+3) are the factors of the given polynomial! the rows and the sum or difference of factors for the columns are the required factors Find the sum of the solutions for the following problems (1-23): XEI 605 Easy Medium I Do You Do 3. Groups Do 5. 6. 7. 1. 2. 4. 8. 10. 13. 11. 14. 12. 15. 18. 21. 19. 22. 20. 23. 9. Spicy 16. 17. PUSH IT TO THE LIMIT. Name: _______________________________ TP: _____ 1) What is the sum of values of x that satisfy the equation x 2 4 x 21 ? a. 7 b. 3 c. -7 d. 4 e. - 4 EXIT SLIP (15a 5b 3c) 2 2) Simplify: 25a 3b 6 a. 9a 4b5c 2 9a 7b 1c 2 b. a 3b 6 c. 9a 9 c 2 d. 9a 7 c 2 b12 b12 e. 7 2 9a c 3) Reflect in complete sentences. A) What are the six steps to factoring success? B) How do I determine how many seconds a snowboarder is in the air during a jump? C) What is the relationship between exponents and radicals? D) How is an exponent represented as repeated multiplication? PUSH IT TO THE LIMIT. Score: ______ / 2 CW#82: FUN 601 & FUN 701 Geometry CLASSROM COPY – DO NOT WRITE ON THIS!!! FUN 601- Evaluate composite functions at integer values What do you know about FUN 601??? Tell me about it, in your notebooks! ****NOTE: **** So…. In two steps, how to compose a function at integer values: 1.) Evaluate the innermost function, the one on the inside of the parentheses, at the integer value. 2.) With the value obtained from step one, evaluate the outermost function, the function that is on the outside of the parentheses. FUN 601 Easy I Do 1. Given the functions f(x)=3x-2 and g(x)=7x-9, evaluate: a. f(3) b. g(5) You Do 2. Given the functions f(x)=7x-6 and g(x)=9x-3, evaluate: a. f(3) b. g(3) c. f(5) d. g(5) Groups Do 3. Given the functions f(x)=3x2 and g(x)=x evaluate: a. f(4) b. g(4) c. f(8) d. g(8) Medium 4. Given the functions f(x)=9x+7 and g(x)=3x+8, evaluate: a. f(g(3)) b. g(f(3)) 5. Given the functions f(x)=11x-19 and g(x)=13x-7, evaluate: a. f(g(5)) b. g(f(6)) c. f(g(3)) d. g(f(7)) 6. Given the functions f(x)=32-6x and g(x)=17x-3, evaluate: a. g(f(5)) b. f(g(5)) c. f(g(9)) d. g(f(9)) Spicy 7. Given the functions 8. Given the functions 9. Given the functions PUSH IT TO THE LIMIT. f(x)=x2-3x+2, g(x)=x2-8, and h(x)= 3x+8 evaluate: a. f g(10) b. h(g(f(10))) f(x)=x3-3x2+5, g(x)=x2+12, and h(x)= 3x+2, evaluate: a. g f (3) b. h(f(g(3))) f(x)= 36x 3 + 4 , g(x)= x 3 +x 2 , and h(x)=3x-12 evaluate: a. f(g(8)) b. h g f (8) FUN 701- Write an expression for the composite of two simple functions. What do you know about FUN 701??? Tell me about it, in your notebooks! FUN 701 Easy I Do 1. Given the functions f(x)=x and g(x)=12x, evaluate: a. f(x) b. g(x) You Do 2. Given the functions f(x)=x and g(x)=5, evaluate: a. f(x) b. g(x) Groups Do 3. Given the functions f(x)=12 and g(x)=18x+3, evaluate: a. f(g(x)) b. g(f(x)) Medium 4. Given the functions f(x)=3x-12 and g(x)=2x, evaluate: a. f(g(x)) b. g(f(x)) 5. Given the functions g(x)=3x+4 and f(x)=12x-3, evaluate: a. f(g(x)) b. g(f(x)) 6. Given the functions g(x)=38-2x and f(x)=55+32x, evaluate: a. f(g(x)) b. g(f(x)) Spicy 7. Given the functions f(x)=3x+27 and g(x)=4x2+2, evaluate: a. f(g(x)) b. g(f(x)) 8. Given the functions f(x)=3x2-2x+4 and g(x)=3x+2, evaluate: a. f(g(x)) b. g(f(x)) 9. Given the functions f(x)=25x2-36x and g(x)=22x23x, evaluate: a. f(g(x)) PUSH IT TO THE LIMIT. Name: _______________________________ TP: _____ EXIT SLIP Score: ______ / 2 1) If f(x)=3x-5 and g(x)= x 5 , compute g f (x) . 2) If f(x)=3x+4 and g(x)= x 8 , then g(f(4)) is? a. x 2 b. x 2 3x 10 c. x 2 30 x 25 d. 9 x 2 30 x 25 e. 9 x 2 30 x 20 a. 8 b. 16 c. 248 d. 256 e. -8 2 2 3) Reflect in complete sentences. A)What is a composite function? B) How do I evaluate composite functions at integer values? C) How do I write an expression for the composite of two simple functions? PUSH IT TO THE LIMIT.