Download QS6M4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
QS6M4
Transistors
2.5V Drive Nch+Pch MOSFET
QS6M4
zDimensions (Unit : mm)
zStructure
Silicon P-channel MOSFET
Silicon N-channel MOSFET
TSMT6
1.0MAX
2.9
1.9
0.95 0.95
zFeatures
1) The QS6M4 combines Pch MOSFET with a Nch
MOSFET in a single TSMT6 package.
2) Low on-state resistance with a fast switching.
3) Low voltage drive (2.5V).
(5)
0.85
0.7
(4)
1.6
2.8
(6)
0~0.1
0.3~0.6
(2)
(1)
(3)
1pin mark
0.16
0.4
Each lead has same dimensions
Abbreviated symbol : M04
zApplications
Load switch, inverter
zEquivalent circuit
zPackaging specifications
Package
Taping
(5)
TR
Code
Type
(6)
Basic ordering unit (pieces)
(4)
∗1
3000
QS6M4
∗2
∗2
zAbsolute maximum ratings (Ta=25°C)
Parameter
Symbol
Drain-source voltage
Gate-source voltage
Drain current
Source current
(Body diode)
Continuous
Pulsed
Continuous
Pulsed
Total power dissipation
Channel temperature
Storage temperature
VDSS
VGSS
ID
IDP ∗1
IS
ISP ∗1
PD ∗2
Tch
Tstg
∗1
Limits
Nchannel
Pchannel
30
−20
±12
±12
±1.5
±1.5
±6.0
±6.0
0.8
−0.75
6.0
−6.0
1.25
0.9
150
−55 to +150
Unit
V
V
A
A
A
A
W / TOTAL
W / ELEMENT
°C
°C
(1)
(2)
(3)
∗1 ESD PROTECTION DIODE
∗2 BODY DIODE
(1) Tr1 (Nch) Source
(2) Tr1 (Nch) Gate
(3) Tr2 (Pch) Drain
(4) Tr2 (Pch) Source
(5) Tr2 (Pch) Gate
(6) Tr1 (Nch) Drain
∗1 Pw≤10µs, Duty cycle≤1%
∗2 Mounted on a ceramic board
zThermal resistance
Parameter
Channel to ambient
Symbol
∗
Rth (ch-a)
Limits
100
139
Unit
°C / W / TOTAL
°C / W / ELEMENT
∗ Mounted on a ceramic board
Rev.B
1/5
QS6M4
Transistors
zElectrical characteristics (Ta=25°C)
<Tr1. N-ch MOSFET>
Parameter
Symbol
Gate-source leakage
IGSS
Drain-source breakdown voltage V(BR) DSS
IDSS
Zero gate voltage drain current
Gate threshold voltage
VGS (th)
Static drain-source on-state
resistance
Forward transfer admittance
Input capacitance
Output capacitance
Reverse transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Total gate charge
Gate-source charge
Gate-drain charge
∗
RDS (on)
Yfs
Ciss
Coss
Crss
td (on)
tr
td (off)
tf
Qg
Qgs
Qgd
∗
∗
∗
∗
∗
∗
∗
∗
Min.
−
30
−
0.5
−
−
−
1.0
−
−
−
−
−
−
−
−
−
−
Typ.
Max.
−
−
−
−
170
180
260
−
80
25
15
7
18
15
15
1.6
0.5
0.9
±10
−
1
1.5
230
245
360
−
−
−
−
−
−
−
−
−
−
−
Typ.
−
Max.
1.2
Unit
µA
V
µA
V
mΩ
S
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
Conditions
VGS=±12V / VDS=0V
ID=1mA / VGS=0V
VDS=30V / VGS=0V
VDS=10V / ID=1mA
ID=1.5A / VGS=4.5V
ID=1.5A / VGS=4.0V
ID=1.0A / VGS=2.5V
VDS=10V / ID=1.0A
VDS=10V
VGS=0V
f=1MHz
ID=1A, VDD 15V
VGS=4.5V
RL=15Ω / RG=10Ω
VDD 15V
VGS=4.5V
ID=1.5A
RL=10Ω
RG=10Ω
∗Pulsed
zBody diode characteristics (Source-Drain)
<Tr1. N-ch MOSFET>
Parameter
Forward voltage
Symbol
VSD
∗
Min.
−
Unit
V
Conditions
IS=3.2A / VGS=0V
∗Pulsed
Rev.B
2/5
QS6M4
Transistors
zElectrical characteristics (Ta=25°C)
<Tr2. P-ch MOSFET>
Parameter
Symbol Min.
−
Gate-source leakage
IGSS
Drain-source breakdown voltage V(BR) DSS −20
IDSS
Zero gate voltage drain current
−
Gate threshold voltage
VGS (th) −0.7
−
∗
Static drain-source on-state
RDS (on)
−
resistance
−
Yfs ∗ 1.0
Forward transfer admittance
Ciss
−
Input capacitance
Coss
−
Output capacitance
Crss
−
Reverse transfer capacitance
td (on) ∗
−
Turn-on delay time
tr ∗
−
Rise time
td (off) ∗
−
Turn-off delay time
tf ∗
−
Fall time
Qg ∗
−
Total gate charge
Qgs ∗
−
Gate-source charge
Qgd ∗
−
Gate-drain charge
Typ.
Max.
−
−
−
−
155
170
310
−
270
40
35
10
12
45
20
3.0
0.8
0.85
±10
−
−1
−2.0
215
235
430
−
−
−
−
−
−
−
−
−
−
−
Typ.
−
Max.
−1.2
Unit
µA
V
µA
V
mΩ
S
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
Conditions
VGS= ±12V / VDS=0V
ID= −1mA / VGS=0V
VDS= −20V / VGS=0V
VDS= −10V / ID=−1mA
ID= −1.5A / VGS= −4.5V
ID= −1.5A / VGS= −4.0V
ID= −0.75A / VGS= −2.5V
VDS= −10V / ID= −0.75A
VDS= −10V
VGS=0V
f=1MHz
ID= −0.75A, VDD −15V
VGS= −4.5V
RL=20Ω / RG=10Ω
VDD −15V RL=10Ω
VGS= −4.5V RG=10Ω
ID= −1.5A
∗Pulsed
zBody diode characteristics (Source-Drain)
<Tr2. P-ch MOSFET>
Parameter
Forward voltage
Symbol
VSD
Min.
−
Unit
V
Conditions
IS= −0.75A / VGS=0V
Rev.B
3/5
QS6M4
Transistors
N-ch
zElectrical characteristic curves
1000
Ciss
Crss
Coss
10
0.1
1
10
td (off)
10
td (on)
tr
1
0.01
100
0.1
DRAIN-SOURCE VOLTAGE : VDS (A)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
DRAIN CURRENT : ID (A)
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
0.1
0.01
0.001
0.0
0.5
1.0
1.5
2.0
2.5
1
10
1.0
1.5
10
0.8
ID=1.5A
0.7
ID=0.75A
0.6
2.0
Fig.3 Dynamic Input Characteristics
VGS=0V
Pulsed
0.5
0.4
0.3
0.2
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
1
0.1
0.1
0.0
0
1
2
3
4
5
6
7
8
9
10
0.01
0.0
0.5
10
1
VGS=4.0V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
0.1
0.01
0.1
1
10
1.0
1.5
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.5 Static Drain-Source
On-State Resistance vs.
Gate-Source Voltage
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
0.1
0.5
TOTAL GATE CHARGE : Qg (nC)
GATE-SOURCE VOLTAGE : VGS (V)
VGS=4.5V
Pulsed
0.1
0.01
0
Ta=25°C
Pulsed
0.9
Fig.4 Typical Transfer Characteristics
1
0
10
1.0
GATE-SOURCE VOLTAGE : VGS (V)
10
1
Fig.2 Switching Characteristics
VDS=10V
Pulsed
1
2
DRAIN CURRENT : ID (A)
Fig.1 Typical Capacitance
vs. Drain-Source Voltage
10
1
3
SOURCE CURRENT : Is (A)
1
0.01
tf
100
Ta=25°C
VDD=15V
5 ID=1.5A
RG=10Ω
Pulsed
4
Fig.6 Source Current vs.
Source-Drain Voltage
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
100
6
Ta=25°C
VDD=15V
VGS=4.5V
RG=10Ω
Pulsed
GATE-SOURCE VOLTAGE : VGS (V)
Ta=25°C
f=1MHz
VGS=0V
SWITCHING TIME : t (ns)
CAPACITANCE : C (pF)
1000
10
1
0.1
0.01
VGS=2.5V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
0.1
1
10
DRAIN CURRENT : ID (A)
DRAIN CURRENT : ID (A)
DRAIN CURRENT : ID (A)
Fig.7 Static Drain-Source
On-State Resistance
vs. Drain Current (Ι)
Fig.8 Static Drain-Source
On-State Resistance
vs. Drain Current (ΙΙ)
Fig.9 Static Drain-Source
On-State Resistance
vs. Drain Current (ΙΙΙ)
Rev.B
4/5
QS6M4
Transistors
P-ch
zElectrical characteristic curves
1000
Coss
Crss
10
0.01
0.1
1
10
td (off)
td (on)
10
tr
1
0.01
100
0.1
DRAIN-SOURCE VOLTAGE : −VDS (V)
1
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
0.1
0.01
0.001
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
100
10
0.1
1
10
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
1000
3
2
1
0
10
0
0.5
1.5
2.0
ID= −1.5A
300
200
100
0
2
4
6
8
2.5
3.0
3.5
Fig.3 Dynamic Input Characteristics
ID= −0.75A
0
1.0
TOTAL GATE CHARGE : Qg (nC)
Ta=25°C
Pulsed
400
Fig.4 Typical Transfer Characteristics
VGS= −4.5V
Pulsed
4
10
500
GATE-SOURCE VOLTAGE : −VGS (V)
10000
5
Fig.2 Switching Characteristics
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
DRAIN CURRENT : −ID (A)
VDS= −10V
Pulsed
1
6
DRAIN CURRENT : −ID (A)
Fig.1 Typical Capacitance
vs. Drain-Source Voltage
10
GATE-SOURCE VOLTAGE : −VGS (V)
100
tf
100
Ta=25°C
VDD= −15V
ID= −1.5A
RG=10Ω
Pulsed
7
SOURCE CURRENT : −IS (A)
Ciss
8
Ta=25°C
VDD= −15V
VGS= −4.5V
RG=10Ω
Pulsed
10
12
Ta=25°C
VGS=0V
Pulsed
1
0.1
0.01
0.0
0.5
1.0
1.5
2.0
GATE-SOURCE VOLTAGE : −VGS (V)
SOURCE-DRAIN VOLTAGE : −VSD (V)
Fig.5 Static Drain-Source
On-State Resistance vs.
Gate-Source Voltage
Fig.6 Source Current vs.
Source-Drain Voltage
10000
1000
STATIC DRAIN-SOURCE
ON-STATE RESISTANCE : RDS (on) (mΩ)
Ta=25°C
f=1MHz
VGS=0V
SWITCHING TIME : t (ns)
CAPACITANCE : C (pF)
1000
VGS= −4V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
100
10
0.1
1
10
10000
1000
VGS= −2.5V
Pulsed
Ta=125°C
Ta=75°C
Ta=25°C
Ta= −25°C
100
10
0.1
1
10
DRAIN CURRENT : −ID (A)
DRAIN CURRENT : −ID (A)
DRAIN CURRENT : −ID (A)
Fig.7 Static Drain-Source
On-State Resistance
vs. Drain Current (Ι)
Fig.8 Static Drain-Source
On-State Resistance
vs. Drain Current (ΙΙ)
Fig.9 Static Drain-Source
On-State Resistance
vs. Drain Current (ΙΙΙ)
Rev.B
5/5
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level
of reliability and the malfunction of which would directly endanger human life (such as medical
instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers
and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance
of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow
for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in
order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM
cannot be held responsible for any damages arising from the use of the products under conditions out of the
range of the specifications or due to non-compliance with the NOTES specified in this catalog.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.
ROHM Customer Support System
www.rohm.com
Copyright © 2007 ROHM CO.,LTD.
THE AMERICAS / EUPOPE / ASIA / JAPAN
Contact us : webmaster@ rohm.co. jp
21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
TEL : +81-75-311-2121
FAX : +81-75-315-0172
Appendix1-Rev2.0