Download 103 Lecture Ch18b

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Resting potential wikipedia , lookup

Stimulus (physiology) wikipedia , lookup

Hepoxilin wikipedia , lookup

Cell wall wikipedia , lookup

Patch clamp wikipedia , lookup

Metabolism wikipedia , lookup

Electrophysiology wikipedia , lookup

Transcript
Waxes
• Waxes are esters that combine a long-chain fatty acid with a
long-chain alcohol (14-30 carbons in each chain, unbranched)
• Plants produce waxes on the surfaces of their leaves, stems
and fruits to prevent water loss and protect against pests
• Animals produce waxes on their fur or feathers to provide a
water-proof coating (ducks, polar bears, etc.)
• Waxes are used commercially to produce many products, such
as car wax, candles and cosmetics
Glycerophospholipids
• Glycerophospholipids are the main class of phospholipids
• They are similar to triacylglycerols, but have one ester bond
replaced with an amino alcohol phosphate ester
• Glycerophospholipids are the main lipid component of cell
membranes, and are important in the cell’s semipermeability
• They also interact with triacylglycerols and cholesterol to
increase their solubility in the blood
• These abilities of glycerophospholipids are due to their
amphipathic nature, with a polar head group and nonpolar tails
Fatty acid
Glycerol
Fatty acid
PO4
Amino
alcohol
Structure of a Glycerophospholipid
Lecithins and Cephalins
• Glycerophospholipids can be classified based on the amino
alchol group
• Two common types are lecithins (which contain choline) and
cephalins (which contain ethanolamine)
• Lecithins and cephalins are highly abundant in brain and nerve
tissues, and are also found in egg yolks, wheat germ and yeast
Sphingolipids
• Sphingolipids are phospholipids that are based on the 18-carbon
amino alchol sphingosine, instead of on glycerol
• A fatty acid is linked to the amine group by an amide bond, and
an amino alcohol phosphate ester is linked to the bottom
hydroxyl group (the top hydroxyl group remains free)
• Sphingolipids are also abundant in cell membranes, particularly
in brain and nerve tissues
• Sphingomyelin is the main component of the myelin sheath of
nerve cells
Glycosphingolipids (Cerebrosides)
• Glycosphingolipids are sphingolipids that have one or more
monosaccharides linked by glycosidic bonds to the bottom
hydroxyl of the sphingosine (in place of the amino alcohol
phosphate ester)
• Cerebrosides have a single monosaccharide (usually galactose)
- they are usually present at the cell surface, and are involved in
cellular recognition and immunity
Glycosphingolipids (Gangliosides)
• Gangliosides have two or more monosaccharides, usually
glucose and galactose
- they are abundant in the cell membranes of neurons
- they act at the cell surface as receptors for hormones
• Accumulation of the ganglioside GM2 causes Tay-Sachs
Lipid Diseases
• There are many diseases involving lipids
- usually, lack of an enzyme leads to accumulation of a
particular lipid, causing symptoms such as enlarged spleen and
liver, seizures, blindness, mental retardation and death
- lipid deficiencies are rare, but also cause serious problems,
such as in multiple sclerosis, where sphingomyelins are lost
from the myelin sheath, impairing nerve signal transmission
and causing symptoms such as muscle weakness and loss of
coordination and vision
Steroids
• Steroids are lipids containing a steroid nucleus (core structure)
• The steroid nucleus is a fused ring system consisting of three
cyclohexane rings and one cyclopentane ring
• The rings are designated A, B, C and D
• Attachment of different groups to the core steroid structure
leads to a wide variety of steroid compounds, including
cholesterol, bile salts and steroid hormones
C
A
B
D
Cholesterol
• Cholesterol is the most abundant steroid in animals
- plants have very small amounts (but have related compounds)
- it’s a major component of cell membranes, and affects the fluidity
of the membrane due to its bulky structure
- is a precursor for biosynthesis of many other steroids
• Cholesterol is called a sterol because it contains an alcohol group
• We can obtain cholesterol from our diet (animal products), but our
liver can also synthesize all the cholesterol that we need
- the liver synthesizes more cholesterol when dietary intake is low
- excessive blood cholesterol is associated with atherosclerosis and
formation of gallstones
HO
Lipoproteins
• Lipoproteins are water-soluble complexes of lipids, phospholipids
and proteins that are used to transport lipids through the blood
• Lipoproteins are soluble in water because their surface is polar
- the polar head groups of phospholipids and the hydroxyl groups of
cholesterol form a polar layer on the surface of the lipoprotein
- nonpolar triacylglycerides and cholesterol esters (cholesterol in
the blood is mostly fatty acid esters) are stored in the interior
Types of Lipoproteins
• Lipoproteins differ by density, composition and function
• Types of lipoproteins include chylomicrons, very-low-density
lipoprotein (VLDL), low-density lipoprotein (LDL) and highdensity lipoprotein (HDL)
• The LDL’s transport cholesterol to cells for biosynthesis or storage
- when blood cholesterol in LDL’s becomes excessive, the LDL’s
deposite the excess cholesterol on artery walls
• The HDL’s transport excess cholesterol from tissues to the liver
- the liver converts cholesterol to bile salts, some of which are
eliminated, but most of which are returned to the liver for re-use
Transport of Lipoproteins in the Body
Bile Salts
• Bile salts are synthesized from cholesterol in the liver
- they are stored in the gall bladder and released into the upper
small intestine to help break down fats and oils (like soaps)
- too much accumulated cholesterol in the gall bladder can
lead to gallstones; if a gallstone passes into the bile duct,
severe pain results and the gallbladder often has to be removed
cholic acid, a bile acid
O
CH3
OH
CH3
CH3
HO
C
N
CH2
-
H
glycine, an amino acid
OH
sodium glycocholate, a bile salt
+
COO Na
Steroid Hormones
• Hormones act as
chemical messengers
• They are important in
control of many
biological functions
• They are secreted
from endocrine glands
(and placenta)
• They react with
receptors on cell
surfaces to trigger a
cascade response
• Usually control
metabolism at the
gene level
• Steroid hormones
are biosynthesized
from cholesterol
Adrenal Corticosteroids
• Adrenal corticosteroids are hormones produced in the adrenal
glands (located just above the kidneys)
• Cortisone (a glucocorticoid) raises the blood glucose level by
causing tissues other than the brain to switch to metabolizing fats
and proteins; it also suppresses the immune response and can be
used as an anti-inflammatory anti-allergy medication
• Aldosterone (a mineralcorticoid) regulates ion balance by
promoting re-absorbtion of Na+, Cl- and HCO3- by the kidneys
• Prednisone is a synthetic corticoid used to treat various
inflammatory conditions, such as asthma and rheumatoid arthritis
Prostaglandins
• Prostaglandins are short-lived lipids that are produced by injured
tissues and are responsible for various physiological responses ,
including pain, swelling and fever
• The structures of some common prostaglandins are shown below:
Prostaglandins
• Medicines that treat pain, inflammation and fever (aspirin,
ibuprofin, etc.) work by inhibiting prostaglandin synthesis
Cell Membranes
• A cell membrane is a semi-permeable barrier that separates the
cell contents from the external environment
• Cell membranes are mainly composed of glycerophospholipids
and sphingolipids arranged in a bilayer
- the nonpolar tails point of each layer point towards each other,
creating an inner hydrophobic region
- the polar head groups form hydrophilic surfaces that interface
with the aqueous environments inside and outside of the cell
Phospholipids
Membrane Protein
Fluid Mosaic Model of Cell Membranes
• The cell membrane is not a rigid structure, but rather a fluid mosaic
containing a variety of components that are free to move laterally
• A high level of unsaturated fatty acids contributes to the fluidity of
the membrane because the intermolecular attractions are weaker
• Cholesterol adds to the rigidity and strength of the membrane
• Proteins are also part
of the membrane
(peripheral proteins are
at the surface and
integral proteins extend
across the membrane)
• Carbohydrates can
also be attached to
proteins or
phospholipids at the
outer surface (for cell
communication)
Transport Through Cell Membranes
• Diffusion (passive transport) moves particles from a higher to a
lower concentration (requires no energy source)
• Facilitated transport uses protein channels to increase the rate of
diffusion (requires no energy source)
• Active transport moves ions against a concentration gradient
(requires ATP as an energy source)