* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Example - Ukrainian Risk Laboratory
Computational phylogenetics wikipedia , lookup
Birthday problem wikipedia , lookup
Pattern recognition wikipedia , lookup
Financial economics wikipedia , lookup
Genetic algorithm wikipedia , lookup
Computational fluid dynamics wikipedia , lookup
Computational electromagnetics wikipedia , lookup
Enterprise risk management wikipedia , lookup
General-purpose computing on graphics processing units wikipedia , lookup
Multi-objective optimization wikipedia , lookup
Actuarial credentialing and exams wikipedia , lookup
Least squares wikipedia , lookup
Corecursion wikipedia , lookup
Joint Theater Level Simulation wikipedia , lookup
Molecular dynamics wikipedia , lookup
Mathematical optimization wikipedia , lookup
PARALLEL COMPUTATIONS IN NONLIFE INSURANCE BUSINESS OPTIMIZATION BOGDAN NORKIN V. M. Glushkov Institute of Cybernetics Kiev, Ukraine HPC – UA 2012 OUTLINE • Introduction: parallel actuarial calculations • Problem – simulation of insurance company • Model – risk process • Data – Insurance company statistics • Method – GPU accelerated simulations • Goal – optimization of insurance business. • RiskManagenentSystem overview • Usage examples RESERVS RISK PROCESS MODEL RUIN EXSAMPLE - RISK PROCESS WITH DIVIDEND BARRIER c Rt dt PARALLEL ACTUARIAL COMPUTATIONS THE METHOD OF SUCCESSIVE APPROXIMATIONS Our Equation ( x, t ) Ax ,t (, ) Method of successive approximations ( x, t ) Ax,t (, ) k 1 k For example… ( xi , t j ) k 1 tj 0 U ( xi , ) 0 k U ( xi , ) z, t j dF ( z, ) 1 F , t j CALCULATING K+1 ITERATION Let us have K-th iteration x CALCULATING K+1 ITERATION This is time grid x CALCULATING K+1 ITERATION To obtain k 1 we use values of k in grid nodes k x1 k 1 x1 x1 x2 xk CALCULATING K+1 ITERATION To obtain k 1 And so on… we use values of k in grid nodes CALCULATING K+1 ITERATION To obtain k 1 we use values of k in grid nodes And so on… just the same way x CALCULATING K+1 ITERATION To obtain k 1 we use values of k in grid nodes Due to independent nature of calculations we can use more then one core (up to number of greed nodes)…. k 1 x j k 1 xi x CALCULATING K+1 ITERATION To obtain k 1 we use values of k in grid nodes And as a result we can interpolate k 1 x RESERVS COMPANY RESERVES SIMULATION RUIN We need millions of such simulations! For real time modelling we need parallelization PARALLEL ACTUARIAL COMPUTATIONS Parallel actuarial simulations Random outcome = Company simulation (Inputs) Inputs – hundreds Simulations – millions Example: Ruin Probability = Fraction of ruined trajectories OPTIMIZATION PROBLEM Dividend maximization Subject to Bound on • Ruin Probability ( ≤ 10-3 ) • Residual capital RMS 0.2 - RISK MANAGEMENT SYSTEM Realistic simulation models Adjusted to law regulations Real world data Optimization over any parameter (multi criteria task) Based on parallel simulations GPU accelerated powered by CUDA User friendly MAIN FEATURES •On the basis of company's claim statistics One can: •Estimate • • • •Build ruin probability, projected dividend size residual reserve. efficient frontier. •Investigate any dependences. MAIN BUGS Just an α version… SYSTEM OVERVIEW Probability of insolvency (Ruin) as a function of parameter (dividend rate) SYSTEM OVERVIEW Resudual capital and dividends as functions of parameter (dividend rate) SYSTEM OVERVIEW Efficient frontier (Profit vs Risk) allows to select a tradeoff point CLAIM STATISTICS Per quarter normalized claim statistics of a wellknown Ukrainian insurance company with foreign capital. EXTREME DEPENDENCES ILLUSTRATION– RUIN PROBABILITY DIVIDENDS & RESIDUAL RESERVE EFFICIENT FRONTIER EXAMPLE CONCLUSIONS • • • • • Insurance simulation model based on real world data. Risk/Profit optimization (Efficient frontier constructing) Any parameter can be an optimization variable. Real time GPU accelerated Monte Carlo method. (about 1 second for billions of trajectories) And at last User friendly interface turns RMS 0.2 in a very efficient and nice system REFERENCES • • • • Kaufmann R., Gadmer A., Klett R. Introduction to dynamic financial analysis // ASTIN Bulletin, Vol. 31, No. 1, 2001, pp. 213-249. Norkin B. Parallel computations in insurance business optimization //Proceedings of the 1-st International Conference on High Performance Computing. October 12-14, 2011, Kyiv, Ukraine. – P. 3339. Норкин Б.В. Распараллеливание методов оценки риска банкротства страховой компании // Теорія оптимальних рішень. – Київ : Інститут Кібернетики, 2010. – Стор. 33-39. Норкин Б.В. О вероятности разорения управляемого процесса авторегрессии // Комп’ютерна математика. Ін-т кібернетики ім. В.М. Глушкова. Київ, 2011. – С. 142-150. THANK YOU FOR ATTENTION! BOGDAN NORKIN [email protected] V. M. Glushkov Institute of Cybernetics Kiev, Ukraine HPC – UA 2012