Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Inmunopatología del cáncer de próstata Sistema inmunológico/inflamatorio y cáncer de próstata ¿Participa el sistema inmunológico/ inflamatorio en la etiopatogenia de la enfermedad? ¿Existen alteraciones del sistema inmunológico/inflamatorio en los pacientes? ¿son reversibles? Se puede modular terapéuticamente el sistema inmunológico/ inflamatorio? Etiopatogenia del cáncer de próstata Factores Historia Edad La de riesgo familiar avanzada dieta, de forma emergente ETIOPATOGENIA CÁNCER DE PRÓSTATA HUPA BASE GENÉTICA INTERACCIÓN CON EL MEDIO INTERNO Y EXTERNO HETEROGENEIDAD PATOGENICA INDIVIDUAL Y TEMPORAL Etiopatogenia del cáncer de próstata Implicaciones del sistema inmune/inflamatorio La etiología (el por qué) La patogenia (el como) Alteraciones intrínsecas de lás células tumorales (acumulación de alteraciones genéticas y epigenéticas) Interacciones con el huésped Enigmas de la etiopatogenia del cáncer de próstata Etiología desconocida Alta incidencia en países occidentales y baja en los del extremo oriente Incidencia nivelada tras la primera generación en emigrantes asiáticos Marcada alta incidencia con respecto a otros tumores genitourinarios (vesículas seminales) Localización preferente en área periférica de la glándula Enigmas de la etiopatogenia del cáncer de próstata En las autopsias la incidencia de prostatitis es los hombres caucasianos y afroamericanos es alta y muy baja o inexistente en asiáticos en la primera generación Borowsky A Neoplasia 8,709-715, 2006 Sistema inmunológico/inflamatorio y patogenia del cáncer de próstata En la patogenia de un 20% de los tumores de los adultos se implica un entorno inflamatorio crónico (estómago, intestino grueso, hígado, árbol biliar, vejiga urinaria ) Inflamación y cáncer de próstata Inflamación crónica Alteración epitelial Atrofia focal o difusa del epitelio Áreas de proliferación epitelial “Proliferative inflammatory atrophy” (PIA) Lesiones transicionales entre epitelio adenocarcinoma McNeal J in Histology for Pathologists Lippincott-Raven, Philadelphia, 1997 De Marzo, A Am J Pathol. 155, 1985, 1999 McNeal, J Am J Surg Pathol 12, 619, 1998 Nakayama, M Am J Pathol 163, 923, 2003 atrófico y Inflamación y cáncer de próstata Las lesiones del epitelio atrófico proliferante (PIA) comparten alteraciones moleculares con el cáncer de próstata Disminución de la expresión de genes supresores NKX3.1 CDKN1B (p27) PTEN Bethel, Cancer Res. 66, 10683, 2006 Atypical proliferations arise in an inflamed prostate Segmental area of inflammation (Infl) and another area of atrophy (Atr) Epithelial proliferation with cellular loss of polarity and cytologic atypia Inflammation and Atrophy Precede Prostatic Neoplasia in a 2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP)-Induced Rat Model A Borowsky et al 2006 Etiopatogenia del cáncer de próstata Implicaciones del sistema inmune/inflamatorio La etiología (el por qué) La patogenia (el como) Alteraciones intrínsecas de lás células tumorales (acumulación de alteraciones genéticas y epigenéticas) Interacciones con el huésped The molecular mechanisms that underlie the pathogenesis of inflammation-associated cancer are complex, and involve both the innate and adaptive immune systems Highly reactive chemical compounds, including superoxide, hydrogen peroxide, singlet oxygen and nitric oxide are released from activated phagocytic inflammatory cells of the innate immune system These molcelules can cause oxidative or nitrosative damage to DNA in the epithelial cells, or react with other cellular components such as phospholipids, initiating a free-radical chain reaction Condeelis Cell 124, 263–266 (2006) Lewis Cancer Res. 66, 605–612 (2006) de Visser Nature Rev. Cancer 6, 24–37 (2006) Monocitos proinflamatorios CD14+low CD16+hi CD14+hi CD16+hi CD14+hi CD16+low CD14+hi CD16- Monocitos clásicos PAF LTC4 TNF- Macrófago IL-1 IL-13 Célula Troncal IL-4 IL-2 IFN- O2proteasa PGE2 TH IgG1 IgE IL-2 Células Plasmáticas IFN- Linfocitos T citotóxicos y NK IFN- IL-8, gro PMN Respuesta inflamatoria conlleva activación de las células sistema inmune y secreción de citoquinas y factores de crecimiento IL-1 TNF O2proteasa Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Infiltración de células inmunológicas/ inflamatorias Secretan citoquinas y quimioquinas que promueven: el crecimiento epitelial angiogénesis Secretan enzimas proteolíticas de la matriz extracelular que favorecen: Invasión tumoral del estroma Invasión vascular ÁNCER DE PROSTATA. INFLAMACIÓN CITOQUINAS Y FACTORES DE CRECIMIENTO MULTIPLES RELACIONE S AUTOCRINA S Y PARACRINA S ESTROMA, EPITELIO / LINFOCITOS Y MONOCITOS Interleukin-6 It is implicated in the development and progression of prostate cancer (Keller et al., 1996; Trikha et al., 2003, Cavarretta et al., 2007) Correlation between IL-6 protein levels and more advanced stages of the disease and poor prognosis is now well established (Siegall et al., 1990; Siegsmund et al., 1994; Adler et al., 1999; Drachenberg et al., 1999; Nakashima et al., 2000; Giri et al., 2001; Hobisch et al., 2001) IL-17RC Protein Isoforms Were Differentially Expressed in Prostate Cancers Four of 54 (7%) androgendependent prostate cancers were positively stained by antiICD, whereas 12 of 55 (22%) androgen-independent prostate cancers were positively stained La doble cara del sistema inmune y el cáncer JANO INDUCE Y/O FAVORECE DEFIENDE Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Entorno inflamatorio tisular inductor de: Supresión de la respuesta efectora inmunológica Apoptosis de las células efectoras Inmunodeficiencia Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Entorno tisular inductor de: Supresión de la respuesta efectora inmunológica Monocitos inflamatorios Células dendríticas inmaduras Predomino de subpoblaciones Treg Th17 Th1 Miller, J. Immunol. 177, 7398–7405 (2006) Weaver Immunity 24, 677–688 (2006) Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Entorno tisular inductor de: Supresión de la respuesta efectora inmunológica Monocitos inflamatorios Células dendríticas inmaduras Predomino de subpoblaciones Treg Th17 Th1 Miller, J. Immunol. 177, 7398–7405 (2006) Weaver Immunity 24, 677–688 (2006) Prevalence and function of CD4CD25high T cells is elevated in peripheral blood and tissue samples from PC patients HC BPH PC FOXP3 expression in prostate tissue Representative sections of prostate tissue, showing benign or malignant gland from the same prostate Arrows indicate FOXP3-positive cells (brown nuclear staining; original magnification, 40) Miller et al The Journal of Immunology, 2006, 177: 7398 –7405. Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Entorno tisular inductor de: Supresión de la respuesta efectora inmunológica Monocitos inflamatorios Células dendríticas inmaduras Predomino de subpoblaciones Treg Th17 Th1 Miller, J. Immunol. 177, 7398–7405 (2006) Weaver Immunity 24, 677–688 (2006) In prostate cancer IL-10 prevents the CD40-induced CTL and TNF- and IL-12 production, Th1 skewing, and tumor regression The Journal of Immunology, 2006, 177: 6642–6649 Participación patogénica del sistema inmunitario/inflamatorio en el cáncer de próstata Genes implicados en susceptibilidad a cáncer de próstata Pertenecientes a la respuesta inmunológica innata Respuesta a virus, RNASEL Respuesta a patrones microbiológicos, TLR Respuesta a mediadores inflamatorios, MSR1 Vías inflamatorias Il-1R, MIC1 La doble cara del sistema inmune y el cáncer JANO INDUCE Y/O FAVORECE DEFIENDE New Paradigm – 2 Hit Model 1 Tumor Necrosis [↓Apoptosis] ↓ Release of Factors [HMGB1, others?] ↓ Tumor Growth - 2 T/NK CELL Perforin FasL IFNγ TNFα TUMOR - Immunosuppression mediated by PDC, tumor, other cells DC DC HMGB1, HSP, Uric Acid HSP, Adenine, ATP Chronic inflammation Cáncer de próstata Causas de la inflamación crónica prostática Possible causes of prostate inflammation a | Infection b | Hormones Chronic bacterial, viruses, fungi, mycobacteria and parasites Hormonal alterations such as oestrogen exposure at crucial developmental junctures can result in architectural alterations in the prostate that produce an inflammatory response c | Physical trauma Corpora amylacea can traumatize the prostate on a microscopic level De Marzo Nature Reviews Cancer 7. 256-269, 2007 Possible causes of prostate inflammation d | Urine reflux Urine that travels up back towards the bladder can penetrate the ducts and acini of the prostate Some compounds, such as crystalline uric acid, can directly activate innate inflammatory cells Although these compounds would not be expected to traverse the prostate epithelium, if the epithelium was already damaged this would facilitate the leakage of these compounds into the stromal space where they would readily activate inflammatory cells e | Dietary habits Ingested carcinogens (for example 2-amino-1methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), which derives from charred meat) can reach the prostate through the bloodstream or by urine reflux and cause DNA damage and mutations, and result in an influx of inflammatory cells De Marzo Nature Reviews Cancer 7. 256-269, 2007 Sistema inmunológico/inflamatorio y cáncer de próstata ¿Participa el sistema inmunológico/ inflamatorio en la etiopatogenia de la enfermedad? ¿Existen alteraciones del sistema inmunológico/inflamatorio en los pacientes? ¿son reversibles? Se puede modular terapéuticamente el sistema inmunológico/ inflamatorio? DEFECTIVE T LYMPHOCYTE ACTIVATION IN PATIENTS WITH PROSTATE CANCER Table 2. Proliferative response in stimulated PBMC from PCaD patients. Stimuli CONTROLS n=30 PCaDnT n=12 PCaDT n=12 PCaDH n=12 Medium 2.9 ± 1.2 2 ± 1.4 2.6 ± 1.4 2.1 ± 1.5 Con A PHA PHA+IL-2 PHA+PMA PHA+anti-CD28 PHA+IL-4 129 195 198 188 207 211 48 ± 36 84 ± 36 198 ± 56 110 ± 57 95 ± 36 211 ± 46 45 ± 24 78 ± 46 113 ± 47 85 ± 53 113 ± 46 132 ± 50 42 ± 27 67 ± 42 124 ± 53 87 ± 40 123 ± 30 139 ± 51 ± ± ± ± ± ± 45 64 56 58 54 46 *Peripheral blood mononuclear cells (PBMC) were cultured in the presence of the indicated stimuli and pulsed for 18 h with Ci/well 3H-TdR. The mean ct/min of triplicate samples was determined by liquid scintillation on day 3. Results are indicated as mean ± s.d. in ct/min X 1000. Anti-CD28 and anti-CD2 (CD2.1 + CD2.9) are not mitogenic (data not shown). &.-The degree of statistical significance was calculated by Student´s t test. NS, not significant. Con A, concanavalin A; PHA, phytohaemagglutinin; PMA, phorbol myristate acetate. DEFECTIVE T LYMPHOCYTE ACTIVATION IN PATIENTS WITH PROSTATE CANCER Table 2. Proliferative response in stimulated PBMC from PCaD patients. Stimuli Medium Con A PHA anti-CD3 anti-CD2+IL-2 anti-CD2+PMA anti-CD2+anti-CD28 PMA CONTROLS n=30 PCaDnT n=12 2.9 ± 1.2 129 ± 45 195 ± 64 65 ± 28 52 ± 22 168 ± 80 38 ± 20 26 ± 12 2 ± 1.4 48 ± 36 84 ± 36 42 ± 27 52 ± 22 75 ± 50 31 ± 15 26 ± 12 PCaDT n=12 2.6 ± 1.4 45 ± 24 78 ± 46 58 ± 27 51 ± 27 85 ± 47 36 ± 9 15 ± 9 PCaDH n=12 2.1 ± 1.5 42 ± 27 67 ± 42 40 ± 23 62 ± 25 80 ± 42 38 ± 14 15 ± 10 *Peripheral blood mononuclear cells (PBMC) were cultured in the presence of the indicated stimuli and pulsed for 18 h with Ci/well 3H-TdR. The mean ct/min of triplicate samples was determined by liquid scintillation on day 3. Results are indicated as mean ± s.d. in ct/min X 1000. Anti-CD28 and anti-CD2 (CD2.1 + CD2.9) are not mitogenic (data not shown). &.-The degree of statistical significance was calculated by Student´s t test. NS, not significant. Con A, concanavalin A; PHA, phytohaemagglutinin; PMA, phorbol myristate acetate. VIABILIDAD CELULAR TRAS ESTIMULAR CON anti-CD3 + PMA CONTROL CaP 300 CD4 200 CD8 CD4 100 CD8 0 0 CÉLULAS VIVAS X 1000 CÉLULAS VIVAS X 1000 1000 750 500 250 0 24 48 72 24 48 72 96 600 450 CD45RO 300 150 CD45RA 0 0 24 48 72 96 300 96 + + + + + + CD8 CD45RO 200 CD4 CD45RO CD4+CD45RO+ CD8 CD45RO + + CD4+CD45RA+ CD8 CD45RA 100 0 0 24 48 72 96 DEFECTIVE T LYMPHOCYTE ACTIVATION IN PATIENTS WITH PROSTATE CANCER Table 2. Proliferative response in stimulated PBMC from PCaD patients. Stimuli CONTROLS n=30 PCaDnT n=12 PCaDT n=12 PCaDH n=12 Medium 2.9 ± 1.2 2 ± 1.4 2.6 ± 1.4 2.1 ± 1.5 anti-CD2+IL-2 anti-CD2+PMA anti-CD2+anti-CD28 52 ± 22 168 ± 80 38 ± 20 52 ± 22 75 ± 50 31 ± 15 51 ± 27 85 ± 47 36 ± 9 62 ± 25 80 ± 42 38 ± 14 PMA PMA+IL-2 PMA+anti-CD28 PMA+IL-4 PMA+Iono 26 80 116 58 108 26 80 116 58 108 15 45 52 26 79 15 49 62 31 81 ± ± ± ± ± 12 29 51 34 38 ± ± ± ± ± 12 29 51 34 38 ± ± ± ± ± 9 21 48 13 40 ± ± ± ± ± 10 26 55 20 50 *Peripheral blood mononuclear cells (PBMC) were cultured in the presence of the indicated stimuli and pulsed for 18 h with Ci/well 3H-TdR. The mean ct/min of triplicate samples was determined by liquid scintillation on day 3. Results are indicated as mean ± s.d. in ct/min X 1000. Anti-CD28 and anti-CD2 (CD2.1 + CD2.9) are not mitogenic (data not shown). &.-The degree of statistical significance was calculated by Student´s t test. NS, not significant. Con A, concanavalin A; PHA, phytohaemagglutinin; PMA, phorbol myristate acetate. DEFECTIVE T LYMPHOCYTE ACTIVATION IN PATIENTS WITH PROSTATE CANCER Table 4. IL-2 Production after activation. Stimulus Medium anti-CD3 anti-CD3+PMA PHA PHA+PMA PMA PMA+anti-CD28 PMA+Iono (PI) PI+anti-CD28 CONTROLS n=12 30 ± 9.2 296 ± 260 2153 ± 717 1166 ± 678 2920 ± 752 13.4 ± 6.3 1049 ± 10 1452 ± 582 3392 ± 881 PCaD n=12 PCaD n=12 PCaD n=12 7.3 ± 2.7 10 ± 3 19.6 ± 7.5 21.3 867 160 1353 18 645 980 1650 ± ± ± ± ± ± ± ± 10 241 110 300 6 85 356 564 25 985 298 1435 16 550 850 2100 ± ± ± ± ± ± ± ± 15 285 168 364 6 75 300 650 21.7 1926 787 2238 25 260 2465 1230 ± ± ± ± ± ± ± ± 9.2 930 353 643 4.1 53 851 252 *Cells were cultured for 3 days with the indicated stimuli and stained with anti-CD25-FITC and an irrelevant MoAb of the same subclass (IgG1). , Anti-. &The results are shown as percentage of positive cells for CD25 expression (mean ±s.d.). The degree of statistical significance was calculated with Mann-Whiyney U-test. NS, Not significant. PMA, Phorbol myristate acetate; PCaD, prostate cancer patients; PHA, phytohaemagglutinin. HUPA LAS ALTERACIONES DEL SISTEMA INMUNE....COMO FACTOR DE RIESGO M U R P H Y W A S A N O P T I M I S T MURPHY´S LAW FRIENDS COME AND GO BUT ENEMIES ACCUMULATE Sistema inmunológico/inflamatorio y cáncer de próstata ¿Participa el sistema inmunológico/ inflamatorio en la etiopatogenia de la enfermedad? ¿Existen alteraciones del sistema inmunológico/inflamatorio en los pacientes? ¿son reversibles? Se puede modular terapéuticamente el sistema inmunológico/ inflamatorio? DC vaccination induces tumor-specific T cells with potent effector function TCR-I T cells primed with a DC vaccine were protected from tolerance and acquired cytolytic function Twelve-week-old male TRAMP mice or WT mice received 3 106 CD8 and Thy1.1 TCR-I T cells Eighteen hours later, mice received peptide-pulsed DCs as previously described. Prostates were harvested on the indicated day postvaccine, and TCR-I cells were isolated by magnetic beads A, T cells were directly used as responder cells in an IFN-ELISPOT assay. B, T cells were directly used as responder cells in a granzyme B ELISPOT assay C, T cells were assayed for their ability to Degranulate in response to the cognate TAg epitope, based on CD107a expression Anderson J Immunology, 2007, 178: 1268–1276. Priming with a DC vaccine results in upregulation of activation markers and IFN- production Twelve-week-old male TRAMP or nontransgenic, WT mice received 3 106 CFSE, CD8, and Thy1.1 TCR-I T cells. Eighteen hours later, mice received peptide-pulsed DCs Vaccine DLN were harvested 3 days after DC vaccine Anderson J Immunology, 2007, 178: 1268–1276. Standard Treatments Induce Antigen-Specific Immune Responses in Prostate Cancer Clin Cancer Res 13,1493 2007 Autoantibody responses in patients undergoing Neoadjuvant hormone therapy (7 of 24, 29.2%) External beam radiation therapy (4 of 29, 13.8%) Brachytherapy (5 of 20, 25%) 0 of 14 patients undergoing radical prostatectomy and 2 of 36 (5.6%) Standard Treatments Induce Antigen-Specific Immune Responses in Prostate Cancer Clin Cancer Res 13,1493 2007 Standard Treatments Induce Antigen-Specific Immune Responses in Prostate Cancer Clin Cancer Res 13,1493 2007 Several antigens recognized by treatment associated autoantibodies, including PARP1, ZNF707 + PTMA, CEP78, SDCCAG1, and ODF2 Responses were seen within 4 to 9 months of initiation of treatment and were equally prevalent across different disease risk groups. PSA values over time for patients who showed a hormone therapy associated autorreactivity Clin Cancer Res 13,1493 2007 Sistema inmunológico/inflamatorio y cáncer de próstata ¿Participa el sistema inmunológico/ inflamatorio en la etiopatogenia de la enfermedad? ¿Existen alteraciones del sistema inmunológico/inflamatorio en los pacientes? ¿son reversibles? Se puede modular terapéuticamente el sistema inmunológico/ inflamatorio? Immunotherapy for prostate cancer Dendritic cell-based immunotherapeutics T Lymphocyte-based immunotherapeutics Antibody-based therapy Antibody to vascular endothelial growth factor Antibody to PSMA Radiolabelled antibody therapy PSA vaccines Cytotoxic T lymphocyte antigen-4 (CTLA-4)-based therapy B Lymphocyte-based immunotherapeutics GM-CSF-based approaches Systemic GM-CSF Cellular delivery of GM-CSF Antigen-pulsed dendritic cells Prostate-specific membrane antigen Glycoprotein vaccines Immunotherapy for prostate cancer Dendritic cell-based immunotherapeutics T Lymphocyte-based immunotherapeutics Antibody-based therapy Antibody to vascular endothelial growth factor Antibody to PSMA Radiolabelled antibody therapy PSA vaccines Cytotoxic T lymphocyte antigen-4 (CTLA-4)-based therapy B Lymphocyte-based immunotherapeutics GM-CSF-based approaches Systemic GM-CSF Cellular delivery of GM-CSF Antigen-pulsed dendritic cells Prostate-specific membrane antigen Glycoprotein vaccines DC vaccination trials Of the about 17 DC vaccination trials reported on in peerreviewed journals All trials have demonstrated negligible toxicity Clinical responses or favorable changes in PSA-kinetics in about 45% of the patients In the first randomized, placebocontrolled vaccination trial, a survival benefit of several months for vaccinated patients could be shown Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells Loaded dendritic cell therapy using prostatic acid phosphatase (APC8015; Provenge®, Dendreon Corp., Seattle, WA) as an immunogen has shown a survival benefit in patients with metastatic hormone-refractory prostate cancer in a randomized phase III trial In the intent-to-treat analysis, which included all 127 patients, there was a survival advantage with APC8015, with a median overall survival of 25.9 months versus 21.4 months (representing a 4.5month difference), hazard ratio 1.43 (P 0.01) Urologic Oncology, 24 (2006) 434–441 DC vaccination trials Although from the other (Phase I/II) trials, a clinical efficacy cannot formally be concluded, their results are encouraging and provide a proof of principle for the immunogenicity of DC-based immunotherapy in prostate cancer patients CD14+ or CD34+ DC precursors in blood Which subset ? Dose and frequency ? Which route of injection ? Induce CTL and Th1 Which method of antigen preparation and delivery ? Antigen-loaded DC Which maturation stimulus ? Combination with other therapies ? How to determine efficacy ? Critical parameters for DC-based immunotherapy DC vaccination trials To further improve patients’ outcome, several strategies involving choice of antigen, optimization of DC maturation, combination with conventional treatment or immune modulation such as removal of Treg are being evaluated. Furthermore, patients with low tumor burden and better immune competence might profit more from vaccination therapy than heavily pre-treated, advanced-stage cancer patients Standardization of DC preparation, clinical and immune monitoring are warranted. Immunotherapy for prostate cancer Dendritic cell-based immunotherapeutics T Lymphocyte-based immunotherapeutics Antibody-based therapy Antibody to vascular endothelial growth factor Antibody to PSMA Radiolabelled antibody therapy PSA vaccines Cytotoxic T lymphocyte antigen-4 (CTLA-4)-based therapy B Lymphocyte-based immunotherapeutics GM-CSF-based approaches Systemic GM-CSF Cellular delivery of GM-CSF Antigen-pulsed dendritic cells Prostate-specific membrane antigen Glycoprotein vaccines A PilotTrial of CTLA-4 Blockade with Human Anti CTLA-4 in Patients with Hormone-Refractory Prostate Cancer A single dose of 3 mg/kg Ipilimumab, an anti-CTLA-4a ntibody, given to patients with prostate cancer is safe and does not result in significant clinical autoimmunity PSA-modulating effects observed warrant further investigation Eric J. Small et al Clin Cancer Res 13, 15, 2007 Immunotherapy for prostate cancer Dendritic cell-based immunotherapeutics T Lymphocyte-based immunotherapeutics Antibody-based therapy Antibody to vascular endothelial growth factor Antibody to PSMA Radiolabelled antibody therapy PSA vaccines Cytotoxic T lymphocyte antigen-4 (CTLA-4)-based therapy B Lymphocyte-based immunotherapeutics GM-CSF-based approaches Systemic GM-CSF Cellular delivery of GM-CSF Antigen-pulsed dendritic cells Prostate-specific membrane antigen Glycoprotein vaccines Anticuerpos monoclonales Anticuerpos monoclonales Dirigidos frente an antígenos tumorales o específicos de la próstata: PSA, PSCA Conjugados a tóxina o agenets radiactivos o no conjugados Lampe MI, et al. Development of new prostate specific monoclonal antibodies. Prostate 58, 225, 2004 Nanus DM, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol 170, 84, 2004 Milowsky MI, et al. Phase I trial of yttrium-90-labeled anti-prostatespecific membrane antigen monoclonal antibody J591 for androgenindependent prostate cancer J Clin Oncol 22, 2522, 2004 Bander NH, et al. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23, 4591, 2005 Immunotherapy for prostate cancer Dendritic cell-based immunotherapeutics T Lymphocyte-based immunotherapeutics Antibody-based therapy Antibody to vascular endothelial growth factor Antibody to PSMA Radiolabelled antibody therapy PSA vaccines Cytotoxic T lymphocyte antigen-4 (CTLA-4)-based therapy B Lymphocyte-based immunotherapeutics GM-CSF-based approaches Systemic GM-CSF Cellular delivery of GM-CSF Antigen-pulsed dendritic cells Prostate-specific membrane antigen Glycoprotein vaccines Vaccines Recently, immunotherapy with tumor vaccines has emerged as an alternative therapeutic approach However, despite evidence for the induction of tumor-specific T cell responses, significant objective clinical response rates are low The reasons behind the limited success of these approaches in PC patients are still largely unknown Sistema inmunológico/inflamatorio y cáncer de próstata ¿Participa el sistema inmunológico/ inflamatorio en la etiopatogenia de la enfermedad? ¿Existen alteraciones del sistema inmunológico/inflamatorio en los pacientes? ¿son reversibles? Se puede modular terapéuticamente el sistema inmunológico/ inflamatorio? Investigación etiopatogénica, diagnóstica, terapéutica y reparativa SIMILITUD CLÍNICA DIAGNÓSTICO DE ENFERMEDAD ÚNICA Medicina traslacional SUPERAR LIMITACIONES EN: •LA REALIZACIÓN DE ENSAYOS CLÍNICOS •LA OPTIMIZACIÓN Y EL DESARROLLO TERAPÉUTICO Y REPARATIVO HETEROGENEIDAD EN LOS MECANISMOS ETIOPATOGÉNICOS CELULARES Y MOLECULARES EN LAS ENFERMEDADES CONSIDERADAS ÚNICAS No existen enfermedades sino enfermos Medicina individualizada El mal de quien la causa no se sabe, milagro es acertar la medicina Cervantes, 1605 Medicina clínica de calidad fundamentada en hacer investigación biomédica mutidisciplinaria y traslacional hacia la enfermedad y el paciente Belen Martínez Jorge Monserrat Joaquín Carballido Hospital Universitario Puerta de Hierro Gracias por su atención HUPA 15-11-2007 AM3 State of the Arts