* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics in Ultracold atoms
Quantum teleportation wikipedia , lookup
Hidden variable theory wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Symmetry in quantum mechanics wikipedia , lookup
Hydrogen atom wikipedia , lookup
Quantum group wikipedia , lookup
Elementary particle wikipedia , lookup
Wave–particle duality wikipedia , lookup
Particle in a box wikipedia , lookup
Quantum state wikipedia , lookup
Canonical quantization wikipedia , lookup
Ferromagnetism wikipedia , lookup
Coherent states wikipedia , lookup
World of zero temperature --- introduction to systems of ultracold atoms Daw-Wei Wang National Tsing-Hua University Temperature ? What we mean by “ultracold” ? T 106 K ! Why low temperature ? Ans: To see the quantum effects ! Uncertainty principle: xp p 2 ~ kBT x ~ ~ T , Thermal wavelength 2m p 2mkBT Therefore, if T T Quantum regime when T d ~ n 1/ 3 T d (after Nature, 416, 225 (’02)) How to reach ultracold temperature ? Normal pressure: He 4 4.2 K We need very low density to avoid strong binding, i.e. we need low “kinetic energy”, not low “potential energy” ! How to reach ultracold temperature ? 1. Laser cooling ! (1997 Nobel Price) Use red detune laser + Doppler effect How to reach ultracold temperature ? 2. Evaporative cooling ! Reduce potential barrial +thermal equilibrium Typical experimental environment MIT How to do measurement ? Trapping and cooling Perturbing Releasing and measuring BEC (2001 Nobel Price) What is Bose-Einstein condensation ? ( x1 , x2 ) ( x2 , x1 ), + for boson and - for fermion Therefore, for fermion we have ( x, x) 0, i.e. fermions like to be far away, but bosons do like to be close ! Therefore, when T-> 0, noninteracting bosons like to stay in the lowest energy state, i.e. BEC How about fermions in T=0 ? D(E) Fermi sea E Therefore, when T-> 0, noninteracting fermions form a compact distribution in energy level. BEC and Superfluidity of bosons (after Science, 293, 843 (’01)) condensate BEC = superfluidity v repulsion Superfluid uncondensate Normal fluid Landau’s two-fluid model Phonons and interference in BEC Phonon=density fluctuation n0U v ph m Interference (after Science 275, 637 (’97)) Matter waves ? Vortices in condensate Vortex = topological disorder E 0 (after Science 292, 476 (’01)) (after PRL 87, 190401 (’01)) 1 2 3 L En,l 0 l 3n 2nl 2n2 lext Vortices melting, quantum Hall regime ? Spinor condensation in optical trap Na F 1, mF 1,0 E F=2 F=1 FIJ B (see for example, cond-mat/0005001) 2 g0 g2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ H dr i i i j j i i Fij j k Fkl l 2m 2 2 Boson-fermion mixtures Sympathetic cooling 40 K 87Rb, 6Li7Li, or 6Li23Na D(E) rf-pulse Interacting fermi sea E (after Science 291, 2570 (’01)) Fermions are noninteracting ! phonon fermion phonon-mediated interaction collapse (after Nature 412, 295 (’01)) Feshbach Resonance (i) Typical scattering: B a a0 1 B B0 (ii) Resonant scattering: a B Molecule and pair condensate (MIT group, PRL 92, 120403 (’04)) 6 Li (JILA, after Nature 424, 47 (’03)) 40 K 9 / 2,5 / 2 9 / 2,7 / 2 9 / 2,9 / 2 9 / 2,5 / 2 9 / 2,9 / 2 (Innsbruck, after Science 305, 1128 (’04)) Optical lattice 3D lattice 1D lattice R ( E ) 2 V0 Entanglement control E other lattice E 2 2 Mott-Insulator transition H t ai a j U ai ai (ai ai 1) ai ai i , j i i n=3 superfluid n=2 n=1 t /U (after Nature 415, 39 (’02)) Atom laser Continuous source for coherent atoms Bragg scattering Transport in 1D waveguide wave guide wire Interference ? Finite temperature + semiconductor technique Interdisciplinary field Precise measurement Traditional AMO Ultracold atoms Nonlinear Physics Quantum Information Condensed matter