Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Review of Basic Polarization Optics for LCDs Module 4 1 1 V 2 i i 1 1 1 1 0 2 i i t x i t Ex (t ) Re J x e Re Ax e Module 4 Goals • Polarization • Jones Vectors • Stokes Vectors • Poincare Sphere • Adiabadic Waveguiding Polarization of Optical Waves Objective: Model the polarization of light through an LCD. Assumptions: • • Linearity – this allows us to treat the transmission of light independent of wavelength (or color). We can treat each angle of incidence independently. Transmission is reduced to a linear superposition of the transmission of monochromatic (single wavelength) plane waves through LCD assembly. Monochromatic Plane Wave (I) A monochromatic plane wave propagating in isotropic and homogenous medium: E (t ) A(t )cos( t k r ) A = constant amplitude vector = angular frequency k = wave vector n = index of refraction c = speed of light = wavelength in vacuum For transparent materials k is related to frequency k n c n 2 n Re, n n( ) Dispersion relation Monochromatic Plane Wave (II) • The E-field direction is always to the direction of propagation k E 0 • Complex notation for plane wave: (Real part represents actual E-field) E A exp i (t k r ) • Consider propagation along Z-axis, E-field vector is in X-Y plane: Ex Ax cos(t kz x ) E y Ay cos( t kz y ) Ax , Ay independent amplitudes x , y two independent phases x , y Y-axis EY X-axis Ex Monochromatic Plane Wave (III) • There is no loss of generality in this case. • Finally, we define the relative phase as y x • Now in a position to look at three specific cases. 1. Linear Polarization 2. Circular Polarization 3. Elliptical Polarization Linear Polarization • In this case, the E-field vector follows a linear pattern in the X-Y plane as either time or position vary. Y-axis AY • Occurs when y x 0 or y x • Ax X-axis Important parameters: 1. Orientation 2. Handedness 3. Extent tan Ay Ax Linear polarized or plane polarized are used interchangeably Circular Polarization • In this case, the E-field vector follows a circular rotation in the X-Y plane as either time or position vary. • Occurs when Ax Ay and y x • Y-axis AY X-axis 2 Ax Important parameters: 1. Orientation 2. Handedness 3. Extent 2 E x 2 E y 2 A2 (-) CCW rotation = RH, (+) CW rotation = LH Circular Polarization E x A cos( t kz ) E y A cos( t kz / 2) E x E y A2 cos2 ( t kz ) A2 cos2 ( t kz / 2) A2 cos2 ( t kz ) A2 sin2 ( t kz ) A2 (cos2 ( t kz ) sin2 ( t kz )) A2 Equation of a circle Elliptic Polarization States • This is the most general representation of polarization. The E-field vector follows an elliptical rotation in the X-Y plane as either time or position vary. • Occurs for all values of y x • Y-axis AY b a Ax X-axis Important parameters: 1. Orientation 2. Handedness 3. Extent of Ellipticity b e a 2 Ax Ay tan 2 2 cos 2 Ax AY Elliptic Polarization States E x A cos( t kz ) E y A cos( t kz ) eliminate t 2 Ex Ey cos 2 2 E E sin x y Ax Ay Ax Ay 2 2 Ex Ey a b 1 2 a2 Ax cos2 Ay sin2 2Ax Ay cos cos sin 2 2 b2 Ax sin2 Ay cos2 2Ax Ay cos cos sin 2 tan2 2 2Ax Ay Ax Ay 2 2 cos Transformation: x’ y’ a b Ax X-axis =3/4 =/2 =/4 =0 =/4 =/2 =3/4 = =3/4 =/2 =/4 =0 =/4 =/2 =3/4 = Review Complex Numbers Im = 3 – 4i -2+2i = ei = cos + i.sin = e-i = cos (-) + i.sin (-) = cos - i.sin Remember the identities: ex ey = ex+y ex / ey = ex-y d/dz ez = ez Re 3-4i Complex Number Representation Polarization can be described by an amplitude and phase angles of the X-Y components of the electric field vector. This lends itself to representation with complex numbers: e tan i Ay Ax e i ( y x ) Im linear x y 0 Ay Ax (cos 0 i sin(0)) Ay Ax Re on x axis circular 2 , Ay Ax e i / 2 cos 2 i sin 2 i on y (imaginary axis) Jones Vector Representation Convenient way to uniquely describe polarization state of a plane wave,using complex amplitudes as a column vector. Ax e i x J A e i y y J is not a vector in real space, it is a mathematical abstraction in complex space. E x (t ) Re J x exp i t Re Ax exp i t x Jones Vector amplitude phases electric field Polarization is uniquely specified Jones Vector Representation (II) If you are only interested in polarization state, it is most convenient to normalize it. J J 1 A linear polarized beam with electric field vector oscillating along a given direction can be represented as: cos J sin For orthogonal state, 1 2 sin J cos Jones Vector Representation (III) Normalize Jones Vector Ax e i x J A e i y y J * ( Ax* e i x , Ay* e i y ) J * J Ax Ax* Ay Ay* | Ax |2 | Ay |2 1 Take Ax e i x J A e i y y e i x | Ax |2 | Ay |2 cos i sin e Ax e i x A e i y y 1 | Ax |2 | Ay |2 Ax i A e y Jones Vector Representation (IV) The Jones matrix of rank 2, any pair of orthogonal Jones vectors can be used as a basis for the mathematical space spanned by all the Jones vectors. When =0 for linear polarized light, the electric field oscillates along coordinate system, the Jones Vectors are given by: cos 1 x sin 0 For circular polarized light: sin 0 y cos 1 cos 1 1 R i / 2 e sin 2 i cos 1 1 L i / 2 e sin 2 i Mutually orthogonal condition R L 0 Polarization Representation Polarization Ellipse Jones Vector 1 0 0 1 1 2 1 1 1 1 2 1 (,) 0, 0 0, / 2 0, / 4 (,) Stokes 0, 0 1 1 0 0 / 2, 0 1 1 0 0 / 4, 0 1 0 1 0 , / 4 / 4,0 1 0 1 0 Polarization Representation Polarization Ellipse Jones Vector (,) (,) 1 1 2 i / 2, / 4 0, / 4 1 1 2 i / 2, / 4 0, / 4 1 1 5 2i 1 2 5 i 1 2i 10 2 i Stokes 1 0 0 1 1 0 0 1 1 3 / 5 0 4/5 1 1 / 2, tan 2 1 3/5 0 4 / 5 1 1 / 2, tan / 2, tan 2 2 1 1 1 0, tan 2 1 4 1 1 tan , / 4 / 4, tan 3 2 1 0 3/5 4 / 5 Jones Matrix Limitations Jones is powerful for studying the propagation of plane waves with arbitrary states of polarization through an arbitrary sequence of birefringent elements and polarizers. Limitations: • Applies to normal incidence or paraxial rays only • Neglects Fresnel refraction and surface reflections • Deficient polarizer modeling • Only models polarized light Other Methods: • 4x4 Method – exact solutions (models refraction and multiple reflections) • 2x2 Extended Jones Matrix Method (relaxes multiple reflections for greater simplicity) Partially Polarized & Unpolarized Light We discussed monochromatic/polarization thus far. If light is not absolutely monochromatic, the amplitude and relative phase between x and y components can vary with time, and the electric field vector will first vibrate in one ellipse and then in another. The polarization state of a polychromatic wave is constantly changing. If polarization state changes faster than speed of observation, the light is partially polarized or unpolarized. Optics – light of oscillation frequencies 1014s-1 Whereas polarization may change 10-8s (depending on source) Partially Polarized & Unpolarized Light Consider quasi monochromatic waves (D<<) Light can still be described as: E A(t )exp i t k r Provided the constancy condition of A is relaxed. denotes center frequency A denotes complex amplitude Because (D<< ), changes in A(t) are small in a time interval 1/D (slowly varying). If the time constant of the detector td>1/D, A(t) can change originally in a time interval td. Partially Polarized & Unpolarized Light To describe this type of polarization state, must consider time averaged quantities. S0 = <<Ax2+Ay2>> S1 = <<Ax2-Ay2>> S2 = 2<<AxAy cos>> S3 = 2<<AxAy sin>> Ax, Ay, and are time dependent << >> denotes averages over time interval td that is the characteristic time constant of the detection process. These are STOKES parameters. Stokes Parameters Note: All four Stokes Parameters have the same dimension of intensity. They satisfy the relation: S0 S S2 S3 2 2 1 2 2 the equality sign holds only for polarized light. Stokes Parameters Example: Unpolarized light No preference between Ax and Ay (Ax=Ay), random S0 = <<Ax2+Ay2>>=2<<Ax2>> S1= <<Ax2-Ay2>>=0 S2,3=2<<AxAy cos>>=2<<AxAy sin>>=0 since is a random function of time if S0 is normalized to 1, the Stokes vector parameter is for unpolarized light. Example: Horizontal Polarized Light 1 0 0 0 Ay=0, Ax=1 S0=<<Ax2>>=1 S1=<<Ax2>>=1 S2,3=2<<AxAy cos>>=2<<AxAy sin>>=0 1 1 0 0 Stokes Parameters Example: Vertically polarized light Ay=1, Ax=0 S0 = <<Ax2+Ay2>>=<<Ay2>>=1 S1 = <<Ax2-Ay2>>=<<-Ay2>>=-1 S2,3 = 2<<AxAy cos>>=2<<AxAy sin>>=0 Example: Right handed circular polarized light S0 = <<Ax2+Ay2>> = 2<<Ax2>> S1 = <<Ax2-Ay2>> = 0 S2 = 2<<AxAy cos1/2>> = 0 S3 = 2<<AxAy sin1/2>> = -1 1 0 0 1 1 1 0 0 (=-1/2) Ax=Ay Stokes Parameters Example: Left handed circular polarized light (=1/2) Ax=Ay 1 0 0 1 S0 = <<Ax2+Ay2>> = 2<<Ax2>> S1 = <<Ax2-Ay2>> = 0 S2 = 2<<AxAy cos1/2>> = 0 S3 = 2<<AxAy sin1/2>> = 1 Degree of polarization: S1 S2 S3 2 2 2 S0 Unpolarized S12 = S22 = S32 = 0 Polarized S12+S22+S32 = 1 useful for describing partially polarized light 1 2 0 1 Poincare’ Sphere: Linear Polarization States Poincare’ Sphere: Elliptic Polarization States Polarization Conversion: Polarization Conversion: Y-axis f s X-axis Z-axis Jones Matrix Method (I) f Y-axis s X-axis Z-axis Vx • The polarization state in V V y a fixed lab axis X and Y: • Decomposed into fast and slow coordinate transform: Vs cos V sin f Vx sin Vx R V cos Vy y (notation: fast (f) and slow (s) component of the polarization state) rotation matrix • If ns and nf are the refractive indices associated with the propagation of slow and fast components, the emerging beam has the polarization state: 2 exp in d s Where d is the V s thickness and is V the wavelength f 0 V s 2 Vf exp inf d 0 Jones Matrix Method (II) • For a “simple” retardation film, the following phase changes occur: 2 1 2 ns nf d ns nf d 2 (relative phase retardation) (mean absolute phase change) • Rewriting previous retardation equation: 2 exp in d 0 V s V s s V 2 Vf f 0 exp inf d ns nf ns nf 2 exp i d 0 2 2 Vs ns nf ns nf 2 Vf 0 exp i d 2 2 i / 2 0 Vs i e e i / 2 e Vf 0 Jones Matrix Method (III) •The Jones vector of the polarization state of the emerging beam in the X-Y coordinate system is given by transforming back to the S-F coordinate system. V x cos V sin y sin Vs cos V f Jones Matrix Method (IV) • By combining equations, the transformation due to the retarder V plate is: Vx x R W0R V y Vy where W0 is the Jones matrix for the retarder plate and R(Y) is the coordinate rotation matrix. cos R sin sin cos i / 2 e W0 e i 0 0 i / 2 e (The absolute phase can often be neglected if multiple reflections can be ignored) A retardation plate is characterized by its phase retardation and its azimuth angle , and is represented by: W R W0R Examples Polarizer with transmission axis oriented to X-axis i 1 P0 e 0 Polarization State Y-axis 0 0 E X-axis Jones Vector cos sin ’ is due to finite optical thickness of polarizer. 1 1 2 i If polarizer is rotated by about Z P R P0 R 1 1 2 i ignoring ’ polarizers transmitting light with electric field vectors to x and y are: 0 0 1 0 Px Py 0 1 0 0 b b a a a cos ib sin a sin ib cos a cos ib sin a sin ib cos Examples ¼ Wave Plate and the thickness t 4 Dn 2 and 450 and incident beam is vertically polarized: Polarization State Y-axis E X-axis Incident Jones Vector 1 2 1 i W 1 1 2 i 1 1 Emerging Jones Vector 1 0 cos sin 1 1 W 2 1 i exp 0 1 4 1 1 1 i 2 1 0 exp 4 i 1 V V 1 1 2 i 1 1 2 i V i 1 1 1 1 0 2 i i cos 1 cos i sin 1 sin 2 sin i cos 1 1 2 i i 1 1 1 i 0 Birefringent Plates 45 45 Parallel polarizers cos 0 0 2 E' 0 1 i sin 2 i sin 2 1 0 1 cos 2 2 1 2 cos 0 2 1 1 (ne no )d I cos 2 cos 2 2 2 2 Cross polarizers cos 1 0 2 E' 0 0 i sin 2 2 1 0 i sin 2 2 1 2 cos 0 2 i sin 1 1 ( ne no ) d I sin 2 sin 2 2 2 2 Wave Plates y c-axis c-axis c-axis In general: c-axis 450 x Jones Matrices ei / 2 W 0 0 ei / 2 ei / 2 0 W i / 2 e 0 cos 2 W i sin 2 i sin 2 cos 2 Remember: 2 ne no d ei / 2 0 W R Y R Y i / 2 e 0 cos Y sin Y ei / 2 0 cos Y sin Y W ei / 2 sin Y cos Y sin Y cos Y 0 Polarizers Jones Matrices y transmission axis x transmission axis transmission axis 450 In general: transmission axis 1 W 0 0 0 0 W 0 0 1 1/ 2 1/ 2 W 1/ 2 1/ 2 Remember: 1 0 W R Y R Y 0 0 cos Y sin Y 1 0 cos Y sin Y W sin Y cos Y 0 0 sin Y cos Y cos 2 Y cos Y sin Y 2 sin Y cos Y sin Y General Matrix For LCD e – component || director o – component director sin X V cos X i 2X e V sin X o X X 2 2 2 sin X X sin X cos X i 2X Ve Vo Twist angle Phase retardation Adiabatic Waveguiding • Consider light polarized parallel to the slow axis of a twisted LC twisted structure: Ve 1 Vo 0 E mode • Then, the output polarization will be: sin X V cos X i 2X e V sin X o X 90° Twist with X 2 2 2 Adiabatic Waveguiding • Notice that for TN displays since << (twist angle much smaller than retardation ): 2Dnd 2 0.23 20 m 0.5 m 18.4 • Then the output polarization reduces to: sin X cos X i V 2X e V sin X o X ei / 2 0 which means that the electric field vector “follows” the nematic director as beam propagates through medium – it rotates – 90º Twisted Nematic (Normal Black) • Consider twisted structure between a pair of parallel polarizers and consider e-mode operation. V e V o 1 0 2 0 sin X cos X i 0 2X 1 sin X X sin X X sin X cos X i 2X 1 0 0 1 0 1 e-mode input • The transmission after the second polarizer: 2 2 sin 1 u 1 T 2 1 u 2 u 2 Dnd 2 2 Transmission of Normal Black 0.5 u T (%) 0.4 first minimum 0.3 u 3 0.2 2d Dn second minimum 15 35 0.1 third minimum 0 0 2 4 6 u 8 10 12 14 Normal White Mode (I) • Consider twisted structure between a pair of parallel polarizers and consider e-mode operation. V e V o 1 1 2 0 sin X cos X i 0 2X 0 sin X X sin X X sin X cos X i 2X 1 0 0 1 0 1 e-mode input • The transmission after the second polarizer: 2 2 sin 1 u 1 1 T 2 2 1 u 2 u 2 Dnd 2 2 Normal White Mode (II) 0.5 35 0.4 T (%) u 3 15 0.3 0.2 u 2d Dn 0.1 0 0 2 4 6 u 8 10 12 14 n n Y-axis n E z 0 X-axis E z d /10 n E E z 4d /10 z 3d /10 n n E n z 7d /10 E z 9d /10 zd z 5d /10 n E E n z 2d /10 (n) n E z 6d /10 E E z 8d /10 Phase Retardation at Oblique Incidence: Complicating Matters z n 1 B D F o C e d A n 1 Summary of Optics Vital to understanding LCD’s and their viewing angle solutions: • Linear, circular, elliptical polarization • Jones Vector • Stokes Parameters • Jones Matrixes • Adiabatic Waveguiding • Extended Jones and 4x4 Methods