Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Electronics - lectures for Mechanical Engineering part 2 Dr. Bogusław Boratyński Faculty of Microsystems Electronics and Photonics, Wroclaw University of Technology, 2011 From the course syllabus Basic literature & figure sources: G. Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publ., B.G. Streetman, Solid State Electronic Devices, Prentice-Hall, D. Bell, Fundamentals of Electric Circuits, Oxford Univ. Press, T. Mouthaan, Semiconductor Devices Explained, John Willey&Sons Additional literature: W. Marciniak, Przyrządy półprzewodnikowe i układy scalone, WNT, A. Świt, J. Pułtorak, Przyrządy półprzewodnikowe, WNT, B.G. Streetman, Przyrządy półprzewodnikowe, WNT Semiconductor devices Chapter 3 Electronic devices. 3.1 The p-n junction. Semiconductor diodes. The p-n junction operation principle. The Shockley equation – the I-V characteristic. Ideal and real diodes. Temperature effects. Bias - operating point. Small signal models. Breakdown in the junction – Zener diode. Photodiodes and photovoltaic cells. Metal-semiconductor contact - the Schottky diode. Rectifier and voltage regulator circuits. The p-n diode fabrication Photolithography process Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. The ideal p-n junction A real diode and the ideal p-n junction model - external bias voltage VA symbol A-anode p-type In p-type: majority carriers - holes K-cathode n-type In n-type: majority carriers - electrons Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. The ideal p-n junction electrostatics Vo - build-in potential, or diffusion barrier, or contact potential in the p-n junction Vo < Eg /q Typical values: Vo (Eg) Ge: 0.4V (0.7eV) Si: 0.7V (1.1eV) Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. W - the depletion region (junction region) width E Electric field The ideal p-n junction at equilibrium and under bias Energy band models under external bias voltage - VA minority electrons Vo VA <0 actual barrier Vo + |VA| > Vo E majority electrons E VA >0 minority holes actual barrier Vo - VA < Vo majority holes I-V characteristic Reverse bias: drift of minority carriers Forward bias: diffusion of majority carriers Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. Energy band models – another view a p-n junction „formation” n p a p-n junction under bias n p Source: T. Mouthaan, Semiconductor Devices Explained, John Willey&Sons The ideal p-n junction under bias The Shockley equation - current-voltage dependence in the p-n junction exponential function dependence in forward direction Io =constant - saturation current ( due to minority carriers flow) A- junction cross section area I - V characteristic in lin-lin coordinate system I - V characteristic in log-lin coordinate system kT/q = 26 mV at T=300K Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. The ideal p-n junction under bias The Shockley equation Current, I is exponentially dependent on voltage bias VA (or U) Typical voltage drop VAknee for real p-n junctions made of different semiconductors. kT/q = 26 mV Example: I0 = 1uA =10-6A, VA = 260mV, calculated current I = 2.2 10-2 A = 22 mA For different semiconductors (Eg) Vaknee Ge 0.3V Si 0.6V GaAs 0.9V if Eg > ni then I0 and VAknee A real p-n junction under bias The Shockley equation gives a good proximation of the forward I-V curve for real diodes. The diffusion barrier (junction built-in potential): !!! always Vo < Eg /q Typical values: Vo (Eg) Ge: 0.3V (Eg =0.7eV) Si: 0.6V (Eg =1.1eV) GaAs: 1.0V (Eg =1.4eV) GaN: 3.0V (Eg =3.3eV) Vaknee Ge Si GaAs 0.3V 0.6V 0.9V Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. GaN 3V The „knee voltage” value is similar to the built-in potential value for a given semiconductor. Temperature influence on the I-V characteristic The Shockley equation – temperature dependence Io =const. If T=const. but, if T then Io Temperature coefficients (TC): Forward voltage - Voltage TC dV/dT = -2 mV/K @ I=const. Reverse current - Current TC (dI/dT)(1/I) = +10%/K @ V=const. every dT=10K the reverse current doubles kT/q = 26 mV only @ T=300K Application: Diode as a temperature sensor. Example (Si diode) at forward bias: dT=70K at 25 C VA = 620mV @ I = const. (1mA) at 95 C VA =620mV + 70K · (-2 mV/K) = 620mV - 140mV= =480mV = 0.48V dVA = -140mV Example at reverse bias: at 25 C Irev = 10nA @ VA = const. (-20V) at 95 C Irev = 27 x 10nA = 128 x 10nA= 1.28A A real p-n junction under bias The Shockley equation + breakdown phenomena at reverse bias Breakdown – rapid current increase a typical Si diode I-V curve Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. A real p-n junction under bias The Shockley equation + additional Rec. - Gen. currents Junction breakdown – rapid current increase Additional junction currents: - generation current - recombination current Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. A real p-n diode BAV19 diode I-V measurements Io = Ig – generation current at reverse bias Absolute Maximum Rating from the datasheet: IF=500mA - dc forward current VR = 100V - dc reverse voltage Tj=175C - junction temperature n –ideality factor n {1,2} value dependent on recombination current at forward bias A real p-n diode Fairchild BAV19, -20, -21 diodes DC circuit analysis The load line concept Finding the operating point - Qpoint from KVL: VT= RT iD + vD and the load line equation is: iD = -(1/ RT) vD + VT /RT Operating point is; iD = 21mA , vD = 1.0 V Source: G. Rizzoni, Fundamentals of Electrical Engineering, McGraw-Hill Small signal equvalent model of a diode From the Shockley equation: g = dI/dU = IQ/(kT/q) = IQ/26mV (at 300K) g-1 = rd - dynamic resistance of the diode Valid for low frequency: f<100kHz Valid for high frequency: f>100kHz Ctotal - capacitances of a diode Rseries - parasitic series resistances rd = g-1 slope= g2 Rseries Qp2 slope = g1 Qp1 Values of the model components depend on the operating point Q (the applied bias), excluding Rseries = const. IQ =10mA rd =2.6 Ω IQ = 1µA rd =26 kΩ Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. P-N junction breakdown phenomena avalanche breakdown (carrier multiplication) Zener breakdown (electron tunneling) original single electron large voltage bias small voltage bias no breakdown original single electron 1+3 electrons +3 holes E electric field E Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. A Zener diode – voltage regulator device The Zener diode operates at the breakdown at a given voltage Vz The I-V curve - makes the output voltage constant at Vz _ Vz = Zener breakdown voltage Voltage regulator circuit Izm - max. current value large ripples small ripples Rs Vz = const. Input voltage Izm ------------ + Vz examples 3.3 V 5V 6.3 V 9.1 V 12 V 15 V 24 V 91 V Output voltage BZX85C9V1 BZX85B12 tolerance: Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. C - 5% B - 2% A photodiode structure and operation Optical absorption in a photodiode I-V characteristic of an illuminated diode photogeneration mechanism electrons Reverse biased photodiode photons G - flux of photons Forward „self biased” Solar cell holes Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. Photon absorption mechanism photon absorption el. field profile depletion region with an electric field generated electron & holes provide current - 0 optical absorption constant of the material photon absorption photon transmission absorption edge Source: T. Mouthaan, Semiconductor Devices Explained, John Willey&Sons. Photon absorption Optical spectrum and the absorption edge λG for various semiconductors λG [m]=1.24/Eg [eV] UV IR AlGaAs InGaAs GaN Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. Solar cells Solar cell becomes forward biased due to illumination – no external bias applied - power source or power converter I-V characteristics of an illuminated diode G - flux of photons - photocurrent Reverse biased photodiode P>0 Forward bias: V>0, but I<0 P= I U < 0 - source of power P<0 Forward „self biased” Solar cell Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. Solar cells Solar cell operation Max. power point - operating point Solar spectum: AM1 - outside atm. AM 1.5 - av. terrestrial P=100mW/cm sq. slope 1/R load Efficiency: Im Vm R load Pin = Psun FF - fill factor = 5…..15…..30……40 [%} = 5% amorphous sc. = 10% polycrystalline sc. = 20% single crystal sc. = 35% multi-junction cells = 40% concentrated sunlight Source: R.F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley Publishing Comp. A metal - semiconductor junction Type1: Schottky junction rectifying contact – a diode Metal Semiconductor Type 2: ohmic contact - small resistance electron gas Metal Semiconductor n-type Schottky p-n diode - saturation current thermionic current smaller voltage drop Source: Source: B.G.Streetman, Solid State Electronic Devices, Prentice Hall. Source: J. Singh, Semiconductor Devices , John Willey&Sons Basic rectifier circuits Half-wave rectifier circuit Full-wave rectifier circuit source voltage (f=60Hz, T=1/f=16.7ms) Large signal diode model „piecewise linear approximation” Source: G.Rizzoni, Fundamentals of Electrical Eng., McGraw-Hill Rectifier circuits + filtering Bridge rectifier circuit 1k RL 1k RL Source: G.Rizzoni, Fundamentals of Electrical Eng., McGraw-Hill Rectifier circuits - constant voltage power supply Bridge rectifier circuit DC power supply circuit voltage regulator (Zener diode) large ripples small ripples Rs Vz = const. Input voltage Output voltage Izm ------------ Source: G.Rizzoni, Fundamentals of Electrical Eng., McGraw-Hill Electroluminescent diodes Light Emitting Diode - LED LED packages for white light emission Types of monchromatic - to - white light conversion in LED packages RGB phosphor 3 LED chips Yellow phosphor Blue M. Rudziński, M. Wesołowski, W. Strupiński, Niebieskie, zielone i białe emitery światła wytwarzane z półprzewodników AIII-BN, Przegląd Elektrotechniczny, 7, 2014 Diodes and their applications Different types of diodes - summary Zener diode - voltage regulators General purpose diode (rectifying, switching) Electroluminescent diode, LED – display, indicator, lamps Varactor diode - tuned circuits Schottky diode (metal-semiconductor diode) – rectifying, switching (also in microwave circuits) Photodiode – photodetector, photovoltaic cell, solar cellsource of power