Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 12 – Vectors and the Geometry of Space 12.3 – The Dot Product 12.3 – The Dot Product 1 Definition – Dot Product Note: The result is not a vector. It is a real number, a scalar. Sometimes the dot product is called the scalar product or inner product. 12.3 – The Dot Product 2 Example 1 – pg.806 # 8 Find a b a = 3i + 2j - k b = 4i + 5k 12.3 – The Dot Product 3 Properties of the Dot Product 12.3 – The Dot Product 4 Theorem – Dot Product The dot product can be given a geometric interpretation in terms of the angle between a and b. 12.3 – The Dot Product 5 Applying Law of Cosines We can apply the Law of Cosines to the triangle OAB and get the following formulas: 12.3 – The Dot Product 6 Corollary – Dot Product 12.3 – The Dot Product 7 Example 2 – pg. 806 # 18 Find the angle between the vectors. (First find an exact expression then approximate to the nearest degree.) a = <4, 0, 2> b = <2, -1, 0> 12.3 – The Dot Product 8 Orthogonal Vectors Two nonzero a and b are called perpendicular or orthogonal if the angles between them is = /2. 12.3 – The Dot Product 9 Hints The dot product is a way of measuring the extent to which the vectors point in the same direction. If the dot product is positive, then the vectors point in the same direction. If the dot product is 0, the vectors are perpendicular. If the dot product is negative, the vectors point in opposite directions. 12.3 – The Dot Product 10 Visualization The Dot Product of Two Vectors 12.3 – The Dot Product 11 Example 3 For what values of b are the given vectors orthogonal? <-6, b, 2> <b, b2, b> 12.3 – The Dot Product 12 Definition – Directional Angles The directional angles of a nonzero vector a are the angles , , and in the interval from 0 to pi that a makes with the positive axes. 12.3 – The Dot Product 13 Definition – Direction Cosines We get the direction cosines of a vector a by taking the cosines of the direction angles. We get the following formulas 12.3 – The Dot Product 14 Continued 12.3 – The Dot Product 15 Example 4 pg. 806 #35 Find the direction cosines and direction angles of the vector. Give the direction angles correct to the nearest degree. i – 2j – 3k 12.3 – The Dot Product 16 Definition - Vector Projection If S is the foot of the perpendicular from R to the line containing PQ , then the vector with representation PS is called the vector projection of b onto a and is denoted by projab. (think of it as a shadow of b.) 12.3 – The Dot Product 17 Definition continued 12.3 – The Dot Product 18 Visualization Vector Projections 12.3 – The Dot Product 19 Definition – Scalar Projection The scalar projection or component of b onto a is defined to be the signed magnitude of the vector projection, which is the number |b|cos, where is the angle between a and b. This is denoted by compab. 12.3 – The Dot Product 20 Definition continued 12.3 – The Dot Product 21 Example 5 – pg807 #42 Find the scalar and vector projections of b onto a. a = <-2, 3, -6> b = <5, -1, 4> 12.3 – The Dot Product 22 More Examples The video examples below are from section 12.3 in your textbook. Please watch them on your own time for extra instruction. Each video is about 2 minutes in length. ◦ Example 1 ◦ Example 3 ◦ Example 6 12.3 – The Dot Product 23 Demonstrations Feel free to explore these demonstrations below. The Dot Product Vectors in 3D Vector Projections 12.3 – The Dot Product 24