Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
snick snack CPSC 121: Models of Computation 2012 Summer Term 2 Proof (First Visit) Steve Wolfman, based on notes by Patrice Belleville, Meghan Allen and others 1 This work is licensed under a Creative Commons Attribution 3.0 Unported License. Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata, Explore and Critique • Next Lecture Notes 3 Learning Goals: Pre-Class By the start of class, you should be able to: – Use truth tables to establish or refute the validity of a rule of inference. – Given a rule of inference and propositional logic statements that correspond to the rule’s premises, apply the rule to infer a new statement implied by the original statements. 4 Learning Goals: In-Class By the end of this unit, you should be able to: – Explore the consequences of a set of propositional logic statements by application of equivalence and inference rules, especially in order to massage statements into a desired form. – Critique a propositional logic proof; that is, determine whether or not is valid (and explain why) and judge the applicability of its result to a specific context. – Devise and attempt multiple different, appropriate strategies for proving a propositional logic statement follows from a list of premises. 5 Where We Are in The Big Stories Theory How do we model computational systems? Now: Continuing to build the foundation for our proofs. (We’ll get to the level of proof we really need starting with the next unit.) Hardware How do we build devices to compute? Now: Taking a bit of a vacation in lecture! 6 Motivating Problem: Changing cond Branches Assuming that a and c cannot both be true and that this function produces true: ;; Boolean Boolean Boolean Boolean -> Boolean (define (rearrange-cond? a b c d) (cond [a b] [c d] [else e])) Prove that the following function also produces true: ;; Boolean Boolean Boolean Boolean -> Boolean (define (rearrange-cond? a b c d) (Reality check: you must be (cond [c d] able to do formal proofs. But, [a b] as with using equivalence laws [else e])) But first, prove these handy “lemmas”: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) to reorganize code, in practice you’ll often reason using proof techniques but without a formal 7 proof.) NOT a Quiz Note ~p ~(p v q) a. This is valid by generalization (p p v q). b. This is valid because anytime ~p is true, ~(p v q) is also true. c. This is invalid by generalization (p p v q). d. This is invalid because when p = F and q = T, ~p is true but ~(p v q) is false. e. None of these. 11 What does this mean? We can always substitute something equivalent for a subexpression of a logical expression. We cannot always apply a rule of inference to just a part of a logical statement. Therefore, we will only apply rules of inference to complete statements, no matter what! 12 Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata, Explore and Critique • Next Lecture Notes 13 What is Proof? A rigorous formal argument that unequivocally demonstrates the truth of a proposition, given the truth of the proof’s premises. Adapted from MathWorld: http://mathworld.wolfram.com/Proof.html 14 What is Proof? A rigorous formal argument that unequivocally demonstrates the truth of a proposition (conclusion), given the truth of the proof’s premises. Adapted from MathWorld: http://mathworld.wolfram.com/Proof.html 15 Problem: Meaning of Proof Let’s say you prove the following: Premise 1 Premise 2 ⁞ Premise n Conclusion What does this mean? a. Premises 1 to n are true b. Conclusion is true c. Premises 1 to n can be true d. Conclusion can be true e. None of the above 16 Tasting Powerful Proof: Some Things We Might Prove • We can build a “three-way switch” system with any number of switches. • We can build a combinational circuit matching any truth table. • We can build any digital logic circuit using nothing but NOR gates. • We can sort a list by breaking it in half, and then sorting and merging the halves. • We can find the GCD of two numbers by finding the GCD of the 2nd and the remainder when dividing the 1st by the 2nd. • Is there any fair way to run elections? • Are there problems that no program can solve? 17 Meanwhile... What Is a Propositional Logic Proof? An argument in which (1) each line is a propositional logic statement, (2) each statement is a premise or follows unequivocally by a previously established rule of inference from the truth of previous statements, and (3) the last statement is the conclusion. A very constrained form of proof, but a good starting point. Interesting proofs will usually come in less structured 18 packages than propositional logic proofs. Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata, Explore and Critique • Next Lecture Notes 19 Prop Logic Proof Problem To prove: ~(q r) (u q) s ~s ~p___ ~p 20 “Prove Your Own Adventure” To prove: ~(q r) (u q) s ~s ~p___ ~p Which step is the easiest to fill in? 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise [STEP A: near the start] [STEP B: in the middle] [STEP C: near the end] [STEP D: last step] 21 D: Last Step To prove: ~(q r) (u q) s ~s ~p___ ~p 1. ~(q r) 2. (u q) s 3. ~s ~p ... ~q ~r Why do we want to put ~p at the end? ~q ... a. ~p is the proof’s conclusion ((u q) s) b. ~p is the end of the last premise (s (u q)) c. every proof ends with ~p d. None of these but some other reason ... e. None of these because we don’t want it there Premise Premise Premise De Morgan’s (1) Specialization (?) Bicond (2) ~s ~p Modus ponens (3,?) 22 C: Near the End To prove: ~(q r) (u q) s ~s ~p___ ~p Why do we want to put the blue line/justification at the end? a. b. c. d. e. 1. ~(q r) 2. (u q) s 3. ~s ~p ... ~q ~r ~q ... ((u q) s) (s (u q)) ... ~s ~p is the last premise ~s ~p is the only premise that mentions ~s ~s ~p is the only premise that ~s mentions p ~p None of these but some other reason None of these b/c we don’t want it there Premise Premise Premise De Morgan’s (1) Specialization (?) Bicond (2) Modus ponens (3,?) 23 A: Near the Start To prove: ~(q r) (u q) s ~s ~p___ ~p 1. ~(q r) 2. (u q) s 3. ~s ~p ... ~q ~r Why do we want the blue ~q lines/justifications? ... ((u q) s) a. ~(q r) is the first premise (s (u q)) b. ~(q r) is a useless premise c. We can’t work directly with a premise ... d. e. with a negation “on the outside” Neither the conclusion nor another premise mentions r None of these Premise Premise Premise De Morgan’s (1) Specialization (?) Bicond (2) ~s ~p Modus ponens (3,?) 24 B: In the Middle To prove: ~(q r) (u q) s ~s ~p___ ~p 1. ~(q r) 2. (u q) s 3. ~s ~p ... ~q ~r Why do we want the blue ~q line/justification? ... a. (u q) s is the only premise left ((u q) s) b. (u q) s is the only premise that (s (u q)) mentions u ... c. (u q) s is the only premise that d. e. ~s mentions s without a negation We have no rule to get directly from ~p one side of a biconditional to the other None of these Premise Premise Premise De Morgan’s (1) Specialization (?) Bicond (2) Modus ponens (3,?) 25 Prop Logic Proof Strategies • • • • • Work backwards from the end Play with alternate forms of premises Identify and eliminate irrelevant information Identify and focus on critical information Alter statements’ forms so they’re easier to work with • “Step back” from the problem frequently to think about assumptions you might have wrong or other approaches you could take And, if you don’t know that what you’re trying to prove follows... 34 switch from proving to disproving and back now and then. Continuing From There To prove: ~(q r) (u q) s ~s ~p___ ~p Which direction of goes in step 7? a. b. c. d. e. 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise 4. ~q ~r De Morgan’s (1) 5. ~q Specialization (4) 6. ((u q) s) Bicond (2) (s (u q)) 7. ?????? Specialization (6) (u q) s because the simple part is on the right ~s (u q) s because the other ~p direction can’t establish ~s s (u q) because the simple part is on the left s (u q) because the other direction can’t establish ~s None of these ... Modus ponens (3,?) 35 Aside: What does it mean to “work backward”? Take the conclusion of the proof. Use a rule in reverse to generate something closer to a statement you already have (like a premise). 38 Finishing Up (1 of 3) To prove: ~(q r) (u q) s ~s ~p___ ~p We know we needed ~(u q) on line 9 because that’s what we created line 7 for! Side Note: Can we work directly with a statement with a negation “on the outside”? 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise 4. ~q ~r De Morgan’s (1) 5. ~q Specialization (4) 6. ((u q) s) Bicond (2) (s (u q)) 7. s (u q) Specialization (6) 8. ???? ???? 9. ~(u q) 10. ~s ???? Modus tollens (7, 9) 11. ~p Modus ponens (3,10) 39 Finishing Up (1 of 3) To prove: ~(q r) (u q) s ~s ~p___ ~p We know we needed ~(u q) on line 9 because that’s what we created line 7 for! Now, how do we get ~(u q)? Working forward is tricky. Let’s work backward. What is ~(u q) equivalent to? 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise 4. ~q ~r De Morgan’s (1) 5. ~q Specialization (4) 6. ((u q) s) Bicond (2) (s (u q)) 7. s (u q) Specialization (6) 8. ???? ???? 9. ~(u q) 10. ~s ???? Modus tollens (7, 9) 11. ~p Modus ponens (3,10) 40 Finishing Up (2 of 3) To prove: ~(q r) (u q) s ~s ~p___ ~p All that’s left is to get to ~u ~q. How do we do it? 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise 4. ~q ~r De Morgan’s (1) 5. ~q Specialization (4) 6. ((u q) s) Bicond (2) (s (u q)) 7. s (u q) Specialization (6) 8. ~u ~q ???? 9. ~(u q) 10. ~s De Morgan’s (8) Modus tollens (7, 9) 11. ~p Modus ponens (3,10) 41 Finishing Up (3 of 3) To prove: ~(q r) (u q) s ~s ~p___ ~p As usual in our slides, we made no mistakes and reached no dead ends. That’s not the way things really go on difficult proofs! Mistakes and dead ends are part of the discovery process! So, step back now and then and reconsider your assumptions and approach! 1. ~(q r) Premise 2. (u q) s Premise 3. ~s ~p Premise 4. ~q ~r De Morgan’s (1) 5. ~q Specialization (4) 6. ((u q) s) Bicond (2) (s (u q)) 7. s (u q) Specialization (6) 8. ~u ~q Generalization (5) 9. ~(u q) 10. ~s De Morgan’s (8) Modus tollens (7, 9) 11. ~p Modus ponens (3,10) 42 Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata, Explore and Critique • Next Lecture Notes 43 Limitations of Truth Tables Why not just use truth tables to prove propositional logic theorems? a. No reason; truth tables are enough. b. Truth tables scale poorly to large problems. c. Rules of inference and equivalence rules can prove theorems that cannot be proven with truth tables. d. Truth tables require insight to use, while rules of inference can be applied mechanically. 44 Limitations of Logical Equivalences Why not use logical equivalences to prove that the conclusions follow from the premises? a. No reason; logical equivalences are enough. b. Logical equivalences scale poorly to large problems. c. Rules of inference and truth tables can prove theorems that cannot be proven with logical equivalences. d. Logical equivalences require insight to use, while rules of inference can be applied mechanically. 45 Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata: Explore and Critique • Next Lecture Notes 46 Preparatory Comments When we apply logic to a domain, we give interpretations for the logical symbols. That interpretation is where we can argue things like “meaning”, “values”, and “moral right”. Within the logical context, we argue purely on the basis of structure and irrefutable manipulations of that structure. And… statements contradict each other when, taken together, they are logically equivalent to F. There is no way for them to be simultaneously true. 47 Problem: Onnagata Problem: Critique the following argument. Premise 1: If women are too close to femininity to portray women then men must be too close to masculinity to play men, and vice versa. Premise 2: And yet, if the onnagata are correct, women are too close to femininity to portray women and yet men are not too close to masculinity to play men. Conclusion: Therefore, the onnagata are incorrect, and women are not too close to femininity to portray women. 48 Contradictory Premises? Do premises #1 and #2 contradict each other (i.e., is (premise1 premise2) logically equivalent to F)? a. Yes b. No c. Not enough information to tell. 50 Defining the Problem Which definitions should we use? a. w = women, m = men, f = femininity, m = masculinity, o = onnagata, c = correct b. w = women are too close to femininity, m = men are too close to masculinity, pw = women portray women, pm = men portray men, o = onnagata are correct c. w = women are too close to femininity to portray women, m = men are too close to masculinity to portray men, o = onnagata are correct d. None of these, but another set of definitions works well. e. None of these, and this problem cannot be modeled well with propositional logic. 51 Translating the Statements Which of these is not an accurate translation of one of the statements? a. w m b. (w m) (m w) c. o (w ~m) d. ~o ~w e. All of these are accurate translations. 52 Contradictory Premises? So premises #1 and #2 are w m and o (w ~m). Do premises #1 and #2 contradict each other (i.e., is (premise1 premise2) logically equivalent to F)? a. Yes b. No c. Not enough information to tell. 53 Problem: Now, Explore! Critique the argument by either: (1) Proving it correct (and commenting on how good the propositional logic model’s fit to the context is). How do we prove prop logic statements? (2) Showing that it is an invalid argument. How do we show an argument is invalid? (Remember the quiz!) 54 Outline • Prereqs, Learning Goals, and Quiz Notes • Prelude: What Is Proof? • Problems and Discussion – “Prove Your Own Adventure” – Why rules of inference? (advantages + tradeoffs) – Onnagata, Explore and Critique • Next Lecture Notes 55 Next Lecture Learning Goals: Pre-Class By the start of class, you should be able to: – Evaluate the truth of statements that include predicates applied to particular values. – Show predicate logic statements are true by enumerating examples (i.e., all examples in the domain for a universal or one for an existential). – Show predicate logic statements are false by enumerating counterexamples (i.e., one counterexample for universals or all in the domain for existentials). – Translate between statements in formal predicate logic notation and equivalent statements in closely matching informal language (i.e., informal statements with clear and explicitly stated quantifiers). 56 Next Lecture Prerequisites Review (Epp 4th ed) Chapter 2 and be able to solve any Chapter 2 exercise. Read Sections 3.1 and 3.3 (skipping the “Negation” sections in 3.3) Complete the open-book, untimed quiz on Vista. 57 Motivating Problem: Changing cond Branches Assuming that a and c cannot both be true and that this function produces true: ;; Boolean Boolean Boolean Boolean -> Boolean (define (rearrange-cond? a b c d) (cond [a b] [c d] [else e])) Prove that the following function also produces true: ;; Boolean Boolean Boolean Boolean -> Boolean (define (rearrange-cond? a b c d) (cond [c d] [a b] [else e])) First, prove these handy “lemmas”: 1. p (q r) (p q) (p r)58 2. p (q r) q (p r) Motivating Problem: Changing cond Branches Assuming that a and c cannot both be true, and that this function produces true: ;; Boolean Boolean Boolean Boolean -> Boolean (define (rearrange-cond? a b c d) (cond [a b] [c d] [else e])) We leave the lemmas as an exercise: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) In prop logic: 1. ~(a b) 2. (a b) (~a ((c d) (~c e))) 3. … 4. (c d) (~c ((a b) (~a e))) We’ll use our “heuristics” to work forward and backward until we solve the problem. premise premise target conclusion 59 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. … 4. (c d) 5. (~c ((a b) (~a e))) 6. (c d) (~c ((a b) (~a e))) We start by working backward; how de we prove x y? Well, one way is to prove x and also prove y. We’ll break those into two separate subproblems! premise premise “subgoal” “subgoal” by CONJ on 4, 5 Side note: we’ll use the two statements you proved as exercises as “lemmas”: rules we proved for use in this proof. (Want to use them on an assignment / exam? Prove them there!) Lemmas: 1. p (q r) (p q) (p r) 60 2. p (q r) q (p r) Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. … 4. (c d) 5. (~c (a b)) (~c (~a e))) 6. (~c ((a b) (~a e))) 7. (c d) (~c ((a b) (~a e))) premise premise “subgoal” “subgoal” Lemma 1 on 5 by CONJ on 4, 6 The second of these subgoals is still huge. We decided to break it into two pieces (and that’s why we went off and proved Lemma 1). Lemmas: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) 61 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. … 4. (c d) 5. ~c (a b) 6. ~c (~a e) 7. (~c (a b)) (~c (~a e))) 8. (~c ((a b) (~a e))) 9. (c d) (~c ((a b) (~a e))) premise premise “subgoal” “subgoal” “subgoal” by CONJ on 5, 6 Lemma 1 on 7 by CONJ on 4, 8 Now, we can attack those two pieces separately (which feels like it might be the wrong approach to me… but worth a try!) Lemmas: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) 62 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. … 5. (c d) 6. ~c (a b) 7. ~c (~a e) 8. (~c (a b)) (~c (~a e))) 9. (~c ((a b) (~a e))) 10. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 “subgoal” “subgoal” “subgoal” by CONJ on 6, 7 Lemma 1 on 8 by CONJ on 5, 9 I’m out of ideas at the end. I switch to the beginning and play around with premises. (Foreshadowing: I didn’t figure out what to do with this premise until near the end.) Lemmas: 1. 2. p (q r) (p q) (p r) p (q r) q (p r) 63 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. … 6. (c d) 7. ~c (a b) 8. ~c (~a e) 9. (~c (a b)) (~c (~a e))) 10. (~c ((a b) (~a e))) 11. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 “subgoal” “subgoal” “subgoal” by CONJ on 7, 8 Lemma 1 on 9 by CONJ on 6, 10 Let’s try the other premise. Lemmas: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) 64 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. … 7. (c d) 8. ~c (a b) 9. ~c (~a e) 10. (~c (a b)) (~c (~a e))) 11. (~c ((a b) (~a e))) 12. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 “subgoal” “subgoal” “subgoal” by CONJ on 8, 9 Lemma 1 on 10 by CONJ on 7, 11 Continuing with that premise… Hey! We can use our Lemma again! Lemmas: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) 65 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. … 8. (c d) 9. ~c (a b) 10. ~c (~a e) 11. (~c (a b)) (~c (~a e))) 12. (~c ((a b) (~a e))) 13. (c d) (~c ((a b) (~a e))) premise premise Continuing with by DM on 1 that premise… by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 “subgoal” “subgoal” “subgoal” by CONJ on 9, 10 Lemma 1 on 11 by CONJ on 8, 12 Lemmas: 1. p (q r) (p q) (p r) 2. p (q r) q (p r) 66 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. … 9. (c d) 10. ~c (a b) 11. ~c (~a e) 12. (~c (a b)) (~c (~a e))) 13. (~c ((a b) (~a e))) 14. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 Continuing with that premise… “subgoal” “subgoal” “subgoal” by CONJ on 10, 11 Lemma 1 on 12 by CONJ on 9, 13 67 Lemma 2: p (q r) q (p r) Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. ~c (a b) 12. ~c (~a e) 13. (~c (a b)) (~c (~a e))) 14. (~c ((a b) (~a e))) 15. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 Continuing with that premise… AHA!! “subgoal” We treated “subgoal” connecting these “subgoal” as its own problem by CONJ on 11, 12 Lemma 1 on 13 and came up with by CONJ on 10, 14 Lemma 2! 68 Lemma 2: p (q r) q (p r) Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. ~c (a b) 12. ~c (~a e) 13. (~c (a b)) (~c (~a e))) 14. (~c ((a b) (~a e))) 15. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 Lemma 2 let’s us connect these directly! Now what. Let’s pause, remind ourselves what “subgoal” our (sub)goals “subgoal” are, and look at by Lemma 2 on 8 what we have. by CONJ on 11, 12 Lemma 1 on 13 by CONJ on 10, 14 69 Lemma 2: p (q r) q (p r) Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. ~c (a b) 12. ~c (~a e) 13. (~c (a b)) (~c (~a e))) 14. (~c ((a b) (~a e))) 15. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 Hmm.. “subgoal” “subgoal” by Lemma 2 on 8 by CONJ on 11, 12 Lemma 1 on 13 by CONJ on 10, 14 How do we do something with this? Again, we treated this as a separate problem: 70 Lemma 2: p (q r) q (p r) Motivating Problem: Changing cond Branches Subproblem: 1. ab 2. … 3. ~c (a b) premise “subgoal” This time, we’ll show you what we did. We broke out the goal and starting point and turned them into a whole other proof problem! Now we do our usual. Get rid of , work backward, work forward… 71 Motivating Problem: Changing cond Branches Subproblem: 1. ab 2. ~a b 3. … 4. c ~a b 5. c (a b) 6. ~c (a b) premise by IMP on 1 “subgoal” by IMP on 4 by IMP on 5 That’s about as far as dumping can take us. But, look at step 2 and step 4. What’s the difference? 72 Motivating Problem: Changing cond Branches Subproblem: 1. ab 2. ~a b 3. c ~a b 4. c (a b) 5. ~c (a b) premise by IMP on 1 by GEN on 2 by IMP on 3 by IMP on 4 Great! We can always OR on something else. We did it! Let’s patch it back into the original proof. But… could we have done it more easily? Question your solutions! (Hint: check out line 4. How can you get there?) 73 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. c (a b) 12. ~c (a b) 13. ~c (~a e) 14. (~c (a b)) (~c (~a e))) 15. (~c ((a b) (~a e))) 16. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 “subgoal” “subgoal” by IMP on 11 by Lemma 2 on 8 by CONJ on 12, 13 Lemma 1 on 14 by CONJ on 10, 15 Patching in “step 4” of the previous proof. Can it get us back to step 4 of this proof? 74 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. c (a b) 12. ~c (a b) 13. ~c (~a e) 14. (~c (a b)) (~c (~a e))) 15. (~c ((a b) (~a e))) 16. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 Sure! In one step! “subgoal” Now what? Only by GEN on 4 one subgoal left. by IMP on 11 How does it by Lemma 2 on 8 connect to the by CONJ on 12, 13 top of the proof? Lemma 1 on 14 75 by CONJ on 10, 15 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. c (a b) 12. ~c (a b) 13. ~c (~a e) 14. (~c (a b)) (~c (~a e))) 15. (~c ((a b) (~a e))) 16. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 Hmm… by SPEC on 6 That works if a is false. “subgoal” by GEN on 4 by IMP on 11 Can we make a by Lemma 2 onfalse? 8 by CONJ on 12, 13 Lemma 1 on 14What if a is true? 76 by CONJ on 10, 15 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. a b 5. ~a ((c d) (~c e)) 6. (~a (c d)) (~a (~c e)) 7. ~a (c d) 8. ~a (~c e) 9. … 10. (c d) 11. c (a b) 12. ~c (a b) 13. ~c (~a e) 14. (~c (a b)) (~c (~a e))) 15. (~c ((a b) (~a e))) 16. (c d) (~c ((a b) (~a e))) I looked around for a way to establish ~a but couldn’t. So, I checked what happens if a is true. premise premise by DM on 1 by SPEC on 2 by SPEC on 2 by Lemma 1 on 5 by SPEC on 6 by SPEC on 6 If a is true, then c isn’t. If c’s not true, then c d is true. “subgoal” by GEN on 4 by IMP on 11 by Lemma 2 on 8 Let’s put by CONJ on 12, 13 logic! Lemma 1 on 14 by CONJ on 10, 15 that in 77 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. ~a ~c d 5. a b 6. ~a ((c d) (~c e)) 7. (~a (c d)) (~a (~c e)) 8. ~a (c d) 9. ~a (~c e) 10. … 11. (c d) 12. c (a b) 13. ~c (a b) 14. ~c (~a e) 15. (~c (a b)) (~c (~a e))) 16. (~c ((a b) (~a e))) 17. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by GEN on 3 by SPEC on 2 by SPEC on 2 by Lemma 1 on 6 by SPEC on 7 by SPEC on 7 “subgoal” by GEN on 5 by IMP on 12 by Lemma 2 on 9 by CONJ on 13, 14 Lemma 1 on 15 by CONJ on 11, 16 We need to “fabricate” a d. The rest will be just IMP applications. 78 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. ~a ~c d 5. ~a (c d) 6. a (c d) 7. ab 8. ~a ((c d) (~c e)) 9. (~a (c d)) (~a (~c e)) 10. ~a (c d) 11. ~a (~c e) 12. … 13. (c d) 14. c (a b) 15. ~c (a b) 16. ~c (~a e) 17. (~c (a b)) (~c (~a e))) 18. (~c ((a b) (~a e))) 19. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by GEN on 3 by IMP on 4 by IMP on 5 by SPEC on 2 by SPEC on 2 by Lemma 1 on 8 by SPEC on 9 by SPEC on 9 “subgoal” by GEN on 7 by IMP on 14 by Lemma 2 on 11 by CONJ on 15, 16 Lemma 1 on 17 by CONJ on 13, 18 Now, we put these together, and we’re done! 79 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) 3. ~a ~c 4. ~a ~c d 5. ~a (c d) 6. a (c d) 7. ab 8. ~a ((c d) (~c e)) 9. (~a (c d)) (~a (~c e)) 10. ~a (c d) 11. (~a a) (c d) 12. T (c d) 13. (c d) 14. ~a (~c e) 15. c (a b) 16. ~c (a b) 17. ~c (~a e) 18. (~c (a b)) (~c (~a e))) 19. (~c ((a b) (~a e))) 20. (c d) (~c ((a b) (~a e))) premise premise by DM on 1 by GEN on 3 by IMP on 4 by IMP on 5 by SPEC on 2 by SPEC on 2 by Lemma 1 on 8 by SPEC on 9 by CASE on 10, 6 by NEG on 11 by M.PON on 12, T by SPEC on 9 by GEN on 7 by IMP on 15 by Lemma 2 on 14 by CONJ on 16, 17 Lemma 1 on 18 by CONJ on 13, 19 QED!! Whew! (At step 14, no need to separately establish T. T is a “tautology”; it’s always true!) 80 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) … 20. (c d) (~c ((a b) (~a e))) premise premise … by CONJ on 13, 19 So, what did that prove? Technically: that if the conditions on the cond branches are mutually exclusive (cannot both be true at the same time) and if the result of the original version was true, then the version with switched cond branches will also be true. In fact, if you go back and think carefully about the proof, we can conclude something much bigger without too much more work: “If two conditions on neighboring cond branches are mutually exclusive (and have no ‘side effects’), we can switch those branches without changing the meaning of the program.” 81 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) … 20. (c d) (~c ((a b) (~a e))) premise premise … by CONJ on 13, 19 For reference: fruitless directions I tried include changing a b to ~a b, attempting to form the negation of c d, and a bunch of other false starts… all of which helped me build pieces I needed for my final strategy! You should have lots of scratchwork if you do a problem this large. 82 Motivating Problem: Changing cond Branches In prop logic: 1. ~(a c) 2. (a b) (~a ((c d) (~c e))) … 20. (c d) (~c ((a b) (~a e))) premise premise … by CONJ on 13, 19 Exercise: We can translate code like: (if a b c) To logic like this instead of our usual: (a b) (~a c) Prove that they’re equivalent. Then, figure out how a cond would similarly translate. Finally, go back and redo some of our proofs (like the one we just did) with the new representation. 83 snick snack More problems to solve... (on your own or if we have time) 84 Problem: Who put the cat in the piano? Hercule Poirot has been asked by Lord Martin to find out who closed the lid of his piano after dumping the cat inside. Poirot interrogates two of the servants, Akilna and Eiluj. One and only one of them put the cat in the piano. Plus, one always lies and one never lies. Akilna says: – Eiluj did it. – Urquhart paid her $50 to help him study. Eiluj says: – I did not put the cat in the piano. – Urquhart gave me less than $60 to help him study. Problem: Whodunit? 85 Problem: Automating Proof Given: pq p ~q r (r ~p) s ~p ~r Problem: What’s everything you can prove? 86 Problem: Canonical Form A common form for propositional logic expressions, called “disjunctive normal form” or “sum of products form”, looks like this: (a ~b d) (~c) (~a ~d) (b c d e) ... In other words, each clause is built up of simple propositions or their negations, ANDed together, and all the clauses are 87 ORed together. Problem: Canonical Form Problem: Prove that any propositional logic statement can be expressed in disjunctive normal form. 88 Mystery #1 Theorem: p q q (r s) ~r (~t u) p t u Is this argument valid or invalid? 89 Is whatever u means true? Mystery #2 Theorem: p p r p (q ~r) ~q ~s s Is this argument valid or invalid? 90 Is whatever s means true? Mystery #3 Theorem: q p m q (r m) m q p Is this argument valid or invalid? 91 Is whatever p means true? Practice Problem (for you!) Prove (with truth tables) that hypothetical syllogism is a valid rule of inference: p q q r p r 92 Practice Problem (for you!) Prove (with truth tables) whether this is a valid rule of inference: q p q p 93 Practice Problem (for you!) Are the following arguments valid? This apple is green. If an apple is green, it is sour. This apple is sour. Sam is not barking. If Sam is barking, then Sam is a dog. Sam is not a dog. 94 Practice Problem (for you!) Are the following arguments valid? This shirt is comfortable. If a shirt is comfortable, it’s chartreuse. This shirt is chartreuse. It’s not cold. If it’s January, it’s cold. It’s not January. 95 Is valid (as a term) the same as true or correct (as English ideas)? More Practice Meghan is rich. If Meghan is rich, she will pay your tuition. Meghan will pay your tuition. Is this argument valid? Should you bother sending in a check for your 96 tuition, or is Meghan going to do it? Problem: Equivalent Java Programs Problem: How many valid Java programs are there that do exactly the same thing? 97 Resources: Statements From the Java language specification, a standard statement is one that can be: 98 http://java.sun.com/docs/books/jls/third_edition/html/statements.html#14.5 Resources: Statements From the Java language specification, a standard statement is one that can be: 99 http://java.sun.com/docs/books/jls/third_edition/html/statements.html#14.5 What’s a “Block”? Back to the Java Language Specification: 100 http://java.sun.com/docs/books/jls/third_edition/html/statements.html#14.2 What’s a “Block”? A block is a sequence of statements, local class declarations and local variable declaration statements within braces. … A block is executed by executing each of the local variable declaration statements and other statements in order from first to last (left to right). 101 What’s an “EmptyStatement” Back to the Java Language Specification: http://java.sun.com/docs/books/jls/third_edition/html/statements.html#14.6 102 Problem: Validity of Arguments Problem: If an argument is valid, does that mean its conclusion is true? If an argument is invalid, does that mean its conclusion is false? 103 Problem: Proofs and Contradiction Problem: Imagine I assume premises x, y, and z and prove F. What can I conclude (besides “false is true if x, y, and z are true”)? 104 Proof Critique Theorem: √2 is irrational Proof: Assume √2 is rational, then... There’s some integers p and q such that √2 = p/q, and p and q share no factors. 2 = (p/q)2 = p2/q2 and p2 = 2q2 p2 is divisible by 2; so p is divisible by 2. There’s some integer k such that p = 2k. q2 = p2/2 = (2k)2/2 = 2k2; so q2 and q are divisible by 2. p and q do share the factor 2, a contradiction! √2 is irrational. QED 105 Problem: Comparing Deduction and Equivalence Rules Problem: How are logical equivalence rules and deduction rules similar and different, in form, function, and the means by which we establish their truth? 106 Problem: Evens and Integers Problem: Which are there more of, (a) positive even integers, (b) positive integers, or (c) neither? 107