* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Module 4: Propositional Logic Proofs
Meaning (philosophy of language) wikipedia , lookup
Analytic–synthetic distinction wikipedia , lookup
History of logic wikipedia , lookup
Quantum logic wikipedia , lookup
Mathematical logic wikipedia , lookup
Laws of Form wikipedia , lookup
Sequent calculus wikipedia , lookup
Curry–Howard correspondence wikipedia , lookup
Modal logic wikipedia , lookup
Propositional formula wikipedia , lookup
Mathematical proof wikipedia , lookup
Interpretation (logic) wikipedia , lookup
Intuitionistic logic wikipedia , lookup
Truth-bearer wikipedia , lookup
Principia Mathematica wikipedia , lookup
Law of thought wikipedia , lookup
Propositional calculus wikipedia , lookup
Module4:Propositional LogicProofs Duedates • Pre-classquiz#5isdueSundayJanuary29that 19:00 • Assignedreadingforthequiz: • Epp,4thedition:3.1,3.3 • Epp,3rdedition:2.1,2.3 • Assignment#2isdueThursdayFebruary2nd at 4pm. 2 Learninggoals:pre-class • Bythestartofthisclassyoushouldbeableto • Usetruthtablestoestablishorrefutethevalidity ofaruleofinference. • Givenaruleofinferenceandpropositionallogic statementsthatcorrespondtotherule'spremises, applytheruletoinferanewstatementimpliedby theoriginalstatements. 3 Learninggoals:in-class • Bytheendofthismodule,youshouldbeableto • Determinewhetherornotapropositionallogic proofisvalid,andexplainwhyitisvalidorinvalid. • Exploretheconsequencesofasetofpropositional logicstatementsbyapplicationofequivalenceand inferencerules,especiallyinordertomassage statementsintoadesiredform. • Deviseandattemptmultipledifferent,appropriate strategiesforprovingapropositionallogic statementfollowsfromalistofpremises. 4 CPSC121:theBIG questions: • Howcanweconvinceourselvesthatanalgorithm doeswhatit'ssupposedtodo? • Weneedtoprovethatitworks. • Wehavedoneafewproofsinthelastweekorso. • Nowwewilllearn • Howtodecideifaproofisvalidinaformalsetting. • (soon)HowtowriteproofsinEnglish. 5 Module4 outline • Proofsandtheirmeaning. • Apropositionallogicproof. • Theonnagata problem. • Furtherexercises. 6 Whatisaproof? • Arigorousformalargumentthatdemonstrates thetruthofaproposition,giventhetruthofthe proof’spremises. • Aproofisusedtoconvinceotherpeople(or yourself)ofthetruthofaconditionalproposition. • Writingaproof: • Youdoitstepbystep. • Makesurethatyoujustifyhoweachsteprelatesto theprevioussteps. 7 Thingswemightprove • Wecanbuildacombinationalcircuitmatchingany truthtable. • Wecanbuildanycombinationallogiccircuitusing only2-inputNORgates. • Themaximumnumberofswapsweneedtoorder nstudentsisn(n-1)/2. • Nogeneralalgorithmexiststosortnvaluesusing fewerthannlog2ncomparisons. • Thereareproblemsthatnoalgorithmcansolve. 8 Reviewquestions • Howdoweuseatruthtabletoprovethatan argumentisvalid? • Ifapremiseisp->q,whataresomepossibleways thatIcantransformthispremiseusingrulesof inferenceorlogicalequivalencelaws? • Ifp^qistrue,whatdoIknowaboutpandq? • Ifpvqistrueandqisfalse,whatdoIknowabout p? Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Ifallofthepremisesaretrue, thentheconclusionistrue. b. Theimplicationpremise1^… ^premisen->conclusionis true. c. Theimplicationpremise1^… ^premisen->conclusionisa tautology. d. 2of(a),(b),and(c)aretrue. e. Allof(a),(b),and(c)aretrue. 10 Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Ifallofthepremisesaretrue, thentheconclusionistrue. b. Theimplicationpremise1^… ^premisen->conclusionis true. c. Theimplicationpremise1^… ^premisen->conclusionisa tautology. d. 2of(a),(b),and(c)aretrue. e. Allof(a),(b),and(c)aretrue. 11 Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Allofthepremisesaretrue. b. Theconclusionistrue. c. Both(a)and(b)aretrue. d. Neitherof(a)and(b)istrue. 12 Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Allofthepremisesaretrue. b. Theconclusionistrue. c. Both(a)and(b)aretrue. d. Neitherof(a)and(b)istrue. 13 Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Itispossibleforthepremises tocontradicteachother. b. Itispossibleforthe conclusiontobea contradiction. c. Both(a)and(b)aretrue. d. Neitherof(a)and(b)istrue. 14 Whatdoesitmeanforanargumenttobe valid? Supposethatyouproved this: Premise 1 ... Premise n \ Conclusion Doesitmean: a. Itispossibleforthepremises tocontradicteachother. b. Itispossibleforthe conclusiontobea contradiction. c. Both(a)and(b)aretrue. d. Neitherof(a)and(b)istrue. 15 Whatdoesitmeanforanargument tobevalid? • Ifanargumentisvalid, • Weknowthatifallthepremisesaretrue,then theconclusionistrue. • Wedonotknow • Whetheranypremiseistrue, or • Whethertheconclusionistrue. Module4 outline • Proofsandtheirmeaning. • Apropositionallogicproof. • Theonnagata problem. • Furtherexercises. 17 Apropositionallogicproof • Apropositionallogicproofisasequenceof propositions,whereeachpropositionisoneof • Apremise • Theresultofapplyingalogicalequivalenceora ruleofinferencetooneormoreearlier propositions. • andwhoselastpropositionistheconclusion. • Thesearegoodstartingpoint,becausetheyare simplerthanthemorefree-formproofswewill discusslater • Onlyalimitednumberofchoicesateachstep. 18 A propositionallogicproof Prove that the following argument is valid: 1 ~(𝑞 ∨ 𝑟) 2 (𝑢 ∧ 𝑞) ⟷ 𝑠 3 ~𝑠 → ~𝑝 \ ~𝑝 19 Proofstrategies • Workbackwardsfromtheend • Playwithalternateformsofpremises • Identifyandeliminateirrelevantinformation • Identifyandfocusoncriticalinformation • Step back from the problem frequently to think about assumptions you might have wrong or other approachesyou could take. • Ifyoudon’tknowwhethertheargumentisvalidor not,alternatebetween • tryingtoproveit,and • tryingtodisproveitbyfindingacounterexample. 20 Limitationsoftruthtables Whycanwenotjustusetruthtablestoprove propositionallogictheorems? a. Noreason;truthtablesareenough. b. Truthtablesscalepoorlytolargeproblems. c. Rulesofinferencecanprovetheoremsthat cannotbeprovenwithtruthtables. d. Truthtablesrequireinsighttouse,whilerulesof inferencecanbeappliedmechanically. ▷ 21 Limitationsoflogicalequivalences Whynotuselogicalequivalencestoprovethatthe conclusionsfollowfromthepremises? a. Noreason;logicalequivalencesareenough. b. Logicalequivalencesscalepoorlytolarge problems. c. Rulesofinferencecanprovetheoremsthat cannotbeprovenwithlogicalequivalences. d. Logicalequivalencesrequireinsighttouse,while rulesofinferencecanbeappliedmechanically. ▷ 22 Module4 outline • Proofsandtheirmeaning. • Apropositionallogicproof. • Theonnagata problem. • Furtherexercises. 24 Theonnagata problem • Critiquethefollowingargument,drawnfroman articlebyJulianBaggini onlogicalfallacies. • Premise1:Ifwomenaretooclosetofemininityto portraywomenthenmenmustbetoocloseto masculinitytoplaymen,andviceversa. • Premise2:Andyet,iftheonnagata arecorrect, womenaretooclosetofemininitytoportraywomen andyetmenarenottooclosetomasculinitytoplay men. • Conclusion:Therefore,theonnagata areincorrect,and womenarenottooclosetofemininitytoportray women. • Note:onnagata aremaleactorsportrayingfemale charactersinkabukitheatre. 25 Whichdefinitionsshouldweuse? Onnagata:whichdefinitionsshouldweuse? a.w = women, m = men, f = femininity, m = masculinity, o = onnagata, c = correct b.w = women are too close to femininity, m = men are too close to masculinity, pw = women portray women, pm = men portray men, o = onnagata are correct c.w = women are too close to femininity to portray women, m = men are too close to masculinity to portray men, o = onnagata are correct d.None of these, but another set of definitions works well. e.None of these, and this problem cannot be modeled well with propositional logic. ▷ 26 TranslatingEnglishintopropositional logicexpressions • Premise1:Ifwomenaretooclosetofemininityto portraywomenthenmenmustbetoocloseto masculinitytoplaymen,andviceversa. • Premise2:Andyet,iftheonnagata arecorrect, womenaretooclosetofemininitytoportray womenandyetmenarenottoocloseto masculinitytoplaymen. • Conclusion:Therefore,theonnagata areincorrect, andwomenarenottooclosetofemininityto portraywomen. ▷ 27 Dothepremisescontradicteachother? • Dothetwopremisescontradicteachother(that is,isp1^p2alwaysfalse)? a. Yes b. No c. Notenoughinformationtotell ▷ 28 Whatcanweprove? • WecanprovethattheOnnagata arewrong. • Wecannotprovethatwomenarenottooclose tofemininitytoportraywomen. 29 Onelastquestion Consider the following: Alice is rich If Alice is rich then she will pay your tuition \ Alice will pay your tuition. Is this argument valid? Should you pay your tuition, or should you assume that Alice will pay it for you? Why? 30 Module4 outline • Proofsandtheirmeaning. • Apropositionallogicproof. • Theonnagata problem. • Furtherexercises. 31 Module4.3:Furtherexercises Provethatthefollowingargumentisvalid: p®q q ® (r ^ s) ~r v (~t v u) p^t \u Given the following, what is everything you can prove? p®q p v ~q v r (r ^ ~p) v s v ~p ~r 32 Module4.3:Furtherexercises Furtherexercises Hercule Poirot has been asked by Lord Maabo to find out who closed the lid of his piano after dumping the cat inside. Poirot interrogates two of the servants, Pearrh and Dr. Utuae. One and only one of them put the cat in the piano. Plus, one always lies and one never lies. Dr. Utuae: I did not put the cat in the piano. Tgahaa gave me less than $60 to help her study. Pearrh: Dr. Utuae did it. Tgahaa paid him $50 to help her study. Who put the cat in the piano? 33