Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
1 ADN 2 ADN DNA replication DNA replication is semi-conservative DNA polymerases Replication origins Assembly of the replication fork Further readings : http://www.dnaftb.org/dnaftb/ http://www.dnareplication.net/ 1 DNA replication is semi-conservative M. Meselson & P Stahl Proc. Nat. Ac. Sci. 1958 2 The cell cycle G0 Mitosis In the resting state (G0), cells do not divide Gap 2 Gap 1 DNA Synthesis 3 DNA synthesis is catalyzed by DNA-dependent DNA polymerases DNA polymerase 5’GGATC dATP dTTP nucleotides dCTP dGTP CCTAGGAATCTTGGAACCGGGCCC primer 5’ PPi PPi PPi PPi PPi PPi GGATCCTTAGAACCTTGGCCCGGG CCTAGGAATCTTGGAACCGGGCCC template DNA polymerization takes place in the 5’ to 3’ direction DNA polymerase requires a template and a primer dNTP template strand strand to be synthesized Stryer et al. Biochemistry, Freeman Edt 4 DNA replication requires a primase to start DNA replication is catalyzed by a DNA-dependant DNA polymerase in the 5 ’ to 3 ’ direction starting at double strand DNA or at a DNA-RNA hybrid A primase synthesize a RNA primer to initiate replication DNA polymerases are processive : processivity is the number of phosphodiester bonds that a single enzyme is able to catalyze before dissocation dNTP template strand strand to be synthesized 5 Leading and lagging strands RNA primase Okazaki fragments Size of Okasaki fragments : eukaryotes 200 bp Alberts et al. MBOC, Garland Edt 6 On the « leading strand », DNA is continuously synthesized Replication fork primase DNA helicase NTP 3’ 5’ RNA primer 3’ DNAPol d dNTP DNA helicase 5’ 7 On the « lagging strand », DNA is synthesized discontinuously RNA primer NTP DNAPol a primase 5’ DNA helicase 3’ DNAPol e dNTP RNA primer 5’ DNA helicase 3’ RNAse and dNTP DNAPol e RNA primer 5’ DNA helicase 3’ ligase 5’ Replication fork RNA primer DNA helicase 3’ 8 The core of the eukaryote replication complex DNAPol d DNAPol e Linda B. Bloom, University of Florida http://www.med.ufl.edu/IDP/BMB/bmbfacultypages/lindabloom.html DNAPol a primase Movies 5.1 (Molecules and Complexes) and 5.4 (Cell functions) Mol. Biol. Cell Eukaryote cells possesses several DNA polymerases (> 15) a d e nucleus nucleus nucleus 250 kDa 170 kDa 260 kDa DNA primase, lagging strand leading strand lagging strand, DNA repair 9 Main components of the DNA replication complex The catalytic core DNA polymerase a – primase DNA polymerase d, e Replication protein C* Proliferating cell nuclear antigen (PCNA) primer RNA synthesis DNA synthesis, leading+lagging strands load PCNA on DNA sliding clamp ensuring processivity Topoisomerase Helicase* Adjusts DNA supercoiling Unwinds DNA into strands Replication protein A Flap endonuclease 1 Dna2 RNase H1 DNA ligase 1 single strand DNA binding protein removes RNA 5’-flap removes RNA joins Okasaki fragments The replisome * uses ATP Cyclin A, cyclin B1 Cyclin dependent kinase 1, 2 (CDK1, CDK2) + 11 other proteins… Temporal regulation Maga and Hübscher 1996 Biochemistry 35: 5764-5777 Waga and Stillman 1994 Nature 269: 207-212 Frouin et al. 2003 EMBO reports 4: 666-670 Hübscher and Yeon-Soo Seo 2001 Mol. Cells 12: 149-157 10 The central role of PCNA PCNA (proliferating cell nuclear antigen) is a homotrimeric protein that helps DNA polymerase processivity in eukaryotic cells. During the S-phase, it assembles around DNA and form a DNA clamp. PCNA associates with RFC, DNA polymerases d and e, Fen1/Dna2, Lig1 (+ 15 other proteins !) At 3’ OH end : RFC displaces Pol-a and loads PCNA + Pold/e At the flap structure : RFA dissociates Pole from PCNA PCNA recruits Fen1/Dna2 which cleaves the flap structure PCNA recruits Lig1 that joins the DNA fragments PCNA is also involved in DNA repair mechanisms PDB 1AXC Maga and Hübscher 2003 Journal of Cell Science 116: 3051-3060 11 Replication is coordinated at replication factories Visualization of DNA replication in living cells using GFP-PCNA FRAP experiments shows that PCNA is stably associated to replication factories GFP PCNA Essert et al. 2005 Mol. Cell Biol. 25 : 9350-59 12 Replication is coordinated at replication factories Visualization of DNA replication in living cells using GFP-PCNA FRAP experiments shows that PCNA is stably associated to replication factories Essert et al. 2005 Mol. Cell Biol. 25 : 9350-59 13 Replication starts at replication origins 1. Activation ORC : origin replication complex MCM : minichromosome maintenance complex Replisome 2. Extension 3. Termination There are about 100-1000 replication origins per chromosome Replication origins are recognized by specific protein complexes : ORC ‘origin recognition complex) and MCM (minichromosome maintenance complex) Replication speed : 10-50 bp/s The onset of DNA replication is triggered by « cell division cycle dependant kinases » (CDK) 14 DNA repair Molecular origin of DNA mutations General repair mechanisms The p53 protein controls DNA damage at a specific checkpoint of the eukaryote cell cycle 15 Sources of DNA damage Replication errors: DNA polymerase frequency 1/107 Molecular damages to DNA: Exogenous Origin DNA damage sun (1h/day) chemical T-T dimers adducts (base modification) single strand breaks double strand breaks 6-8.104 102-105 Possible repair Y N 2-4.104 ? Y ± single strand breaks adducts/breaks adducts genome integration 2-4.104 104 102 ? ? Y Y Y N ? radioactivity (natural background) Endogenous temperature free radicals metabolites viruses transposons number/cell.day 16 DNA repair mechanisms Damage type Repair Recognition T-T dimers Restriction Adducts Excision Single strand breaks Synthesis Ligation Double strand breaks Excision or direct ligation Recombination Ligation 17 The COMET assay to measure DNA damages also called single cell gel electrophoresis (SCGE) 18 Ames test (Salmonella-his reversion-test ) for mutagenicity This experiment employed six strains of Salmonellatyphimurium histidine auxotroph mutants, deficient in the synthesis of histidine, an amino acid necessary for bacterial growth. The histidine auxotrophs will only grow in a medium containing sufficient histidine supplement. To revert to histidine production (prototrophy), or become his+,a reverse mutation must occur in the original his- mutation (found in one of the genes involving histidine biosynthesis). When plated onto an agar media containing a trace (1/1000 dilution) of histidine, only his+ revertants will grow to form a visible colony. chemical to be tested The presence of visible colonies signifies a reverse mutation. Each of the six bacterial strains carries a different type of mutation (Table 1), making it possible to assess the type of mutation caused by the chemical under examination. When a chemical mutagen is introduced into the bacterial population on a filter disc, a higher number of revertants will appear, signalling the chemical causes genetic mutations. The Ames test includes using liver extract to simulate mammalian metabolic activity which may alter non-mutagenic chemicals to become mutagenic. The liver extract is generally obtained from rats treated with Aroclor 1254 to induce the presence of detoxifying enzymes. Inhibition zone Brian Krug: Ames Test: Chemicals to Cancer growth ring Strain # S. typhimurium Type of Mutation Detected Strain Name 1 TA98 detect frame-shift mutations 2 TA100 detect base pair substitutions 3 TA102 detect excision repair 4 TA104 detect base-pair substitutions 5 TA1534 detect frame-shift mutation 6 TA1530 detect base pair substitutions 19 Exemple of repair : thymine dimers (induced by UV light) Tymine dimer repair enzyme : specific DNA endonuclease 20 Metabolism et carcinogenicity of Benzo[a]Pyrene Benzo[a]pyrene is a product of incomplete combustion at temperatures between 300 and 600 °C. translocation to the nucleus aromatic molecule (L) Aryl hydrocarbon Receptor AhR AhR-L AhRE AhR-L AhRE induction of specific mRNA (AhRE) benzo[a]pyrene (BP) CYP1A1, CYP1A2 epoxide hydrolase benzo[a]pyrene-7,8-dihydrodiol -9,10-epoxide P450 cytochromes (phase I) : CYP1A1, CYP1A2, CYP1B1, CYP2S1 Phase II enzymes : GST, UGT (detoxification mechanism) the diol epoxide covalently binds to DNA (adduct) Growth Differentiation Metabolism (toxicity) Increased DNA mutations & cancer 21 Shimizu et al. (2000) PNAS 97 : 779-782 Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor Individual susceptibility to xenobiotics. Exemple of CYP genes Dossier INSERM Dioxines dans l’environnement. Quels risques pour la santé ? http://ist.inserm.fr/basisrapports/rapport.html 22 ADN1 + ADN2 ADN3 + ADN4 DNA recombination : programmed random modifications of the genome Molecular mechanisms of homologous recombination Site specific recombination Conjugation, mechanism of bacterial parasexuality The VDJ recombination, one of the mechanisms that generate antibody and TCR diversity The crossing-over at meiosis increases genomic diversity in the population Transposons and viruses are mobile DNA/RNA sequences 23 1. Homologous recombination Condition : presence of two homologous sequences in adjacent chromosomes or DNA molecules The mechanism of homologous recombination homology Holliday junction cleavage 1 exchange cleavage 2 ligation displacement (branch migration) ligation 25 RecA proteins catalyze the exchange of DNA strands ... Structure of a RecA polymer ATP hydrolysis ATP binding site 26 … in the 5’ to 3’ direction without RecA with RecA … dans un seul sens Driving force : ATP hydrolysis 27 Recombination events in cells Example Cells Effect Effector proteins Crossing-over Meiotic cells ( germinal cells) genome RecA-D like rearrangements proteins Virus integration Host cell genome dormancy lytic/lysogenic phases Integrase Integration Host Factor Conjugation Bacteria gene exchange Integrase VDJ recombination lymphocytes antibody and TCR diversity Rag1-2 Transposons all cells genome Transposases rearrangements 28 Mitosis, meiosis and fecundation example of a diploid organism with 2 pairs of homologous chromosomes diploid gametes diploid 2 haploids 2 diploids diploid MITOSIS 4 haploids FECUNDATION MEIOSIS 29 Mitosis : 1 diploid -> 2 diploids Mitotic spindle DNA replication separation of sister chromatides decondensation of chromosomes centromere s Chromosome condensation separation of daughter cells (cytokinesis) Sister chromatides 30 Meiosis : 1 diploid -> 4 haploids synaptolemal complex DNA replication Pairing of homologous chromosomes 1st mitosis separation of homologous chromosomes centromere Chromosome condensation gametes Sister chromatids 2nd mitosis 31 Recombination during meiosis synaptolemal complex DNA replication Pairing of homologous chromatids and crossing-over 1st mitosis segregation of homologous chromosomes centromer Chromosome condensation gametes sister chromatids 2ndmitosis 32 Non-Mendelian transmission « Crossing over » simple paternal chromosome maternal chromosome homologous sequence frequency : 1/107 base pairs, at least one per chromosome double Mitochondrial DNA transmission Exclusive transmission of mother mitochondria Epigenetics Some genes are inactivated by methylation, the methylation state can be transmitted to daughter cells. Example : inactivation of one chromosome X in women 33 Application of recombination : gene knock-out by insertion blasticidineR target gene blasticidineR Recombination (double crossing-over) WT ampicillineR Dphg1a Dphg1b DDphg1a/b PHG1A Anti-PHG1A PHG1B Benzhegal et al. 2002 Anti-PHG1B 34 2. Site-specific recombination Condition : presence of a specific sequence repeated twice Mechanism : specialized protein complex, no branch migration Specific case : recombination with a circular DNA molecule • Simple recombination • Double recombination • Recombination with circular DNA : local double recombination (no branch migration) Example 1 : site-specific recombination of a virus The two states of the bacteriophage l Reversible recombination DNA of the bacterio phage l attP DNA of E. coli attB Integrase Integration Host Factor Excisionase Integrase Integration Host Factor Recombinant DNA 37 Integrase mechanism phage l DNA attP E. Coli DNA attB recombinant DNA pairing, double cleavage, double exchange, ligation 38 phage DNA attB attP bacterial DNA Conformation 1 : phage and bacterial DNA separated Conformation 2 : phage and bacterial DNA fused 39 integration Phage integration in bacterial genome excision Biswas et al. (2005) A structural basis for allosteric control of DNA recombination by λ integrase Nature 435 : 1059-1066 40 Example 2. The F-factor allows gene exchange between bacteria Conjugation Reversible recombination factor F « female » bacterial chromosome integration DNA Hfr chromosome excision « male » plasmide F ’ episome F F’ plasmids often carry virulence factors 41 Example 3 : genetic rearrangements in B lymphocytes Example : light chain k of antibodies recombination splicing RAG : recombination activating genes RSS : recombination signal sequences 42 In some cases, as shown in the left panels, the V and J gene segments have the same transcriptional orientation. Juxtaposition of the recombination signal sequences results in the looping out of the intervening DNA. Heptamers are shown in orange, nonamers in purple, and the arrows represent the directions of the heptamer and nonamer recombination signals. Recombination occurs at the ends of the heptamer sequences, creating a signal joint and releasing the intervening DNA in the form of a closed circle. Subsequently, the joining of the V and J gene segments creates the coding joint. In every V-region recombination event, the signals flanking the gene segments are brought together to allow recombination to take place. Immunobiology: The Immune System in Health and Disease. 5th Ed.Janeway CA et al. New York: Garland Science; 2001. In other cases, illustrated in the right panels, the V and J gene segments are initially oriented in opposite transcriptional directions. Bringing together the signal sequences in this case requires a more complex looping of the DNA. Joining the ends of the two heptamer sequences now results in the inversion and integration of the intervening DNA. Again, the joining of the V and J segments creates a functional Vregion exon. 43 Applications of recombination : the Cre-Lox system Cre recombinase : a P1 phage enzyme that catalyzes recombination between two LoxP sequences : LoxP : ATAACTTCGTATAGCATACATTATACGAAGTTAT Example : RIP-CreER transgenic mice have a tamoxifen inducible Cre-mediated recombination system driven by the rat insulin 2, Ins2, promoter. The transgene insert contains a fusion product involving Cre recombinase and a mutant form of the mouse estrogen receptor ligand binding domain. The mutant mouse estrogen receptor does not bind natural ligand at physiological concentrations but will bind the synthetic ligand, 4-hydroxytamoxifen. Restricted to the cytoplasm, the Cre/Esr1 protein can only gain access to the nuclear compartment after exposure to tamoxifen. When crossed with a strain containing a loxP site flanked sequence of interest, the offspring are useful for generating tamoxifen-induced, Cre-mediated targeted deletions. Tamoxifen administration induces Cre recombination in islet cells of the pancreas. About 100 loxP-flanked genes bearing strains are available at Jackson 44 Inducible tissue specific promoter Mating 3. Transposon and viruse integration in the genome Condition : random (?) integration in the genome Mechanism : specialized protein complex, no branch migration, duplication of ends Transposons are mobile DNA sequences in genomes transposase transcription traduction excision insertion example : Tn5 transposon and transposase 47 The presence of transposons allows gene duplication, inversion or excision by homologous recombination DELETION INVERSION DUPLICATION 48 Viruses and transposons Transposons Viruses no specific insertion sites frequency of mobility: 10-6 per generation Abundance variable in genomes (10% in drosophila, 40% in men) coat proteins use receptors to enter the cells type I transposons (retrotransposons) transcriptase réverse RNA viruses cDNA ARNm reso lvase transcrip tase réverse resolvase type II transposons acti vi té de restriction DNA viruses ADN exci sé acti vi té d'i ntégration transposase ARNm 49 Fast and slow viruses Fast viruses Productions de protéines et Production of viral proteins acides nucléiques and nucleic acids,viraux formation par la cellule et enpaquetage of new virus particle de nouveaux Cell death virus Destruction de la cellule entréeentry du virus Virus by fusion of the virus envelope with par fusion avec the plasma membrane la membrane plasmique thanks to cell receptors gràce à des récepteurs de la surface cellulaire Pour les viruses, virus à ARN For RNA a reverse transcriptase copie en ADN par une copy their RNA réverse into transcriptase DNA virale The virus de takes control Contrôle la cellule of the cell Slow viruses Intégration dans le génome Genome integration Silence expression Silent expression Dormance Dormancy 50 Transmission des caractères parentaux chez l ’homme Père Mère 22 paires de chromosomes autosomaux homologues Cip/Cim 2 chromosomes sexuels Xm/Yp 22 paires de chromosomes autosomaux homologues Cip/Cim 2 chromosomes sexuels Xm/Xp spermatozoïdes ovules 22 chromosomes autosomaux Cip ou Cim 1 chromosome sexuel Xm ou Yp 22 chromosomes autosomaux Cip ou Cim : 1 chromosome sexuel Xm ou Xp Enfant 22 paires de chromosomes autosomaux homologues Cip ou Cim / Cip ou Cim 2 chromosomes sexuels Xm ou Yp/ Xm ou Xp 246 = 1013 possibilités 52 Génétique mathématique Un gène allèles génotype phenotype Deux gènes A/A F a/a f lignées pures A/a F A/a F hybride de 1ière génération A/a B/b F G hybride de 1ière génération A/a B/b F G B/B B/b b/b A/A FG FG Fg A/a FG FG Fg fG fG fg A/A F a/a f A/a hybrides de F 2de génération a/a 0.25 0.25 0.5 indépendants B/B A/A 1/16 B/b b/b 1/8 1/16 A/a 1/8 1/4 1/8 a/a 1/16 1/8 1/16 B/B B/b b/b crossing-over B/B B/b b/b A/A 1/4-2e e e2 A/a e 1/2-2e2 e liés a/a e2 e 1/4-2e A/A 1/4 0 0 A/a 0 1/2 0 a/a 0 0 1/4 e : fréquence de crossing-over, dépend de la distance entre les gènes (cMg :: e = 0.01) gènes portés par deux chromosomes différents (ou éloignés cf crossing-over) gènes portés par le même chromosome AB/ab 53 L’ADN simple brin est généré par l ’action d ’une hélicase et d’une endonuclease du complexe RecBCD Chez E. coli, la recombinaison homologue a lieu à des sites spécifiques appelés « chi site » dont la séquence est GCTGGTGG, situés environ toutes les 4000 paires de base Chez E. coli, la recombinaison est catalysée par l ’action de quatres protéines RecA, RecB, RecC et RecD 54