Download V out - UniMAP Portal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EET 423
POWER ELECTRONICS -2
Prof R T Kennedy
POWER ELECTRONICS 2
1
BUCK CONVERTER CIRCUIT CURRENTS
Ii n
Ids a IL
Ifwd
IL b Iout
L
IC
Ids
Ei n
Ifwd
Prof R T Kennedy
C
POWER ELECTRONICS 2
R Vout
2
BUCK CONVERTER CIRCUIT VOLTAGES
Vds
a
VL,a-b
b
L
Ei n
Prof R T Kennedy
Vfwd
C
POWER ELECTRONICS 2
R Vout
3
SUB INTERVAL EQUIVALENT CIRCUITS
VL,a-b= Ein-Vout
Vds = 0
a
L
rds,on
MOSFET
Ei n
ON
Vfwd = -Ein
b
C
R
Vout
RECTIFIER
OFF
Prof R T Kennedy
POWER ELECTRONICS 2
4
SUB INTERVAL EQUIVALENT CIRCUITS
Vds = Ein
VL,a-b= -Vout
a
b
L
MOSFET
Ei n
C
OFF
R Vout
Vfwd= 0
RECTIFIER
ON
Prof R T Kennedy
POWER ELECTRONICS 2
5
Vgs
0
Ein
0
Vds
Ein =Vds +(- Vfwd)
0
0
Vfwd
0
VL
Vout
VL + Vout = -Vfwd
0
0
Prof R T Kennedy
POWER ELECTRONICS 2
6
Vgs
0
Ein
Ein = Vds + (-Vfwd)
0
-Vfwd
Vds
0
0
Vfwd
0
VL
Vout
0
0
Prof R T Kennedy
POWER ELECTRONICS 2
7
SMPS OPERATION
QUANTIZED POWER/ENERGY TRANSFER
VOLTAGE REGULATION
Prof R T Kennedy
POWER ELECTRONICS 2
8
VOLTAGE TRANSFER FUNCTION ANALYSIS
• ENERGY BALANCE
• POWER BALANCE
• VOLT-TIME INTEGRAL
Prof R T Kennedy
POWER ELECTRONICS 2
9
‘IDEAL’ BUCK ANALYSIS CCM
ENERGY BALANCE APPROACH
IL,M
INDUCTOR CURRENT
I L  I out
I L
2
IL,av = Iout
I L
2
I L, M

I out 
I L
2
I L, m

I out 
I l
2
I L, M  I L, m

2  I out
I L, M  I L, m

I L  I out
I L, M 2Prof
 I LR, mT2Kennedy
 2  I out  I L
IL,m
0
t
POWER ELECTRONICS 2
10
SUB INTERVAL -1: MOSFET ON
JL

1
L( I L, M 2  I L, m 2 ) 
2
ON
Ei n
a
ENERGY
STORED
L
L  I out  I L
b
C
OFF
R
LOAD ENERGY
from source
INPUT
ENERGY
J load , s
J in
 Pin  ton
Prof R T Kennedy

Pout  ton  Vout  I out  Dsw  T
 Ein  I out  Dsw  T
POWER ELECTRONICS 2
11
SUB INTERVAL -2: RECTIFIER ON
NO INPUT
ENERGY
Ei n
OFF
ON
ENERGY
Discharge
a
b
L
C
R
J load, L
Jload, L
Prof R T Kennedy
 Vout  I out  D fwd  T
LOAD ENERGY
from inductor

L  I out  I L
 Vout  I out  (1  Dsw )  T
POWER ELECTRONICS 2
12
J load , s  J load, L
total load energy
(Vout  I out  Dsw  T )  (Vout  I out  (1  Dsw )  T )
J load, s  J load, L
Dsw Ein
Prof R T Kennedy
 (Vout  I out  T )
total load energy

input energy
Vout  I out  T


Ein  I out  Dsw  T
Vout
Vout
 Dsw
Ein
POWER ELECTRONICS 2
13
‘IDEAL’ BUCK ANALYSIS CCM
POWER BALANCE APPROACH
INPUT CURRENT = MOSFET CURRENT
IL,M
Iout
IL,m
Iin
Iin,av = Ids,av
0
Dsw T
Pout

Pin
Vout  I out

Ein  I in, av
Vout  I out

Ein  Dsw  I out
Vout

Prof R T Kennedy
Ein
Dsw
Dfwd T
POWER ELECTRONICS 2
t
14
FARADAY’S VOLT-TIME INTEGRAL
IM
INDUCTOR CURRENT
Im
current start and finish at same value
0
t
V1
INDUCTOR VOLTAGE
0
t1
t
V2
t2
VL, av

1 T  di 
L
dt
T 0  dt 
VL, av

1 T
L di
T 0
VL, av

L T
I 
T 0
VL, av

L
I 0  IT   0
T
T
EQUAL AREAS
T
0 v(t ) dt
V1  t1
Prof R T Kennedy
0
 V2  t2
POWER ELECTRONICS 2
15
‘IDEAL’ BUCK ANALYSIS CCM
VOLT-TIME INTEGRAL APPROACH
INDUCTOR VOLTAGE
IL
0
Ein -Vout
VL area A
0
area B
Dsw T
Prof R T Kennedy
-Vout
Dfwd T
POWER ELECTRONICS 2
t
16
‘IDEAL’ BUCK ANALYSIS CCM
VOLT-TIME INTEGRAL APPROACH
INDUCTOR VOLTAGE
area A

area B
 0
( Ein  Vout )  Dsw  T 

 Vout  (1  Dsw )  T 
 0
( Ein  Vout )  Dsw  T

Vout  (1  Dsw )  T
Vout
Ein

Dsw
Prof R T Kennedy
POWER ELECTRONICS 2
17
BUCK CONVERTER CCM
voltage & current waveforms
‘ideal’
• refer to msw notelet
Prof R T Kennedy
POWER ELECTRONICS 2
18
Vgs
I L , rise Ein (1  Dsw )

dt
L
0
I out 
Iout
I C , rms 
0
Ic
Dsw Ein
R
I L 
I L
12
d
D E  (1  Dsw ) R 
I L, M  sw in 1 

R
2 L f sw 

0
( Ein  Vout ) Dsw
 I C
L f sw
I L , fall
dt
s
D E
 sw in
L
k
a
I out
Vout
IL
0
I L, m 
Dsw Ein
R
 (1  Dsw ) R 
1 

2 L f sw 

I L, rms 
Dsw ( Ein  Vout )
12 L f sw
2

1  I  
I ds, rms  I out Dsw 1   L  
 12  I out  


I ds, av  Dsw  I out
I out
Ids
0
I out
Ifwd
I fwd, av  D fwd  I out
0
d
s
k
2

1  I  
I fwd , rms  I out D fwd 1   L  
 12  I out  


a
Ein
Ein
0
Ein
Ids Vds
Vds
0
0
Vfwd
Ei n
 Ein
Ein  Vout
Vgs
fsw
VL
L
IL Iout
IC
Vfwd C
Ifwd
Iout
R
VL 0
 Vout
Vout
Vout  Dsw Ein
0
Dfwd = 1-Dsw
DfwdT
swTT Kennedy
ProfDR
POWER ELECTRONICS 2
19
INDUCTOR CURRENT WAVEFORMS
• CCM or DCM operational mode
• component current stress
• capacitor ripple current
• output voltage ripple
• converter efficiency
• closed loop regulation performance
Prof R T Kennedy
POWER ELECTRONICS 2
20
INDUCTOR CURRENT v INDUCTANCE
REDUCTION in L
IL
Iout
0
EinVout
VL
0
-Vout
t
DswT
Prof R T Kennedy
Dfwd T
POWER ELECTRONICS 2
21
INDUCTOR CURRENT v INDUCTANCE
increased
REDUCTION in L
Isw,max
IL
Ifwd,max
Iout
0
IC,ripple
Ein-Vout
VL
Vout,ripple
0
-Vout
t
DswT
dI L, rise
dI L, fall
dt
dt
Dfwd T
Prof R T Kennedy
POWER ELECTRONICS 2
22
INDUCTOR CURRENT
I L, M

I L, M

I out 
I L
2
I L
Vout Vout  (1  Dsw )

R
2  L  f sw

Vout (1  Dsw ) Ein  Dsw  (1  Dsw )

L  f sw
L  f sw
V 1  M 
I L  out 

R  L 
 (1  Dsw )  R 
1 

2

L

f
sw


I L, M

Vout
R
I L, M

Dsw  Ein
R
 (1  Dsw )  R 
1 

2

L

f
sw 

I L, m 
V  1 M 
I L, M  out 1 

R 
2 L 
Dsw  Ein
R
 (1  Dsw )  R 
1 

2

L

f
sw 

V  1 M 
I L, m  out 1 

R 
2 L 
V
M  out
Ein
L f sw
L

RR
Tsw
R
Prof
T Kennedy
L 
POWER ELECTRONICS 2
23
INDUCTOR CURRENT
Dsw > 0.5
Dsw= 0.5
I L
IL
Iout
I L
Dsw < 0.5
I L
0
Dsw = 0.2
Dsw = 0.5
Dsw = 0.8
Prof R T Kennedy
t
POWER ELECTRONICS 2
24
INDUCTOR CURRENT
dI L, rise
dt

Ein (1  Dsw )
L
dI L, fall
dt

Ein Dsw
L
DOWNSLOPE
UPSLOPE
I L
IL
I L
I L
0
t
Prof R T Kennedy
POWER ELECTRONICS 2
25
INDUCTOR
PEAK-PEAK RIPPLE CURRENT
I L

Ein  Dsw  (1  Dsw )
L  f sw
I L  f n Dsw (1  Dsw )
I L, max
I L
0
Prof R T Kennedy
0.5
Dsw
POWER ELECTRONICS 2
1
26
J
IL
t
0
IL
t
0
IL
t
0
Prof R T Kennedy
POWER ELECTRONICS 2
27
L
IL
t
0
IL
t
0
IL
t
0
Prof R T Kennedy
POWER ELECTRONICS 2
28
L
IL
t
0
IL
t
0
IL
t
0
Prof R T Kennedy
POWER ELECTRONICS 2
29
‘IDEAL’ BUCK CCM DEVICE CURRENT
I out
IL
I sw, M
I sw
I sw, rms
I sw, av
I fwd
I fwd, M
I fwd, rms
I fwd, av
Dsw
Prof R T Kennedy
D fwd
POWER ELECTRONICS 2
30
‘IDEAL’ BUCK CCM DEVICE CURRENT
I out
IL
I sw, M
I sw
I sw, rms
I sw, av
I fwd
I fwd, M
I fwd, rms
I fwd, av
Dsw
Prof R T Kennedy
D fwd
POWER ELECTRONICS 2
31
‘IDEAL’ BUCK CCM TRANSISTOR CURRENT
CCM TRANSISTOR CURRENT
IM
Vout   1  Dsw  R 


1  
R   2  L f sw 
Vout   1  M 

1  
R   2  L 
Iav
Vout
Dsw 
R
Vout
M 
R
Irms
 Dsw (1  Dsw ) 2  R  2 Vout
Vout

 
Dsw  
Dsw



R
12
Lf
R

 sw 
IL
2
Vout  1  1  M   Vout
 
M 1  
M

R
 12  2  L   R


 R 
Vout
1  Dsw  
R
 L f sw 
Vout  1  M 


R  L 
V
M  out
Ein
Prof R T Kennedy
POWER ELECTRONICS 2
L 
L f sw
R
32
‘IDEAL’ BUCK CCM RECTIFIER CURRENT
CCM RECTIFIER CURRENT
Vout   D fwd
1  
R   2
IM

Vout
D fwd
R
Iav
Irms

rms
av
 R 
Vout

D fwd 
R
L
f
 sw 

 D fwd
 
D fwd  12
1
Vout   1  M 

1  
R   2  L 
Vout
1  M 
R
 ( D fwd ) 3  R  2 V
Vout

out

D fwd  

D fwd



R
R
 12  L f sw 


IL
ffi 
 R 


 L f 
 sw 

 1 1 M 2  V
Vout
   out M
M 1  
R
 12  2  L   R


Vout  1  M 


R   L 
M
1 M
2
 R 
1



 L f 
D fwd
 sw 
V
M  out
Ein
Prof R T Kennedy
POWER ELECTRONICS 2
L 
L f sw
R
33
OUTPUT
EFFECTS
L
Ei n
Iin
0
Prof R T Kennedy
C
s/c
Vout= 0
dI in Ein

dt
L
t
POWER ELECTRONICS 2
34
OUTPUT
EFFECTS
L
Ei n
C
o/c
VoutEin
Prof R T Kennedy
POWER ELECTRONICS 2
35
POWER - UP EFFECT
L
Ei n
Prof R T Kennedy
C
POWER ELECTRONICS 2
Vc = 0
R
Vout
36
POWER - DOWN EFFECT
L
Ei n
Prof R T Kennedy
C
POWER ELECTRONICS 2
R
Vout
37
CCM-DCM BOUNDARY
I L
 I out
2
IL
I out
0
t
Dsw T
L  f sw 1  Dsw

R
2
I L
2
I out

Vout
R
Vout (1  Dsw )

2  L  f sw
L  Lcritical
Prof R T Kennedy
I L
 I out
2
POWER ELECTRONICS 2

(1  Dsw )  R
2  f sw
38
CCM-DCM BOUNDARY
0.5
0.45
0.4
CCM :
0.35
0.3
L  f sw 1  Dsw

R
2
boundary
L  f sw 1  Dsw

R
2
L  f sw
0.25
R
0.2
0.15
DCM :
0.1
0.05
0
L
Tsw
0
L  f sw 1  Dsw

R
2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Dsw

normalised

L f sw
Prof R R
T Kennedy
inductor
time
constant
POWER ELECTRONICS 2
39
CCM-DCM BOUNDARY
0.5
0.45
0.4
CCM
0.35
0.3
L  f sw
0.25
R
boundary
0.2
0.15
0.1
0.05
0
DCM
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Dsw
CCM
Prof R T Kennedy
POWER ELECTRONICS 2
40
CCM-DCM BOUNDARY
L Dsw fsw
0.5
0.45
0.4
constant
CCM / DCM
determined by R
CCM
0.35
0.3
L  f sw
0.25 INCREASE R
R
0.2 ‘light loading’
0.15
0.1
0.05
0
to ensure a desired CCM
DCM
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
does not transfer to DCM
1
Dsw
specify a minimum load current
(maximum R)
avoid open circuit operation
Prof R T Kennedy
POWER ELECTRONICS 2
41
CCM-DCM BOUNDARY
R Dsw fsw
0.5
0.45
0.4
constant
CCM / DCM
determined by L
CCM
0.35
0.3
L  f sw
0.25 DECREASE L
R
0.2
0.15
0.1
0.05
to ensure a desired CCM
0
DCM
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
does not transfer to DCM
1
Dsw
design for CMM
at lowest inductance
including  L v  I
Prof R T Kennedy
POWER ELECTRONICS 2
42
CCM-DCM BOUNDARY
R Dsw fsw
0.5
0.45
0.4
constant
CCM / DCM
determined by fsw
CCM
0.35
0.3
L  f sw
0.25 DECREASE fsw
R
0.2
0.15
0.1
0.05
to ensure a desired CCM
0
DCM
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
does not transfer to DCM
1
Dsw
design for CMM
at lowest frequency
Prof R T Kennedy
POWER ELECTRONICS 2
43
CCM-DCM BOUNDARY
L R fsw
0.5
0.45
0.4
constant
CCM / DCM
determined by
Dsw
CCM
0.35
0.3
L  f sw
0.25 DECREASE Dsw
R
0.2
0.15
0.1
0.05
to ensure a desired CCM
0
DCM
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
does not transfer to DCM
1
Dsw
design for CMM
at lowest duty cycle
Prof R T Kennedy
POWER ELECTRONICS 2
44
LINE & LOAD REGULATION
1
M DCM
M DCM
M CCM
V
M  out
Ein
DCM
0.9
L f sw

R
0.8
0.7
CCM
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.1
0.2
0.3 0.4
0.5
0.6 0.7
Dsw
Prof R T Kennedy
POWER ELECTRONICS 2
0.8
0.9
1
Dsw
45
LINE & LOAD REGULATION
1
V
M  out
Ein
DCM
0.9
L f sw

R
0.8
0.7
CCM
0.6
M
0.5
0.4
0.3
0.2
0.1
0
0
0.1
0.2
0.3 0.4
Dsw, dcm
Prof R T Kennedy
0.5
0.6 0.7
0.8
D sw, ccm
POWER ELECTRONICS 2
0.9
1
Dsw
46