Download 0 - UniMAP Portal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EET 423
POWER ELECTRONICS -2
Prof R T Kennedy
1
SMPS OPERATION
QUANTIZED POWER/ENERGY TRANSFER
VOLTAGE REGULATION
Prof R T Kennedy
2
BASIC COMPONENTS
sw1
Ein
NON-ISOLATED
C
sw2
L
R
sw1
sw2
ISOLATED
SW1 controllable
Ein
T
C
L
R
BJT MOSFET IGBT
SW2 non-controllable (RECTIFIER pn or Schottky)
controllable (MOSFET)
Prof R T Kennedy
3
COMPONENT INTERCONNECTIONS
1
2
sw1
C
sw2
Ein
R
L
3
3
Prof R T Kennedy
4
SWITCHING CYCLE SUB INTERVALS
L
E in
C
R
a
E in
C
L
R
b
E in
L C
R
c
Prof R T Kennedy
5
BASIC TOPOLOGIES & CONSTRAINTS
SWITCH
sw1
12
L
Ein
13
C
R
sw2
23
sw2
L
E in
sw1
C
R
PROBLEM
L
L
L
Sw1
Sw2
ON
OFF
OFF
ON
OFF
OFF
ON
ON
Prof R T Kennedy
inrush current
short circuit source
output capacitor
voltage discharge
J
J
J
L
YES
YES
YES
NO
N
6
BASIC-1 BUCK CONVERTER
Ei n
L
sw1
C
sw2
R
Ei n
sw1
on
L
C
R
a
L
Ei n
c
L C
R
Ei n
sw2
on
Prof R T Kennedy
C
R Vout
7
BASIC-2 BOOST CONVERTER
sw2
L
L
C
E in
E in
sw1
sw1
on
R
sw2
on
R
b
L
L
E in
E in
C
C
R
C
R
a
Prof R T Kennedy
8
BUCK TOPOLOGY TERMINOLOGY
• Step Down Converter
output voltage  input voltage
• Direct Converter
direct energy transfer from input to output (sw1 on)
• Forward Converter
energy transferred forward supply  load (sw1 on)
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
Prof R T Kennedy
9
BUCK TOPOLOGY TERMINOLOGY
• Step Down Converter
output voltage  input voltage
• Direct Converter
direct energy transfer from input to output (sw1 on)
• Forward Converter
energy transferred forward supply  load (sw1 on)
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
Prof R T Kennedy
10
BOOST TOPOLOGY TERMINOLOGY
• Step Up Converter
output voltage  input voltage
• Indirect Converter
no direct energy transfer from input to output
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
Prof R T Kennedy
11
BOOST TOPOLOGY TERMINOLOGY
• Step Up Converter
output voltage  input voltage
• Indirect Converter
no direct energy transfer from input to output
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
Prof R T Kennedy
12
BUCK-BOOST COMBINED CONVERTER
L
E in
L
E in
C
R
C
R
Prof R T Kennedy
13
BUCK-BOOST COMBINED CONVERTER
L
E in
L
E in
C
R
C
R
Prof R T Kennedy
14
BUCK-BOOST COMBINED CONVERTER
L
L
E in
C
R
SWITCH
SYNCHRONISATION
Prof R T Kennedy
15
BUCK-BOOST COMBINED CONVERTER
L
Ein
sw1
on
C
R
b
L
Ein
C
sw2
on
R
c
Prof R T Kennedy
16
BUCK-BOOST COMBINED CONVERTER
Ein
C
L
R Vout
NOTE
VOLTAGE INVERSION
Prof R T Kennedy
17
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
E in
C1
C2
R
R
Prof R T Kennedy
18
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
E in
C1
R
Prof R T Kennedy
C2
R
19
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
C2
C1
SWITCH
R
SYNCHRONISATION
Prof R T Kennedy
20
BOOST-BUCK COMBINED CONVERTER
L1
Ein
L2
C1
C2
R Vout
NOTE
VOLTAGE INVERSION
Prof R T Kennedy
21
SMPS
TOPOLOGIES
POWER SUPPLIES
SWITCHING
LINEAR
HARD
SERIES SHUNT SWITCHED MODE
SMPS
SOFT
RESONANT
RPS
HYBRID
QRPS
2 BASIC TOPOLOGIES
BOOST
BUCK
BUCK DERIVED
BOOST DERIVED
COMBINED
SEPIC
FORWARD
PUSH PULL
1 or 2 Transistor
BRIDGE
BUCK-BOOST
BUCK-BOOST DERIVED BOOST –BUCK DERIVED
FLYBACK
HALF
FULL
BOOST -BUCK
CUK
1 or 2 Transistor
Prof R T Kennedy
22
SMPS
TOPOLOGIES
Prof R T Kennedy
23
RECAP SMPS APPLICATIONS
Prof R T Kennedy
24
INDUCTOR CURRENT MODES
Imax
Iind
1
2
o
Imin
2
1
CCM
t
Imax
Iind
I
I av  max
2
0
t
BOUNDARY
Imax
Iind
DCM
o
1
2
1
3
t
2
3
Imi
n
Prof R T Kennedy
25
BUCK CONVERTER CIRCUIT CURRENTS
Ii n
Ids a IL
Ifwd
IL b Iout
L
IC
Ids
Ei n
Ifwd
Prof R T Kennedy
C
R Vout
26
Vgs
BUCK CONVERTER
CIRCUIT CURRENTS
CCM
0
Iout
0
IC
0
IC,av= 0
0
0
IL
0
0
Ids,av 0
Ids
IL,av=Iout
Iin,av
Iout
IL=Ids+Ifwd
0
0
Ifwd
0
IL=Iout+IC
Iout
Ifwd,av
Prof R T Kennedy
27
Vgs
BUCK CONVERTER
CIRCUIT CURRENTS
CCM
0
Iout
0
IC
0
IC,av= 0
0
0
IL
0
0
Ids,av 0
Ids
IL,av=Iout
Iin,av
Iout
IL=Ids+Ifwd
0
0
Ifwd
0
IL=Iout+IC
Iout
Ifwd,av
Prof R T Kennedy
28
Vgs
Iout
IC
BUCK CONVERTER
CIRCUIT CURRENTS
DCM
0
0
IC,av= 0
0
IL=Iout+IC
IL,av=Iout
IL
0
Ids
Ids,av
Iin,av
0
IL=Ids+Ifwd
Ifwd
Ifwd,av
0
Prof R T Kennedy
29
BOOST CONVERTER CIRCUIT CURRENTS
Iin
IL
L
b Iout
IC
Ids
Ei n
Ifwd
a Ifwd
Ifwd
C
Ids
Prof R T Kennedy
R
Vout
30
Vg
0
Isout
0
IC
BOOST CONVERTER
CIRCUIT CURRENTS
CCM
IC,av= 0
0
Ifwd=Iout+ IC
IL,av=Iin,av
Ifwd
0
Ifwd,av
Ids,av
Id
s
Iout
IL,av
IL=Ids+ Ifwd
0
IL,av
IL
0
Prof R T Kennedy
31
Vg
0
Isout
0
IC
0
Ifwd
BOOST CONVERTER
CIRCUIT CURRENTS
DCM
IC,av= 0
Ifwd=Iout+ IC
Ifwd,av = Iout
0
Id
s
Ids,av
IL=Ids+ Ifwd
0
IL,av = Iin,av
IL
0
Prof R T Kennedy
32
WAVEFORM FORMULAE
C
DC- average
0
total- rms
D(1  D)  C
DC
( 1 - D) T
DT
AC- rms
D C
B
C
kC
A B
D
2
A
D 2
 D( A  B) 
( A  AB  B 2 )  

3
2


DC
0
DT
k
2( B  A)
B A
D 2
( A  AB  B 2 )
3
k2
D(1 
) C
12
(1 - D) T
C
A B
2
y
0
k2
D(1 
)  D2 C
12
2
0
Y
Prof R T Kennedy
y
3

Y
y
12
3

Y
12
33
WAVEFORM FORMULAE
DC- average
C
D
C
2
AC- rms
D D2

C
3
4
total- rms
D D2

C
3
4
0
D T (1-D) T
Prof R T Kennedy
34
TRAPEZOIDAL-SQUAREWAVE
RMS COMPARISON
B
kC
4
 1.155
3
C
A
0
D T (1 - D) T
rms, trap
rms, sq
rms, trap
k2
 1
rms, sq
12
1
2( B  A)
k
B A
C
A B
2
0
1
2
k
square wave
Prof R T Kennedy
CCM-DCM boundary
peak  peak ripple
k
2
pulse average
35
PARASITICS
PARASITIC EFFECTS
LOSSY
RESISTIVE
SOURCE
RS
INDUCTOR
rL
MAGNETICS
core loss
winding loss
CAPACITOR
esr
LOSSLESS
CAPACITOR
esl
SEMICONDUCTORS
RECTIFIER
VF
I rev rec
INDUCTOR
TRANSFORMER
leakage L
stray capacitance
TRANSISTOR
ON Loss
SWITCHING loss
BJT /IGBT
ce
BJTV/IGBT
MOSFET
rds,on
MOSFET
Vce
rds,on
Prof R T Kennedy
turn on
turn on
turn off
turn off
36
POWER and POWER LOSSES
MOSFET
IM
0

Pmos ,loss
 I M 2  Dmos  rds,on
DmosT
T
IGBT
IM
0
DigbtT
T
BJT
IM
0
I rms 2  rds,on
Pmos ,loss
Pigbt,loss

I av  Vce,on
Pigbt,loss
 I M  Digbt  Vce,on
PBJT ,loss

I av  Vce( sat )
PBJT ,loss
 I M  Dbjt  Vce( sat )
DbjtT
T
Prof R T Kennedy
37
POWER and POWER LOSSES
RECTIFIER
IM
0
Prect , loss

Prect , loss
 I M  Drect  V F
DrectT
T
RESISTOR
IM
I av  V F
I rms 2  R
PR, loss

PR, loss
 IM 2  D  R
0
R
DT
T
Prof R T Kennedy
38
SYSTEM POWERS and EFFICIENCY
v(t )  i (t )
p (t ) 
Pav
1 T
v(t ) i (t ) dt

T 0

T
T
Pav

0 v(t ) dt  0 i(t ) dt
T
T
Pav

voltage area current area

period
period
Pav

Vav  I av
Prof R T Kennedy
39
SYSTEM POWERS and EFFICIENCY
efficiency 
Pout, av
Pin, av

efficiency 
Pin, av  Ploss
Pin, av

Pout, av
Pout, av  Ploss
Vout  I out
Ein  I in, av
Prof R T Kennedy
40
VOLTAGE TRANSFER FUNCTION ANALYSIS
• ENERGY BALANCE
• POWER BALANCE
• VOLT-TIME INTEGRAL
Prof R T Kennedy
41
FARADAY’S VOLT-TIME INTEGRAL
IM
INDUCTOR CURRENT
Im
current start and finish at same value
0
t
V1
INDUCTOR VOLTAGE
0
t1
t
V2
t2
VL, av

1 T  di 
L
dt
T 0  dt 
VL, av

1 T
L di
T 0
VL, av

L T
I 
T 0
VL, av

L
I 0  IT   0
T
T
EQUAL AREAS
T
0 v(t ) dt
V1  t1
0
 V2  t2
Prof R T Kennedy
42
BUCK and BOOST CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
5
BOOST
4.5
Vout
1

1
Ein 1  Dsw1
4
3.5
Vout
Ein
3
2.5
2
1.5
BUCK
1
Vout
 Dsw1  1
Ein
0.5
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dsw1
1
Prof R T Kennedy
43
BUCK-BOOST
BOOST- BUCK CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
1
INVERTED
STEP DOWN (<1)
0
1
2
3
4
Vout
Ein 5
INVERTED
STEP UP (>1)
6
7
8
9
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Dsw1
Prof R T Kennedy
44
PRACTICAL SYSTEMS

Vout
Ein

Vout  I out
Ein  I in, av

 I in, av 

 
 I 
Vout
Vout

 efficiency
Ein practical
Ein ideal
Prof R T Kennedy
45