Download V out - UniMAP Portal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EET 423
POWER ELECTRONICS -2
Prof R T Kennedy
1
BUCK CONVERTER CIRCUIT CURRENTS
Ii n
Ids a IL
Ifwd
IL b Iout
L
IC
Ids
Ei n
Ifwd
Prof R T Kennedy
C
R Vout
2
BUCK CONVERTER CIRCUIT VOLTAGES
Vds
a
VL,a-b
b
L
Ei n
Vfwd
Prof R T Kennedy
C
R Vout
3
SUB INTERVAL EQUIVALENT CIRCUITS
VL,a-b= Ein-Vout
Vds = 0
a
L
b
MOSFET
Ei n
ON
Vfwd = -Ein
C
R
Vout
RECTIFIER
OFF
Prof R T Kennedy
4
SUB INTERVAL EQUIVALENT CIRCUITS
Vds = Ein
VL,a-b= -Vout
a
b
L
MOSFET
Ei n
C
OFF
R Vout
Vfwd= 0
RECTIFIER
ON
Prof R T Kennedy
5
Vgs
0
Ein
0
Vds
Ein =Eds + Efwd
0
0
Vfwd
0
VL
Vout
VL + Vout = -Vfwd
0
0
Prof R T Kennedy
6
Vgs
0
Ein =Vds - Vfwd
Ein
0
-Vfwd
Vds
0
0
Vfwd
0
VL
Vout
0
0
Prof R T Kennedy
7
SMPS OPERATION
QUANTIZED POWER/ENERGY TRANSFER
VOLTAGE REGULATION
Prof R T Kennedy
8
VOLTAGE TRANSFER FUNCTION ANALYSIS
• ENERGY BALANCE
• POWER BALANCE
• VOLT-TIME INTEGRAL
Prof R T Kennedy
9
‘IDEAL’ BUCK ANALYSIS
ENERGY BALANCE APPROACH
IL,M
INDUCTOR CURRENT
I L
I L
2
IL,av = Iload
I L
2
I L, M

I out 
I L
2
I L, m

I out 
I l
2
I L, M  I L, m

2  I out
I L, M  I L, m

I L  I out
I L, M 2  I L, m 2
 2  I out  I L
IL,m
0
Prof R T Kennedy
10
SUB-INTERVAL 1
inductor energy from source
JL
load energy from source

1
L ( I L, M 2  I L, m 2 ) 
2
J load , s
input power sub  int erval 1 Pin1
Prof R T Kennedy
L  I out  I L
 Vout  I out  Dsw  T

J load , s
Dsw  T
 Vout  I out
11
SUB-INTERVAL 2
VL  Vout

Vout

L  I L
load energy from inductor
total load energy
J 2,load
J load
L
L
di
dt
I L
(1  Dsw )  T

 Vout  (1  Dsw )  T
 L  I load  I ind

J1,load  J 2,load
Prof R T Kennedy
 Vload  I load  (1  Dsw )  T
 Vload  I load  T
12
switching
total load energy
J load
load power

Pload
period
J1,load  J 2,load

load energy from source
J load
T
 Vload  I load  T
 Vload  I load
J load , s
Prof R T Kennedy
 Vout  I out  Dsw  T
13
FARADAY’S VOLT-TIME INTEGRAL
IM
INDUCTOR CURRENT
Im
current start and finish at same value
0
t
V1
INDUCTOR VOLTAGE
0
t1
t
V2
t2
VL, av

1 T  di 
L
dt
T 0  dt 
VL, av

1 T
L di
T 0
VL, av

L T
I 
T 0
VL, av

L
I 0  IT   0
T
T
EQUAL AREAS
T
0 v(t ) dt
V1  t1
0
 V2  t2
Prof R T Kennedy
14
BUCK and BOOST CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
5
BOOST
4.5
Vout
1

1
Ein 1  Dsw1
4
3.5
Vout
Ein
3
2.5
2
1.5
BUCK
1
Vout
 Dsw1  1
Ein
0.5
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dsw1
1
Prof R T Kennedy
15
BUCK-BOOST
BOOST- BUCK CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
1
INVERTED
STEP DOWN (<1)
0
1
2
3
4
Vout
Ein 5
INVERTED
STEP UP (>1)
6
7
8
9
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Dsw1
Prof R T Kennedy
16
PRACTICAL SYSTEMS

Vout
Ein

Vout  I out
Ein  I in, av

 I in, av 

 
 I 
Vout
Vout

 efficiency
Ein practical
Ein ideal
Prof R T Kennedy
17