Download 8_EE462L_Fall2011_DC_DC_BuckBoost_PPT

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EE462L, Fall 2011
DC−DC Buck/Boost Converter
1
Boost converter
iin + v L1 –
Iout
+
Vout
–
L1
Vin
C
Buck/Boost converter
iin
+ v L1 –
L1
Vin
+ v C1 –
Iout
+
C1
L2
v L2
–
C
+
Vout
–
+ v C1 –
+
C1
L2
v L2
–
2
Buck/Boost converter
iin
+ v L1 –
L1
Vin
+ v C1 –
Iout
+
C1
L2
v L2
–
C
+
Vout
–
This circuit is more unforgiving than the boost converter, because the
MOSFET and diode voltages and currents are higher
• Before applying power, make sure that your D is at
the minimum, and that a load is solidly connected
• Limit your output voltage to 90V
3
KVL and KCL in the average sense
I in + 0 –
L1
Vin
I in
0
+ Vin –
C1
Iout
L2
Iout
Iout
+
0
–
C
0
+
Vout
–
KVL shows that VC1 = Vin
Interestingly, no average current passes from the source side, through
C1, to the load side, and yet this is a “DC - DC” converter
4
Switch closed
assume constant
iin
+ Vin –
L1
+ Vin –
+ v D–
+
Vout
–
+
C1
Vin
Iout
L2
v L2
–
C
KVL shows that vD = −(Vin + Vout),
so the diode is open
Thus, C is providing the load power when the switch is closed
iin
+ Vin –
L1
Vin
+ Vin –
– (Vin + Vout) +
C1
–
Vin
+
L2
C
Iout
Iout
+
Vout
–
iL1 and iL2 are ramping up (charging). C1 is charging L2.
C is discharging.
5
Switch open (assume the diode is conducting because,
otherwise, the circuit cannot work)
iin
+ Vin –
– Vout +
L1
assume constant
Iout
C1
Vin
L2
+
Vout
–
C
+
Vout
–
C1 and C are charging. L1 and L2 are discharging.
KVL shows that VL1 = −Vout
The input/output equation comes from recognizing that the average
voltage across L1 is zero
VL1avg  D Vin  1  D   Vout   0
Vout  (1  D)  D  Vin
DVin
Vout 
1 D
6
Inductor L1 current rating
During the “on” state, L1 operates under the same conditions
as the boost converter L, so the results are the same
Use max
2
I L1rms 
I in
3
7
Inductor L2 current rating
Average values
I in + 0 –
0
L1
Vin
C1
I in
2Iout
Iavg = Iout
0
+ Vin –
Iout
L2
Iout
Iout
+
0
–
C
0
+
Vout
–
iL2
ΔI
2
I L22rms  I out

1
2
2I out 2  4 I out
12
3
2
I L 2rms 
I out
3
Use max
8
MOSFET and diode currents and current ratings
iin
+ v L1 –
L1
+ v C1 –
Iout
+
C1
Vin
L2
v L2
–
C
+
Vout
–
iL1 + iL2
MOSFET
2(Iin + Iout)
0
2(Iin + Iout)
0
switch
closed
Diode
iL1 + iL2
switch
open
Take worst case D for each
Use max
I rms 
2
Iin  I out 
3
9
Output capacitor C current and current rating
iC = (iD – Iout)
2Iin + Iout
0
−Iout
switch
closed
switch
open
I in 
1  D I in
DI out
, I out 
1 D
D
As D → 1, Iin >> Iout , so I Crms 
2
I in
3
As D → 0, Iin << Iout , so
I Crms  I out
 2

I Crms  max 
I in , I out 
 3

10
Series capacitor C1 current and current rating
iin
+ Vin –
L1
Vin
– (Vin + Vout) +
C1
–
Vin
+
L2
iin
– Vout +
L1
Vin
+ Vin –
C
+ Vin –
Iout
Iout
+
Vout
–
Iout
C1
L2
+
Vout
–
C
+
Vout
–
Switch closed, IC1 = −IL2
Switch open, IC1 = IL1
11
Series capacitor C1 current and current rating
Switch closed, IC1 = −IL2
iC1
2Iin
0
Switch open, IC1 = IL1
switch
closed
switch
open
−2Iout
As D → 1, Iin >> Iout , so I C1rms  2 I in
3
As D → 0, Iin << Iout , so I C1rms 
2
I out
3
2
 2

I C1rms  max 
I in ,
I out 
3
 3

12
Worst-case load ripple voltage
iC = (iD – Iout)
0
−Iout
The worst case is where D → 1, where output capacitor C
provides Iout for most of the period. Then,
Q I out  T I out
V 


C
C
Cf
13
Worst case ripple voltage on series
capacitor C1
iC1
switch
open
2Iin
0
−2Iout
switch
closed
V 
I  DT I in  1  D T
 out

C1
C1
C1
Q
Then, considering the worst case (i.e., D = 1)
V 
I out
C1  f
14
Voltage ratings
+ Vin –
L1
– (Vin + Vout) +
C1
Vin
L2
C
+
Vout
–
MOSFET and diode see (Vin + Vout)
– Vout +
L1
Vin
+ Vin –
C1
L2
C
+
Vout
–
• Diode and MOSFET, use 2(Vin + Vout)
• Capacitor C1, use 1.5Vin
• Capacitor C, use 1.5Vout
15
Continuous current in L1
 Vout
A / sec
L1
iL
2Iin
Iavg = Iin
0
(1 − D)T
2 I in 
Vout
L1boundary
 1  D T 
DVin
1 D
L1boundary
 1  D T 
Vin D
L1boundary f
Vin D
L1boundary 
2 I in f
Then, considering the worst case (i.e., D → 1),
V
L1  in
2 I in f
use max
guarantees continuous conduction
16
use min
Continuous current in L2
2Iout
Iavg = Iout
 Vout
A / sec
L2
iL
0
(1 − D)T
2 I out 
Vout
L2boundary
 (1  D)T 
Vout (1  D)
L2boundary f
V (1  D)
L 2boundary  out
2 I out f
Then, considering the worst case (i.e., D → 0),
use max
V
L 2  out guarantees continuous conduction
2 I out f
use min
17
Impedance matching
I 1  D 
I out  in
D
Iin
+
Source
DC−DC Boost
Converter
Vin
Vout
−
+
DVin

1 D
−
V
Rload  out
I out
Iin
+
Vin
Equivalent from
source perspective
Requiv
−
1  D Vout
V
Requiv  in 
I in
D
DI out
1  D 
2
2
 1  D  Vout  1  D 


 
 Rload
 D  I out  D 
18
Impedance matching
1  D Vout
V
Requiv  in 
I in
D
DI out
1  D 
2
2
 1  D  Vout  1  D 


 
 Rload
 D  I out  D 
For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit)
For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit)
Thus, the buck/boost converter can sweep the entire I-V
curve of a solar panel
19
Example - connect a 100Ω load resistor
PV Station 13, Bright Sun, Dec. 6, 2002
D = 0.88
6
D = 0.80
5
I - amps
4
3
2
D = 0.50
1
0
0
5
10
15
20
25
30
35
40
45
V(panel) - volts
With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar
panel load from the open circuit condition to the short circuit condition
20
Example - connect a 5Ω load resistor
PV Station 13, Bright Sun, Dec. 6, 2002
D = 0.61
6
D = 0.47
5
I - amps
4
3
2
D = 0.18
1
0
0
5
10
15
20
25
30
35
40
45
V(panel) - volts
21
BUCK/BOOST DESIGN
Worst-Case Component Ratings Comparisons
for DC-DC Converters
Our components
9A
Converter
Type
Input Inductor
Current
(Arms)
Buck/Boost
2
I in
3
10A
250V
Output
Capacitor
Voltage
1.5 Vout
5.66A p-p
Output Capacitor
Current (Arms)
 2

max 
I in, I out 
 3

200V, 250V
Diode and
MOSFET
Voltage
2(Vin  Vout )
16A, 20A
Diode and
MOSFET
Current
(Arms)
2
Iin  I out 
3
90V
10A, 5A
40V, 90V
10A, 5A
Likely worst-case buck/boost situation
L1. 100µH, 9A
L2. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
C1. 33µF, 50V, 14A p-p
Diode D. 200V, 16A
MOSFET M. 250V, 20A
22
BUCK/BOOST DESIGN
Comparisons of Output Capacitor Ripple Voltage
Converter Type
Buck/Boost
Volts (peak-to-peak)
5A
I out
Cf
0.067V
1500µF 50kHz
L1. 100µH, 9A
L2. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
C1. 33µF, 50V, 14A p-p
Diode D. 200V, 16A
MOSFET M. 250V, 20A
23
BUCK/BOOST DESIGN
Minimum Inductance Values Needed to
Guarantee Continuous Current
Converter Type
Buck/Boost
For Continuous
For Continuous
Current in the Input
Current in L2
Inductor
V
V
40V
90V
L1  in
L2  out
2 I in f
2 I out f
200µH
450µH
2A
50kHz
2A
50kHz
L1. 100µH, 9A
L2. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
C1. 33µF, 50V, 14A p-p
Diode D. 200V, 16A
MOSFET M. 250V, 20A
24
BUCK/BOOST DESIGN
Additional Components for Buck/Boost Converter
50V
14A p-p
Our components
Series Capacitor
Voltage
Series Capacitor (C1)
Current (Arms)
1.5 Vin
 2

2
max 
I in ,
I out 
3
 3

40V
10A
5A
9A
Series
Second
Capacitor (C1)
Inductor (L2)
Ripple Voltage Current (Arms)
(peak-to-peak)
2
I out
5A
I out
3
C1 f
3.0V
33µF
50kHz
5A
Likely worst-case buck/boost situation
L1. 100µH, 9A
L2. 100µH, 9A
C. 1500µF, 250V, 5.66A p-p
C1. 33µF, 50V, 14A p-p
Diode D. 200V, 16A
MOSFET M. 250V, 20A
Conclusion - 50kHz may be too low
for buck/boost converter
25
Converter
Type
Buck
Worst-Case Component Ratings Comparisons for DC-DC Converters
Output
Input Inductor
Capacitor
Output Capacitor
Diode and
Current (Arms)
Voltage
Current (Arms)
MOSFET Voltage
2
1
1.5 Vout
2 Vin
Boost
3
2
Buck/Boost
3
2
3
I out
I in
I in
Series Capacitor
Voltage
1.5 Vin
Diode and
MOSFET
Current (Arms)
2
I out
3
2
I in
3
I out
3
I out
1.5 Vout
1.5 Vout
2 Vout
 2

max 
I in , I out 
 3

2Vin  Vout 
Additional Components for Buck/Boost Converter
Series Capacitor
Series Capacitor (C1)
(C1) Ripple
Current (Arms)
Voltage (peak-topeak)
 2

2
max 
I in ,
I out 
3
 3

I out
C1 f
2
3
I in  I out 
Second Inductor
(L2) Current
(Arms)
2
3
I out
26
Comparisons of Output Capacitor Ripple Voltage
Converter Type
Volts (peak-to-peak)
Buck
I out
Boost
Buck/Boost
4Cf
I out
Cf
I out
Cf
Minimum Inductance Values Needed to Guarantee Continuous Current
Converter Type
For Continuous Current
For Continuous
in the Input Inductor
Current in L2
Buck
V
L  out
–
2 I out f
Boost
V
L  in
–
2 I in f
Buck/Boost
V
V
L1  in
L2  out
2 I in f
2 I out f
27