Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EE462L, Fall 2011 DC−DC Buck/Boost Converter 1 Boost converter iin + v L1 – Iout + Vout – L1 Vin C Buck/Boost converter iin + v L1 – L1 Vin + v C1 – Iout + C1 L2 v L2 – C + Vout – + v C1 – + C1 L2 v L2 – 2 Buck/Boost converter iin + v L1 – L1 Vin + v C1 – Iout + C1 L2 v L2 – C + Vout – This circuit is more unforgiving than the boost converter, because the MOSFET and diode voltages and currents are higher • Before applying power, make sure that your D is at the minimum, and that a load is solidly connected • Limit your output voltage to 90V 3 KVL and KCL in the average sense I in + 0 – L1 Vin I in 0 + Vin – C1 Iout L2 Iout Iout + 0 – C 0 + Vout – KVL shows that VC1 = Vin Interestingly, no average current passes from the source side, through C1, to the load side, and yet this is a “DC - DC” converter 4 Switch closed assume constant iin + Vin – L1 + Vin – + v D– + Vout – + C1 Vin Iout L2 v L2 – C KVL shows that vD = −(Vin + Vout), so the diode is open Thus, C is providing the load power when the switch is closed iin + Vin – L1 Vin + Vin – – (Vin + Vout) + C1 – Vin + L2 C Iout Iout + Vout – iL1 and iL2 are ramping up (charging). C1 is charging L2. C is discharging. 5 Switch open (assume the diode is conducting because, otherwise, the circuit cannot work) iin + Vin – – Vout + L1 assume constant Iout C1 Vin L2 + Vout – C + Vout – C1 and C are charging. L1 and L2 are discharging. KVL shows that VL1 = −Vout The input/output equation comes from recognizing that the average voltage across L1 is zero VL1avg D Vin 1 D Vout 0 Vout (1 D) D Vin DVin Vout 1 D 6 Inductor L1 current rating During the “on” state, L1 operates under the same conditions as the boost converter L, so the results are the same Use max 2 I L1rms I in 3 7 Inductor L2 current rating Average values I in + 0 – 0 L1 Vin C1 I in 2Iout Iavg = Iout 0 + Vin – Iout L2 Iout Iout + 0 – C 0 + Vout – iL2 ΔI 2 I L22rms I out 1 2 2I out 2 4 I out 12 3 2 I L 2rms I out 3 Use max 8 MOSFET and diode currents and current ratings iin + v L1 – L1 + v C1 – Iout + C1 Vin L2 v L2 – C + Vout – iL1 + iL2 MOSFET 2(Iin + Iout) 0 2(Iin + Iout) 0 switch closed Diode iL1 + iL2 switch open Take worst case D for each Use max I rms 2 Iin I out 3 9 Output capacitor C current and current rating iC = (iD – Iout) 2Iin + Iout 0 −Iout switch closed switch open I in 1 D I in DI out , I out 1 D D As D → 1, Iin >> Iout , so I Crms 2 I in 3 As D → 0, Iin << Iout , so I Crms I out 2 I Crms max I in , I out 3 10 Series capacitor C1 current and current rating iin + Vin – L1 Vin – (Vin + Vout) + C1 – Vin + L2 iin – Vout + L1 Vin + Vin – C + Vin – Iout Iout + Vout – Iout C1 L2 + Vout – C + Vout – Switch closed, IC1 = −IL2 Switch open, IC1 = IL1 11 Series capacitor C1 current and current rating Switch closed, IC1 = −IL2 iC1 2Iin 0 Switch open, IC1 = IL1 switch closed switch open −2Iout As D → 1, Iin >> Iout , so I C1rms 2 I in 3 As D → 0, Iin << Iout , so I C1rms 2 I out 3 2 2 I C1rms max I in , I out 3 3 12 Worst-case load ripple voltage iC = (iD – Iout) 0 −Iout The worst case is where D → 1, where output capacitor C provides Iout for most of the period. Then, Q I out T I out V C C Cf 13 Worst case ripple voltage on series capacitor C1 iC1 switch open 2Iin 0 −2Iout switch closed V I DT I in 1 D T out C1 C1 C1 Q Then, considering the worst case (i.e., D = 1) V I out C1 f 14 Voltage ratings + Vin – L1 – (Vin + Vout) + C1 Vin L2 C + Vout – MOSFET and diode see (Vin + Vout) – Vout + L1 Vin + Vin – C1 L2 C + Vout – • Diode and MOSFET, use 2(Vin + Vout) • Capacitor C1, use 1.5Vin • Capacitor C, use 1.5Vout 15 Continuous current in L1 Vout A / sec L1 iL 2Iin Iavg = Iin 0 (1 − D)T 2 I in Vout L1boundary 1 D T DVin 1 D L1boundary 1 D T Vin D L1boundary f Vin D L1boundary 2 I in f Then, considering the worst case (i.e., D → 1), V L1 in 2 I in f use max guarantees continuous conduction 16 use min Continuous current in L2 2Iout Iavg = Iout Vout A / sec L2 iL 0 (1 − D)T 2 I out Vout L2boundary (1 D)T Vout (1 D) L2boundary f V (1 D) L 2boundary out 2 I out f Then, considering the worst case (i.e., D → 0), use max V L 2 out guarantees continuous conduction 2 I out f use min 17 Impedance matching I 1 D I out in D Iin + Source DC−DC Boost Converter Vin Vout − + DVin 1 D − V Rload out I out Iin + Vin Equivalent from source perspective Requiv − 1 D Vout V Requiv in I in D DI out 1 D 2 2 1 D Vout 1 D Rload D I out D 18 Impedance matching 1 D Vout V Requiv in I in D DI out 1 D 2 2 1 D Vout 1 D Rload D I out D For any Rload, as D → 0, then Requiv → ∞ (i.e., an open circuit) For any Rload, as D → 1, then Requiv → 0 (i.e., a short circuit) Thus, the buck/boost converter can sweep the entire I-V curve of a solar panel 19 Example - connect a 100Ω load resistor PV Station 13, Bright Sun, Dec. 6, 2002 D = 0.88 6 D = 0.80 5 I - amps 4 3 2 D = 0.50 1 0 0 5 10 15 20 25 30 35 40 45 V(panel) - volts With a 100Ω load resistor attached, raising D from 0 to 1 moves the solar panel load from the open circuit condition to the short circuit condition 20 Example - connect a 5Ω load resistor PV Station 13, Bright Sun, Dec. 6, 2002 D = 0.61 6 D = 0.47 5 I - amps 4 3 2 D = 0.18 1 0 0 5 10 15 20 25 30 35 40 45 V(panel) - volts 21 BUCK/BOOST DESIGN Worst-Case Component Ratings Comparisons for DC-DC Converters Our components 9A Converter Type Input Inductor Current (Arms) Buck/Boost 2 I in 3 10A 250V Output Capacitor Voltage 1.5 Vout 5.66A p-p Output Capacitor Current (Arms) 2 max I in, I out 3 200V, 250V Diode and MOSFET Voltage 2(Vin Vout ) 16A, 20A Diode and MOSFET Current (Arms) 2 Iin I out 3 90V 10A, 5A 40V, 90V 10A, 5A Likely worst-case buck/boost situation L1. 100µH, 9A L2. 100µH, 9A C. 1500µF, 250V, 5.66A p-p C1. 33µF, 50V, 14A p-p Diode D. 200V, 16A MOSFET M. 250V, 20A 22 BUCK/BOOST DESIGN Comparisons of Output Capacitor Ripple Voltage Converter Type Buck/Boost Volts (peak-to-peak) 5A I out Cf 0.067V 1500µF 50kHz L1. 100µH, 9A L2. 100µH, 9A C. 1500µF, 250V, 5.66A p-p C1. 33µF, 50V, 14A p-p Diode D. 200V, 16A MOSFET M. 250V, 20A 23 BUCK/BOOST DESIGN Minimum Inductance Values Needed to Guarantee Continuous Current Converter Type Buck/Boost For Continuous For Continuous Current in the Input Current in L2 Inductor V V 40V 90V L1 in L2 out 2 I in f 2 I out f 200µH 450µH 2A 50kHz 2A 50kHz L1. 100µH, 9A L2. 100µH, 9A C. 1500µF, 250V, 5.66A p-p C1. 33µF, 50V, 14A p-p Diode D. 200V, 16A MOSFET M. 250V, 20A 24 BUCK/BOOST DESIGN Additional Components for Buck/Boost Converter 50V 14A p-p Our components Series Capacitor Voltage Series Capacitor (C1) Current (Arms) 1.5 Vin 2 2 max I in , I out 3 3 40V 10A 5A 9A Series Second Capacitor (C1) Inductor (L2) Ripple Voltage Current (Arms) (peak-to-peak) 2 I out 5A I out 3 C1 f 3.0V 33µF 50kHz 5A Likely worst-case buck/boost situation L1. 100µH, 9A L2. 100µH, 9A C. 1500µF, 250V, 5.66A p-p C1. 33µF, 50V, 14A p-p Diode D. 200V, 16A MOSFET M. 250V, 20A Conclusion - 50kHz may be too low for buck/boost converter 25 Converter Type Buck Worst-Case Component Ratings Comparisons for DC-DC Converters Output Input Inductor Capacitor Output Capacitor Diode and Current (Arms) Voltage Current (Arms) MOSFET Voltage 2 1 1.5 Vout 2 Vin Boost 3 2 Buck/Boost 3 2 3 I out I in I in Series Capacitor Voltage 1.5 Vin Diode and MOSFET Current (Arms) 2 I out 3 2 I in 3 I out 3 I out 1.5 Vout 1.5 Vout 2 Vout 2 max I in , I out 3 2Vin Vout Additional Components for Buck/Boost Converter Series Capacitor Series Capacitor (C1) (C1) Ripple Current (Arms) Voltage (peak-topeak) 2 2 max I in , I out 3 3 I out C1 f 2 3 I in I out Second Inductor (L2) Current (Arms) 2 3 I out 26 Comparisons of Output Capacitor Ripple Voltage Converter Type Volts (peak-to-peak) Buck I out Boost Buck/Boost 4Cf I out Cf I out Cf Minimum Inductance Values Needed to Guarantee Continuous Current Converter Type For Continuous Current For Continuous in the Input Inductor Current in L2 Buck V L out – 2 I out f Boost V L in – 2 I in f Buck/Boost V V L1 in L2 out 2 I in f 2 I out f 27