Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EET 423 POWER ELECTRONICS -2 Prof R T Kennedy 1 SMPS OPERATION QUANTIZED POWER/ENERGY TRANSFER VOLTAGE REGULATION Prof R T Kennedy 2 BASIC COMPONENTS sw1 Ein NON-ISOLATED C sw2 L R sw1 sw2 ISOLATED SW1 controllable Ein T C L R BJT MOSFET IGBT SW2 non-controllable (RECTIFIER pn or Schottky) controllable (MOSFET) Prof R T Kennedy 3 COMPONENT INTERCONNECTIONS 1 2 sw1 C sw2 Ein R L 3 3 Prof R T Kennedy 4 SWITCHING CYCLE SUB INTERVALS L E in C R a E in C L R b E in L C R c Prof R T Kennedy 5 BASIC TOPOLOGIES & CONSTRAINTS SWITCH sw1 12 L Ein 13 C R sw2 23 sw2 L E in sw1 C R PROBLEM L L L Sw1 Sw2 ON OFF OFF ON OFF OFF ON ON Prof R T Kennedy inrush current short circuit source output capacitor voltage discharge J J J L YES YES YES NO N 6 BASIC-1 BUCK CONVERTER Ei n L sw1 C sw2 R Ei n sw1 on L C R a L Ei n c L C R Ei n sw2 on Prof R T Kennedy C R Vout 7 BASIC-2 BOOST CONVERTER sw2 L L C E in E in sw1 sw1 on R sw2 on R b L L E in E in C C R C R a Prof R T Kennedy 8 BUCK TOPOLOGY TERMINOLOGY • Step Down Converter output voltage  input voltage • Direct Converter direct energy transfer from input to output (sw1 on) • Forward Converter energy transferred forward supply  load (sw1 on) • Single Ended Converter common input-output rail • Non-Isolated Converter no transformer input – output isolation Prof R T Kennedy 9 BUCK TOPOLOGY TERMINOLOGY • Step Down Converter output voltage  input voltage • Direct Converter direct energy transfer from input to output (sw1 on) • Forward Converter energy transferred forward supply  load (sw1 on) • Single Ended Converter common input-output rail • Non-Isolated Converter no transformer input – output isolation Prof R T Kennedy 10 BOOST TOPOLOGY TERMINOLOGY • Step Up Converter output voltage  input voltage • Indirect Converter no direct energy transfer from input to output • Single Ended Converter common input-output rail • Non-Isolated Converter no transformer input – output isolation Prof R T Kennedy 11 BOOST TOPOLOGY TERMINOLOGY • Step Up Converter output voltage  input voltage • Indirect Converter no direct energy transfer from input to output • Single Ended Converter common input-output rail • Non-Isolated Converter no transformer input – output isolation Prof R T Kennedy 12 BUCK-BOOST COMBINED CONVERTER L E in L E in C R C R Prof R T Kennedy 13 BUCK-BOOST COMBINED CONVERTER L E in L E in C R C R Prof R T Kennedy 14 BUCK-BOOST COMBINED CONVERTER L L E in C R SWITCH SYNCHRONISATION Prof R T Kennedy 15 BUCK-BOOST COMBINED CONVERTER L Ein sw1 on C R b L Ein C sw2 on R c Prof R T Kennedy 16 BUCK-BOOST COMBINED CONVERTER Ein C L R Vout NOTE VOLTAGE INVERSION Prof R T Kennedy 17 BOOST-BUCK COMBINED CONVERTER L2 L1 E in E in C1 C2 R R Prof R T Kennedy 18 BOOST-BUCK COMBINED CONVERTER L2 L1 E in E in C1 R Prof R T Kennedy C2 R 19 BOOST-BUCK COMBINED CONVERTER L2 L1 E in C2 C1 SWITCH R SYNCHRONISATION Prof R T Kennedy 20 BOOST-BUCK COMBINED CONVERTER L1 Ein L2 C1 C2 R Vout NOTE VOLTAGE INVERSION Prof R T Kennedy 21 SMPS TOPOLOGIES POWER SUPPLIES SWITCHING LINEAR HARD SERIES SHUNT SWITCHED MODE SMPS SOFT RESONANT RPS HYBRID QRPS 2 BASIC TOPOLOGIES BOOST BUCK BUCK DERIVED BOOST DERIVED COMBINED SEPIC FORWARD PUSH PULL 1 or 2 Transistor BRIDGE BUCK-BOOST BUCK-BOOST DERIVED BOOST –BUCK DERIVED FLYBACK HALF FULL BOOST -BUCK CUK 1 or 2 Transistor Prof R T Kennedy 22 SMPS TOPOLOGIES Prof R T Kennedy 23 RECAP SMPS APPLICATIONS Prof R T Kennedy 24 INDUCTOR CURRENT MODES Imax Iind 1 2 o Imin 2 1 CCM t Imax Iind I I av  max 2 0 t BOUNDARY Imax Iind DCM o 1 2 1 3 t 2 3 Imi n Prof R T Kennedy 25 BUCK CONVERTER CIRCUIT CURRENTS Ii n Ids a IL Ifwd IL b Iout L IC Ids Ei n Ifwd Prof R T Kennedy C R Vout 26 Vgs BUCK CONVERTER CIRCUIT CURRENTS CCM 0 Iout 0 IC 0 IC,av= 0 0 0 IL 0 0 Ids,av 0 Ids IL,av=Iout Iin,av Iout IL=Ids+Ifwd 0 0 Ifwd 0 IL=Iout+IC Iout Ifwd,av Prof R T Kennedy 27 Vgs BUCK CONVERTER CIRCUIT CURRENTS CCM 0 Iout 0 IC 0 IC,av= 0 0 0 IL 0 0 Ids,av 0 Ids IL,av=Iout Iin,av Iout IL=Ids+Ifwd 0 0 Ifwd 0 IL=Iout+IC Iout Ifwd,av Prof R T Kennedy 28 Vgs Iout IC BUCK CONVERTER CIRCUIT CURRENTS DCM 0 0 IC,av= 0 0 IL=Iout+IC IL,av=Iout IL 0 Ids Ids,av Iin,av 0 IL=Ids+Ifwd Ifwd Ifwd,av 0 Prof R T Kennedy 29 BOOST CONVERTER CIRCUIT CURRENTS Iin IL L b Iout IC Ids Ei n Ifwd a Ifwd Ifwd C Ids Prof R T Kennedy R Vout 30 Vg 0 Isout 0 IC BOOST CONVERTER CIRCUIT CURRENTS CCM IC,av= 0 0 Ifwd=Iout+ IC IL,av=Iin,av Ifwd 0 Ifwd,av Ids,av Id s Iout IL,av IL=Ids+ Ifwd 0 IL,av IL 0 Prof R T Kennedy 31 Vg 0 Isout 0 IC 0 Ifwd BOOST CONVERTER CIRCUIT CURRENTS DCM IC,av= 0 Ifwd=Iout+ IC Ifwd,av = Iout 0 Id s Ids,av IL=Ids+ Ifwd 0 IL,av = Iin,av IL 0 Prof R T Kennedy 32 WAVEFORM FORMULAE C DC- average 0 total- rms D(1  D)  C DC ( 1 - D) T DT AC- rms D C B C kC A B D 2 A D 2  D( A  B)  ( A  AB  B 2 )    3 2   DC 0 DT k 2( B  A) B A D 2 ( A  AB  B 2 ) 3 k2 D(1  ) C 12 (1 - D) T C A B 2 y 0 k2 D(1  )  D2 C 12 2 0 Y Prof R T Kennedy y 3  Y y 12 3  Y 12 33 WAVEFORM FORMULAE DC- average C D C 2 AC- rms D D2  C 3 4 total- rms D D2  C 3 4 0 D T (1-D) T Prof R T Kennedy 34 TRAPEZOIDAL-SQUAREWAVE RMS COMPARISON B kC 4  1.155 3 C A 0 D T (1 - D) T rms, trap rms, sq rms, trap k2  1 rms, sq 12 1 2( B  A) k B A C A B 2 0 1 2 k square wave Prof R T Kennedy CCM-DCM boundary peak  peak ripple k 2 pulse average 35 PARASITICS PARASITIC EFFECTS LOSSY RESISTIVE SOURCE RS INDUCTOR rL MAGNETICS core loss winding loss CAPACITOR esr LOSSLESS CAPACITOR esl SEMICONDUCTORS RECTIFIER VF I rev rec INDUCTOR TRANSFORMER leakage L stray capacitance TRANSISTOR ON Loss SWITCHING loss BJT /IGBT ce BJTV/IGBT MOSFET rds,on MOSFET Vce rds,on Prof R T Kennedy turn on turn on turn off turn off 36 POWER and POWER LOSSES MOSFET IM 0  Pmos ,loss  I M 2  Dmos  rds,on DmosT T IGBT IM 0 DigbtT T BJT IM 0 I rms 2  rds,on Pmos ,loss Pigbt,loss  I av  Vce,on Pigbt,loss  I M  Digbt  Vce,on PBJT ,loss  I av  Vce( sat ) PBJT ,loss  I M  Dbjt  Vce( sat ) DbjtT T Prof R T Kennedy 37 POWER and POWER LOSSES RECTIFIER IM 0 Prect , loss  Prect , loss  I M  Drect  V F DrectT T RESISTOR IM I av  V F I rms 2  R PR, loss  PR, loss  IM 2  D  R 0 R DT T Prof R T Kennedy 38 SYSTEM POWERS and EFFICIENCY v(t )  i (t ) p (t )  Pav 1 T v(t ) i (t ) dt  T 0  T T Pav  0 v(t ) dt  0 i(t ) dt T T Pav  voltage area current area  period period Pav  Vav  I av Prof R T Kennedy 39 SYSTEM POWERS and EFFICIENCY efficiency  Pout, av Pin, av  efficiency  Pin, av  Ploss Pin, av  Pout, av Pout, av  Ploss Vout  I out Ein  I in, av Prof R T Kennedy 40 VOLTAGE TRANSFER FUNCTION ANALYSIS • ENERGY BALANCE • POWER BALANCE • VOLT-TIME INTEGRAL Prof R T Kennedy 41 FARADAY’S VOLT-TIME INTEGRAL IM INDUCTOR CURRENT Im current start and finish at same value 0 t V1 INDUCTOR VOLTAGE 0 t1 t V2 t2 VL, av  1 T  di  L dt T 0  dt  VL, av  1 T L di T 0 VL, av  L T I  T 0 VL, av  L I 0  IT   0 T T EQUAL AREAS T 0 v(t ) dt V1  t1 0  V2  t2 Prof R T Kennedy 42 BUCK and BOOST CONVERTERS VOLTAGE TRANSFER FUNCTIONS 5 BOOST 4.5 Vout 1  1 Ein 1  Dsw1 4 3.5 Vout Ein 3 2.5 2 1.5 BUCK 1 Vout  Dsw1  1 Ein 0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Dsw1 1 Prof R T Kennedy 43 BUCK-BOOST BOOST- BUCK CONVERTERS VOLTAGE TRANSFER FUNCTIONS 1 INVERTED STEP DOWN (<1) 0 1 2 3 4 Vout Ein 5 INVERTED STEP UP (>1) 6 7 8 9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Dsw1 Prof R T Kennedy 44 PRACTICAL SYSTEMS  Vout Ein  Vout  I out Ein  I in, av   I in, av      I  Vout Vout   efficiency Ein practical Ein ideal Prof R T Kennedy 45