* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The latest Soft-Starter Technology
Pulse-width modulation wikipedia , lookup
Brushless DC electric motor wikipedia , lookup
History of electric power transmission wikipedia , lookup
Control system wikipedia , lookup
Electric machine wikipedia , lookup
Distributed control system wikipedia , lookup
Electrification wikipedia , lookup
Power engineering wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Resilient control systems wikipedia , lookup
Three-phase electric power wikipedia , lookup
Electric motor wikipedia , lookup
Mains electricity wikipedia , lookup
Voltage optimisation wikipedia , lookup
Automation bias wikipedia , lookup
Alternating current wikipedia , lookup
Dynamometer wikipedia , lookup
Brushed DC electric motor wikipedia , lookup
Rectiverter wikipedia , lookup
Induction motor wikipedia , lookup
Soft Starter Technology Applying SMC’s to maximize investments and energy efficiency Rev 5058-CO900B Copyright © 2012 Rockwell Automation, Inc. All rights reserved. RAOTM - Topic Title: Practical applications of Soft Starter technology for improved performance and energy management Description: Increase your technical competency and understanding of the latest Soft Starter technology, and find out how SMC's can be applied to maximize your investment and energy efficiency. This session will include a brief overview on technology, recent advancements, application examples and considerations, use of the SMC Application Wizards, and an overview of the Allen Bradley SMC portfolio. Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Agenda Understand Soft Starter Technology Recent Advancements Application Examples and Considerations Application Wizards Allen Bradley SMC Portfolio Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 3 AC Motor Control Basics SCPD SCPD SCPD Optional Isolation Contactor Contactor AC / DC / AC Converter Overload DOL VFD SMC M M M 3 3 3 Basic Advanced Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 4 Reduced Voltage Starter Background  Pre 1980’s RVS Types  Today’s RVS  Auto Transformer  Solid State  Part Winding  Voltage  Wye-Delta (Star-Delta)  Primary Resistance  Primary Inductance  Wound Rotor RVS controlled through use of SCR’s (Silicon Controlled Rectifiers)  6 Back to Back SCR’s  SCR triggered “ON” by energizing the Gate  Microprocessor monitors and controls when SCR’s fire Gate SCR Electromechanical  Solid State Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 5 Solid State Starting Basics SCR Control A. Using SCR’s in an “opposed” (back to back) configuration, the full sine wave of the B. AC power can be controlled. By controlling when an SCR is fired in the cycle, the output voltage can be controlled. The result is sometimes called a Notch. Gate Signal Gate SCR VOUT VIN A B Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 6 Soft Motor Starting Basics Typical Motor Starting Curve Starting Torque (Lock rotor torque) Full Voltage Starting Characteristics Starting Current ~6xFLA Break-down torque Pull-up torque 180% Full load torque 100% 0 Speed -%RPM 100% High starting torque can cause damage to the mechanical system. High current can cause problems in the electrical system Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 7 Soft Motor Starting Basics Physics of Reduced Voltage and Motor Torque If you reduce voltage by 50%, the result is a 75% reduction in motor torque. (.5)2 = .25 or 25% of Locked Rotor Torque 180% Percentage of Full Rated Torque Full Voltage Torque 100% Reduced Voltage Torque 0 Percentage of Full Speed 100% Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Soft Motor Starting Basics Example 72% %FLA 300% (ftlb) Torque 100% 510% 100% Voltage (amps) 600% 85% Voltage Full Load 25% 50% Voltage 0 Current Torque Speed -RPM 100% Torque required by the load Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 9 Reasons for Soft Motor Starting • Minimize mechanical damage of system components and product • • • Belts, Gears, Drive Shafts and Keyways Reduced Product Spillage Water Hammer and Mechanical Vibration • Better Energy “Management” • Limit in-rush current – Optimize the size of transformers/generators/switch gear • • • Meet Power Company Requirements / Rebate programs Manage Control under Power Distribution Limitations Energy Cost Reduction (Peak Demand Charges) Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 10 Agenda Understand Soft Starter Technology Recent Advancements Application Examples and Considerations Application Wizards Allen Bradley SMC Portfolio Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 11 Electromechanical vs. Solid State  Solid State delivers greater flexibility   Allow for the starting current/torque to be optimized versus standard reduced voltage starter types Example Star-Delta reduced voltage starter is fixed at 300% current/33% Torque  Solid State insures minimal amount of energy to accelerate motor even if the load only requires 25% torque.  SS eliminates transitions due to electromechanical limitations  Open or Closed transitions  Open disconnects motor from line voltage, Closed maintains connection to line  Both cause current surges during start Starting Voltage Adjustment Transition Resulting Torque Method Range Primary Fixed Step/Steps Closed %Current Sqd Resistance Auto Xfmr 50/65/85% Closed 25/42/72% Wye-Delta 33% Open or Closed 33% Solid State 0 - 100% Stepless 0 - 100% Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 12 Advantages of Solid State Control • Enhanced Control Options – – – – Advanced Start/Stop control User Programmability and settings Scalable setting for the critical nature of application Local, Manual, Automatic Modes • Inherent Diagnostics – – – Current, Voltage, Power and Energy Monitoring/protection Faults and Alarms (some based on real time clock) Controller Event logs and Snapshot (what happened right before a fault) • Lowest Installed Cost with Network Integration – – – Ease of Communication Linkage (i.e. multi protocol, AOP’s) Localized I/O and Control Wire Reductions Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 13 2 Phase Vs. 3 Phase Control Comparison  2 Phase Control Advantages  Lower initial cost  Smaller overall total size 2 Phase  2 Phase Control Disadvantages  Higher Peak Currents/Imbalance 3 Phase    Regardless of control methodology Increased Heating Increased Vibration during Starting 3 Phase control provides superior performance on every start! Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Advances in Starting/Stopping Modes SMC-50 “Patented” Linear Acceleration Starting Mode • Simplest Starting Mode • Lowest starting current profile per start • Regardless of loading condition • Ideal for any application • Provides control over both torque and speed • • Unmatched motor starting performance Selected start time closer to actual than any other stating method* Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Starting Performance – Comparison Linear Accel vs. Traditional Soft Start: Centrifugal Pump Load High Torque Pulse/Surge and water hammer 2 Sec/Div = ~10 Sec Higher Peak Current Current more stable and less disruptive to power system Time Parameter Settings: = Start Time: 10 second Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 16 Starting Performance – Comparison Linear Accel vs. Traditional Soft Start: High Inertia Load Torque Pulse/Mechanical Wear and Tear 2 Sec/Div = ~10 Sec 2 Sec/Div = ~6 Sec Higher Peak Current Current more stable and less disruptive to power system Time Parameter Settings: =Start Time: 10 second Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 17 SMC Soft Starters Power and Energy Management  Green Initiatives  Allow users to qualify for Energy focused based rebates and discount programs  Help reduce energy consumption and waste  Facility wide information enablement via Intelligent Motor Control  Sustainability and Sustainable Production  Deliver a return on investment with scalable products  Reduced downtime and maintenance costs  Energy Savings  Reduce the total “amount” of energy consumed   (Energy Saver in SMC-50) Reduce the total “cost” of energy Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Soft Starters and Energy Management  Reduction of the peak inrush of a motor (i.e. peak current)  Reduces the peak demand charges   Charges are determined by utility based on the peak energy usage Advantages of Controlled Demand  Allows for the facility to optimize/maximize distribution Smaller genset’s or transformers (incl. feeders… wires etc.)  Allows the power company optimize/maximize distribution Possible reduced installation cost based on system demands  Scalable Performance  SMC Flex and SMC-50 Provide advanced Power and Energy Monitoring  Measurement it = manage it  Visibility = helps provide business case support for future process and product improvements Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Agenda Understand Soft Starter Technology Recent Advancements Application Examples and Considerations Application Wizards Allen Bradley SMC Portfolio Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 20 Motor Starting Comparison SMC Soft Start Full Voltage (DOL)  Simplest Starting Solution  Simple Starting and Stopping  Full torque applied to motor  Mechanical wear  ~6x inrush current  Peak demand charges  Limited Control at various speeds  Reduced torque and current during starting Limited Functionality  Unless used with advanced Overload  Simple to adjust and setup  Reduced installation costs  Smaller footprint  No need for harmonic/EMC mitigation   Highly efficient when running at full speed Energy Saver Performance for light loads  Up to 15 different starting modes    Finite Mechanical Life  Contacts will wear out No Starting Choices VFD/Drive • Complete Continuous Control at any Speed • Full torque at any speed without sacrificing current • Highly efficient motor and application performance • More complex setup and install • Larger footprint • Impact on Power Quality • Application Considerations • Motors types • Lead Lengths • Wire Type • Ambient Conditions • Unlimited Starting possibilities when sized properly Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Selecting a Starting Method When do I specify a drive versus a soft starter? Speed Control is required Consistent Acceleration and Deceleration (New SMC-50 exception) High starting torque required Continuous Feedback (critical position control) Custom starting and stopping maneuvers  Faster stopping with Dynamic braking options  Drive can hold rotor at zero speed  Undersized or closely matched motor or power source      Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 22 Why Use SMC Controllers? Minimize Operating Costs, Reduce Down time • Problem: – Belts, gears and machinery can be damaged by across-the-line starting Breakdown Torque 180% High torque can cause physical damage to the mechanical system. 100% Percentage of Full Load Torque 0 Percentage of Full Speed 100% • SMC: – Lengthens system life by reducing mechanical stress during starting– Reduces DOWN Time • Helps reduce/eliminate PMO on equipment • No need to replace damaged parts • Minimal production loss Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 23 Why Use SMC Controllers? Minimize Operating Costs, Reduce Down time • Problem: – – Power company restrictions on incoming line current, or you pay the penalty Weak power lines cannot handle high inrush currents, causing brown outs or excessive line disturbances, which in turn cause other processes to shut down 600% Percentage of Full Load Current 100% • SMC Solution: 0 100% Percentage of Full Speed Current Limit starting minimizes the amount of inrush current, meeting power company restrictions and lowering peak demand charges – Process shut down and brown outs are minimized by reducing the amount of current drawn during starting – Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 24 How to apply SMC Controllers  Determine the main reason for using reduced voltage?    Mechanical? Power Limitations? Simplicity?  Select the best solid state control mode • • • • • • • Soft Start Soft Stop Current Limit Soft Start/CL with Kick Start Pump Control Torque Control Linear Acceleration/Deceleration Special Modes • Dual Ramp • Full Voltage • Slow Speed • Custom Starting Profiles • Smart Motor Braking • Combination of profiles Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 25 Standard Starting Methods  Current Limit Primarily used to limit line disturbances Constant or very lightly loaded motor  Good on high inertia applications   Bandmills, Fans, Centrifuge, Ball Mill, Washers………  Soft Start   Primarily used to limit mechanical stress Constant or exponentially increasing loads Compressors, Pumps, Conveyors  Soft Start/Current Limit with Kick Start  Kick Start is needed to overcome static condition Example: Cold system components, loaded conveyor  Full Voltage  Not a common Starting mode. » NOTE: Full voltage required to accelerate the motor may be a sign of other problems (i.e. Initial Torque of > 90%)  Used as a Solid State Contactor for High cycle rates Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 26 Standard Starting Methods  Pump Control Legacy version of torque control optimized for centrifugal loads Simple to apply but some considerations  Exponentially increasing load such as Compressors, Pumps, Conveyors    Torque Control   Similar to Pump Control performance but applicable for all load types More difficult to apply but yields higher level of performance  Linear Acceleration/Deceleration  Simplest starting, lowest current , most consistent starting time per start regardless of load Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 27 “Pump Control” in SMC-Flex & SMC-50  Designed for Centrifugal Pumps      Applications lightly loaded at zero speed Reduces surges (water hammer) caused by uncontrolled acceleration and deceleration Can eliminate the need for specialized flow control valves Ease of pump configuration Provides control without the use of sensors or feedback devices  “Pump Control” Compared to Linear Acceleration  No advantage, other than legacy migration  “Pump Control” Compared to Torque Control  Easier to set up and optimized for centrifugal pumps  Not intended for Positive Displacement Pumps Full Load required at zero speed  Variable Speed typically required to control flow  Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 28 SMC-Flex & 50 Pump Control DOL Start Excess energy/power Torque Full Load Soft Start Pump Start Pump System Speed Full Speed Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 29 SMB™ Smart Motor Braking SMC Flex and SMC-50  The SMB™ Smart Motor Braking is designed to stop a motor quickly   No additional hardware or feedback devices are required Automatic zero speed shut off is integrated into the controller Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 30 SMB™ Smart Motor Braking SMC Flex and SMC-50 Considerations  How fast do you want to brake?  Rule of thumb: It will take you at least 1.5 times as long to brake a motor as it will to start (3 to 4 times is more typical)  How much power can you use for braking?  Rule of thumb: Anything more than about 300% can play havoc with power systems and cause nuisance tripping or worse.  Can the power system handle the demands of braking current for the entire duration of the stop?  How consistent does the brake time need to be?  A good power supply is critical to consistent braking Good line Voltage regulation is the key to successful braking! Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 31 SMB™ Common Concerns/Questions  Braking is hard on the motor?  True, Braking… regardless of the method, is hard on the motor windings  Noise is common during braking?  True, moans and groans of all kinds can be heard in a motor during braking  Braking produces increased Harmonic distortion?  True, the SMC produces some harmonic distortion during starting and stopping, however the levels are insignificant (typically < 10% of the fundamental)  SMB is a good alternative for Critical braking?  False, SMB is not intended to be used for E-Stop scenarios. To many variables are involved which can alter the performance of this feature  The SMB option damages motors?  False, Braking is hard, but we can not create more energy then what the motor demands. Motor damage is typically caused by incorrect settings or normal wear and tear  Smart Motor Braking is an exact science?  False, Most applications are dialed in via trial and error Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 32 SMC Special Application Considerations  Multi-Motor Applications  Mechanically Coupled (Transmission, direct gear drive, Conveyors)    Single SMC for multiple motors Separate Overload protection required Not Mechanically Coupled (No physical connection)   Separate SMC’s per motor One SMC Not Recommended    Reduced Performance and adjustability Too much variability in motor characteristics Cost advantage with Adj.Freq. Drive, but less with SMC Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 33 SMC Special Application Considerations  Power Source Sizing Guidelines Ideally, the source would be sized for a full voltage start. (Somewhat impractical today)  When sizing for use with a generator it is critical that the generator is able to stay in proper regulation under starting or braking loads.  Rule of thumb: Avoid sizing the supply for anything less the 300% of the motors FLA .   SCR Fusing for SCR Protection (Very Fast Acting Semiconductor type fuse)  Limited usefulness with SMC-Flex and SMC-3, due to bypass operation Use is not suggested in High Inertia, Braking, or Pump stop applications (Applications with Start times > 30 seconds) due to potential for nuisance tripping  Can be used to achieve Type 2 Coordination in some cases   See SMC Wizard – Short Circuit Protection (SCPD) Wizard for further guidance Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 34 SMC Special Application Considerations  Power Factor Correction Capacitors Line side only - locating load side can damage the SCR Ideally PFCC are brought in with up-to-speed contact  Dynamic Correction can be responsible for nuisance line fault’s    Transient/Cyclic Spikes of Current Due to Load Variation   Examples: Rock Crushers, Wood Chippers, Band Saws, etc. With the SMC-Flex & SMC-3, Spikes 120% of controller max frame rating causes the bypass to drop in and out…NOTE: If this is happening a lot, the SMC is likely under sized for the application  Insure the FLA adjustment/programming is correct for the motor operation  SMC-3 and Soft Stop  For best operation try to size SMC-3 mid range per Selection Guide/Catalog Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 35 Sizing the starter for the application  Selection guides are correct for 90% of applications (Pumps, Fans, Compressors)  Simply choose based on voltage, horsepower, current and insure that the motor FLA fits the SMCs operating range  10% of applications may require a closer look  Application Analysis: Load with potential high starting inertia or minimal load   Flywheel, chippers, grinders, braking, retrofits, running vs. starting req. etc. Thermal Analysis may be required to determine proper size for the following:     Extended starting or stopping times (>30 sec) Aggressive Duty Cycle (> 10 times/hr) Operation in elevated (above 50C) ambient temperatures LRA > 600% (i.e. High efficiency motors, NEMA Design A) Solution to Assist: SMC “Estimation Wizard” Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 36 Agenda Understand Soft Starter Technology Recent Advancements Application Examples and Considerations Application Wizards Allen Bradley SMC Portfolio Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 37 SMC Application Wizards Why use the Wizards (eTools)?  To provide a better Estimation to the applicability of a SMC-3, SMC Flex and SMC50 product to a given set of motor & load operating requirements. Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC Application eTool’s  Thermal Wizard  Used for simple/quick analysis of SMC capabilities from a thermal perspective  Short Circuit Protection Device  Used to guide selection of branch circuit protection components  i.e. fuse or circuit breaker size  bypass and isolation sizing  Application Wizard  Used for advanced modeling of the complete system including SMC thermal capabilities and motor/load starting characteristics Wizards Available from: ProposalWorks “Tools” pull-down or from: http://ab.rockwellautomation.com/Motor-Control/Soft-Starters/SMC-Flex#/tab6 Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC Application eTool’s  SMC Applications built for mobile phones and tablets  Cross platform support with all major mobile operating systems  iOS, Blackberry, and Android  HTML 5 based applications  Allows for ease of use and updating  Can run like any standalone mobile application  Almost fully offline capable Do an App Search for Rockwell Automation Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Agenda Understand Soft Starter Technology Recent Advancements Application Examples and Considerations Application Wizards Allen Bradley SMC Portfolio Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 41 Solid State Power Control Portfolio Performance / Functionality SMC™-50 SMC™ Flex SMC™ Dialog SMC™-3 SSC 5 25 100 200 500 Ampere Rating (Line and Delta) 800 1000 1600 *Dialog supports line configuration only Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Allen-Bradley SMC Contemporary Offering SMC™-3 Hybrid Power Structure SMC™ Flex Hybrid Power Structure SMC™-50 Solid State Power Structure Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 43 SMC Family Choosing a Power Platform True Solid State Hybrid Solid State AC53-B Smaller Total Footprint Less External Wiring Optimized Thermal Management Easy Product Selection  Hybrid Solid State (Integral Bypass)  2 Thyristors per phase (6 total)  Thermal Mass  Small Stirring Fans  Integral Shorting or “Bypass” Contactor  True Solid State  2 Thyristors per phase (6 total)  Larger finned heat sinks & fans  Optional external bypass contactors   Lower Total Installed Cost Ability to replace contactor Ability to size contactor AC1 or AC3 AC53-A Ideal for Harsh Environmental Conditions Higher SCCR ratings Phase Rebalance/Energy Saver Capability Higher operations/hour Scalable Thermal Ratings Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC Family Choosing a Power Platform Internal Bypass (SMC-3, SMC Flex) Solid State (SMC-50, SMC Dialog, SMC Plus)  Ideal for small spaces  Ideal for critical performance in tough environmental conditions  Smallest total footprint  Easy selection and application  Allows for Specialized Control  Lowest total installed cost  External Bypass offers operational flexibility and redundancy Hybrid Power Structure Solid State Power Structure Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 45 SMC Family Choosing the control for your application Which control modes are required? SMC-50, Flex & SMC-3     Soft Start Soft Stop Current Limit Soft with Kick Start SMC-50, SMC-Flex        Pump Control Slow Speed Dual Ramp Full Voltage Starting Smart Motor Braking Linear Accel/Decel (SMC-50 Only) Torque Control (SMC-50 Only) The SMC Flex / 50 also offer power metering features as well as communication options enhancing configuration, control and data collection capabilities! Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 46 SMC™-3 Overview  Compact Series    Hybrid design (internal bypass contacts) Simplified DIP and Rotary Set-up Din Rail Mountable through 85 amps  4 Starting/Stopping Modes  Soft-start, Soft-stop, Current Limit, Kick Start  Basic Diagnostics Compact design provides 3 phase control, increased intelligence, and unmatched performance. Motor and system diagnostics and an electronics overload with adjustable trip class help reduce downtime and protect assets. Hybrid Power Structure Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC™-3 Overview  Line Ratings      Frame 1 (3 A, 9 A,16 A, 19 A, 25 A, 30 A, 37 A) Frame 2 (43 A, 60 A, 85 A) Frame 3 (108 A, 135 A) Frame 4 (201 A, 251 A) Frame 5 (317 A, 361 A, 480 A)  Delta Ratings  3 … 831 amps  Two line voltage ratings  200…480V or 200…600V @ 50/60 Hertz  Two control voltage  24V AC/DC or 100…240V AC  0…50°C Operating temperature SMC-3 can be applied to both line and delta connected applications! Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC™ Flex - Overview  Modular Class   Hybrid design (internal bypass contacts) Built-In LCD and Keypad  9 Start/Stopping Modes  3 slow-speed modes  Smart Motor Braking  Enhanced Diagnostics and Protection functions Modular design features 3 phase control, advanced intelligence, performance and diagnostics, communications flexibility, modular control module/power modules/fan assembly for a cost effective package. Hybrid Power Structure Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC™ Flex - Overview Specifications  Line Ratings  5….1250 Amps  Delta Ratings  8…1600 Amps  Three Voltage Ratings  200 - 480V @ 50/60 Hz  200 - 600V @ 50/60 Hz  230 – 690V @ 50/60 Hz  Control Voltage Ratings  100-240 VAC or 24V AC/DC Starting Modes  Soft-Start  With selectable Kick Start  Soft-Stop  Current Limit Start  With selectable Kick Start  Full Voltage  Preset Slow Speed  Linear Speed Acceleration  Feedback Device Required  Dual Ramp  Pump Control (optional)  0 - 50° C Operating Temperature Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC™-50 Product Overview  Scalable Series  Solid State Power Structure NO Integral bypass like SMC-3 or SMC-Flex   Built-In HIM Cradle and PC port  15 Start/Stopping Modes 3 slow-speed modes  Smart Motor Braking   Advanced Diagnostics and Protection functions  Full power and energy management, Real Time Clock, Event Log Designed for customer flexibility – 3 phase control and scalable options help maximize the total motor control investment. Advanced monitoring and protection, superior communication capabilities and energy saver modes help increase operating efficiencies and reduce downtime. Solid State Power Structure Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 51 SMC™-50 Product Overview Benefits of a Fully Solid State Power Structure (no integral bypass)      Improved performance in high vibration applications Performance not impacted by environmental debris Longer life (no mechanical life limits) Scalable thermal ratings Higher SCCR ratings  100 Ka Fuses  65 Ka Breaker Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 52 Thank You! Find More Information on SMC Products Visit us @ WWW.AB.com Follow ROKAutomation on Facebook & Twitter. Connect with us on LinkedIn. www.rockwellautomation.com Rev 5058-CO900B Copyright © 2012 Rockwell Automation, Inc. All rights reserved. Back-Up Slides Follow ROKAutomation on Facebook & Twitter. Connect with us on LinkedIn. www.rockwellautomation.com Rev 5058-CO900B Copyright © 2012 Rockwell Automation, Inc. All rights reserved. SMC™-50 Modes of Operation Starting Modes      Soft Start Current Limit w/ Kick Start Pump Control “Enhanced” Slow Speed: 1% to 15% Patented Sensor-less Linear Acceleration* Consistent ramp up time (no tachometer required)  Optimizes energy consumption   Torque Control  Full Voltage  Dual Ramp w/ Kick Start Stopping / Specialty Modes         Coast Soft Stop Smart Motor Braking (SMB) Linear Deceleration External Braking Control Pump Control Motor Winding Heater Energy Saver  Phases back voltage sensing lighter loads  Emergency Run *SMC Flex provides Linear Acceleration Start, however it requires a tachometer for speed feedback Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 55 SMC™-50 Modes of Operation Linear Speed  “Patented” Sensor-less Linear Acceleration Starting Mode • Accomplished via Advanced Motor Speed Estimation Algorithm – – • Simplest to Setup – – • No external feedback required - reduces cost and potential for failure Provides exacting motor acceleration control under varying load conditions 2 Parameters Required to configure: Ramp Time and Initial Torque (used as reference) Reduces/eliminates the need for the Dual Ramp mode Always uses the minimum amount of energy needed to accelerate the motor in the time requested (regardless of the loading condition) Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 56 SMC™-50 Modes of Operation Torque Control  Torque Control can be used to control the maximum torque developed by the motor independent of motor speed  Provides a torque ramp from an initial starting torque level to a maximum torque level  Mode also provides simple starting performance (Kick start available as an option)  Controlling torque does not allow control over speed of acceleration like Linear Accel.  Torque Control algorithms are useful for basic applications (pumps, compressors)  Basic Setup Parameters:  Ramp Time, Starting Torque, Max Torque(M), Rated Torque(M) and Rated Speed Settings(M) (M) = motor rated value Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 57 SMC™-50 Modes of Operation Comparison Example Linear Accel vs. Torque (Pump) Start: Pump Load 2 Sec/Div = 10 Sec total 2 Sec/Div = 5 Sec total Higher Peak Current Time NOTEs: - Actual Start time difference of Linear versus torque mode - Smoother torque curve for Linear versus torque mode - Lower peak current with Linear Acceleration mode Parameter Settings: =Start Time: 10 second Motor load = approx 65% of FLA Copyright © 2012 Rockwell Automation, Inc. All rights reserved. 58 SMC’s Differentiated by Innovation  Broadest offering of Features/Performance/Functionality in a Soft Start  Advanced Starting/Stopping Performance (Linear Mode)  “True” 3 Phase Control  Solid State or Hybrid Performance and Reliability  Simple to Advanced Fault, Power, and Energy Monitoring    High Fault SCCR ratings with Fuses and Standard Breakers Special Modes   Slow Speed, Motor Winding Heater, Energy Saver, Phase Rebalance, DeviceLogix Standard features cover multiple dedicated devices   Improved Troubleshooting, Diagnostics Accuracy and time stamping Power Monitors, Scopes, ETM’s, Motor Winding Heaters, DC Brake… etc. Standard Open and Enclosed offerings Copyright © 2012 Rockwell Automation, Inc. All rights reserved.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            