* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Gymnosperms
Plant breeding wikipedia , lookup
Plant ecology wikipedia , lookup
Ecology of Banksia wikipedia , lookup
Plant evolutionary developmental biology wikipedia , lookup
Evolutionary history of plants wikipedia , lookup
Plant secondary metabolism wikipedia , lookup
Gartons Agricultural Plant Breeders wikipedia , lookup
Plant morphology wikipedia , lookup
Pinus strobus wikipedia , lookup
Perovskia atriplicifolia wikipedia , lookup
Fertilisation wikipedia , lookup
Pollination wikipedia , lookup
Flowering plant wikipedia , lookup
Plant reproduction wikipedia , lookup
Life on Earth Kingdom Plantae Part IV The Seed Plants: Gymnosperms Origin of the Seed Female Gametophyte Scenario • Megasporangium produces only one functional megaspore • Megaspores are not released from the plant • Megaspore develops into the female gametophyte within the old megasporangium Origin of the Seed (cont.) • Archegonia are formed with egg cells and fertilized in situ • Embryo (new sporophyte) develops surrounded by female gametophyte tissue and old megasporangium wall (nucellus) Origin of the Seed (cont.) • Megasporophyll surrounds the structure and acts as integument (seed coat) • The mature ovule (seed) is released from the plant (old sporophyte) Origin of Pollen Male Gametophyte Scenario • Micorsporophylls produce microsporangia • Microspores (N) are not released from the microsporangium but divide to form a 4celled microgametophyte (pollen grain) • Four cells are 2 prothallial cells, 1 generative cell and 1 tube cell Pine Pollen Origin of Pollen (cont.) • Pollen grains (male gametophytes) are released from the “strobilus” or “cone” • The pollen grains germinate forming a pollen tube • The generative cell divides to form sperm nuclei which travel down the pollen tube to fertilize the egg Why evolve seeds and pollen? • Embryo is well protected in the seed coat • Seeds can be “dormant” and wait for suitable growth conditions • Transfer of pollen (male to female) does not require water like sperm Why evolve seeds and pollen? (cont.) • Embryo has a ready supply of nutrients for early development (female gametophyte tissue) • A seed is an excellent dispersal unit (wind, animals) Seed Plant Divisions • Gymnosperms – plants with “naked” seeds not found in a fruit – includes 4 Divisions • Angiosperms – seed plants with “hidden” seeds, i.e. formed inside a fruit – only one Division Gymnosperms • • • • Coniferophyta Cycadophyta Ginkgophyta Gnetophyta Division Coniferophyta • Most species are monoecious, woody perennials producing cones • Some are deciduous, most are evergreen with needlelike leaves • Extended life cycle (3 years) Primary vs. Secondary Growth • Primary tissues are derived from meristems – Zones of cell division in root tips, shoot tips, axillary buds etc. – Primary growth generally creates elongation of stems, branches, and roots or creates reproductive organs Primary vs. Secondary Growth (cont.) • Secondary tissues are derived from cambia – Cambial activity generally causes increase in girth of the plant (root, stem) – Woody plants develop 2 cambia: • vascular cambium (producing secondary xylem and phloem) • cork cambium (producing “bark” layers) PITH Pine Anatomy (stem) RESIN DUCT VASCULAR CAMBIUM SECONDARY XYLEM SECONDARY PHLOEM RADIAL Wood Sections TRANSVERSE TANGENTIAL Wood Rays Pine Needles Pine Life Cycle • Trees produce both male (staminate) and female (ovulate) cones • Male cones are usually lower on the tree to assist with out-crossing • Pollination takes place in the spring when female cones are small (about 1/2 inch) Pine Life Cycle (cont.) • Development of the mature ovule with archegonia takes more than a year • Pollen tube digests its way slowly through the nucellus to the archegonium for fertilization • Nearly another year is required before the embryo is mature and the female cone opens to release the seeds Pine Life Cycle Pinus (male and female cones) Male Cone (longitudinal Section) Conifer Diversity • Highly diverse in both Northern and Southern Hemispheres – Includes pine, spruce, hemlock, fir, Douglas fir, yew, juniper, cypress, sequoia, larch, podocarps, araucarias and others Taxodium (bald cypress) Giant Sequoia Taxus (yew) with female cones Sequoia and Sequoiadendron Araucaria family –Wollemi “pine,” discovered living in Australia, 1994, known from Jurassic fossils Aucariaceae (Southern Hemisphere) Norfolk Island Pine Division Cycadophyta • Perennial, dioecious plants with coarse palm-like leaves • Female cones are often very large • Only 10 genera known many with highly restricted ranges, primarily tropical • Produce flagellated sperm Cycas revoluta and C. media With “female cone” and seeds Dioon edule Encephalartos Division Ginkgophyta • Ginkgo biloba only species • Probably extinct in the wild (originally from China) • Separate male and female trees (dioecious) Division Ginkgophyta (cont.) • Female ovules produce butyric acid (plant males!) • Male trees produce small, fleshy pollen cones; motile sperm are produced • Tolerates air pollution well Ginkgo biloba Ginkgo Leaves and Ripe Ovules Division Gnetophyta • Gnetum, Ephedra (Mormon Tea) and Welwitschia very different organisms • Have vessels in the xylem • Do not produce multicellular archegonia • Have double fertilization Ephedra male cones Gnetophyta (cont.) • Gnetum is a genus of tropical vines with flowering plant-like leaves • Ephedra is a desert shrub with several species in the SW United States (called Mormon Tea) • Welwitschia mirabilis is a bizarre, taprooted, perennial plant of the desert areas of SW Africa Ephedra nevadensis Welwitschia mirabilis Habitat view in SW Africa Welwitschia mirabilis in Namib Desert, Namibia Welwitschia mirabilis -female (with ovulate cones) Welwitschia mirabilis - male (with staminate cones) Gnetum With Ovules Importance of Gymnosperms • • • • Major source of lumber for construction Primary source of pulp for paper manufacture Many ornamentals Source of resins for turpentine, rosin (“naval stores”) • Juniper (“berries”) used to flavor gin • Source of amber and even lemon flavoring • Anticancer drug taxol from Pacific yew bark/ English yew leaves Importance of Gymnosperms Originally took 4 trees to produce a single human dose! Now, using leaves of common English yew, a synthetic process makes the drug. TAXOL: 31 years from “bark” to “business”