Download Astrophysical Quark Matter

Document related concepts

Big Bang wikipedia , lookup

Accretion disk wikipedia , lookup

Gravitational lens wikipedia , lookup

Leibniz Institute for Astrophysics Potsdam wikipedia , lookup

Weakly-interacting massive particles wikipedia , lookup

Main sequence wikipedia , lookup

Nucleosynthesis wikipedia , lookup

Cosmic microwave background wikipedia , lookup

Stellar evolution wikipedia , lookup

Cosmic ray wikipedia , lookup

P-nuclei wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

QCD vacuum wikipedia , lookup

Star formation wikipedia , lookup

Chronology of the universe wikipedia , lookup

Strangeness production wikipedia , lookup

Transcript
Astrophysical Quark Matter
Renxin Xu (徐仁新)
School of Physics, Peking University
2005年10月12日,扬州大学
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Not only is the Universe stranger than we
imagine, it is stranger than we can imagine.
—— Arthur Eddington
Astrophysical laboratory: to find QGP?
Cosmic QCD phase separation: consequence?
Compact pulsar-like stars: quark stars?
Cosmic rays: quark nuggets?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
SUMMARY
 Introduction:
quark & quark matter

QM in the early Universe

QM in pulsar-like compact stars

QM as cosmic rays

Conclusions
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Quark? A historical note …
Quarks
?
M. Gell-Mann (1969)
 1950s~1960s: A success in
the classification of hadrons
discovered in cosmic rays and
in accelerators
 M. Gell-Mann (1964):
Quarks? ---- in mathematical
description, rather than in
reality.
 Zweig, Chinese group
(1960s): in reality?
 1973: SU(3) non-Abelian
gauge theory  asymptotic
freedom
 Experimental evidence for
the last flavor of quark (top
quark) in 1990s
Introduction: Quark matter
The
standard model of particle physics
Interaction via gauge bosons
QCD
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Introduction: Quark matter
Experimental
evidence for asymptotic freedom
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
M. R. Pennington (University of Durham) in: QCD and
Hadronic Physics (Held in PKU, Beijing, June 20, 2005)
The Nobel prize in Physics (2004)
Frank Wilczek
of the
Massachusetts
Institute of
Technology.
David J. Gross (L) of the
University of California
at Santa Barbara and his
wife (R)
H. David
Politzer of the
California
Institute of
Technology,
Pasadena,
California.
Introduction: Quark matter
What is Quark Matter?
Expected
in QCD
T
(QGP)
(Hadron gas)
To be a direct
consequence of
aympt. freedom
A simple QCD phase diagram
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Introduction: Quark matter
Can we find quark matter?
Terrestrial
experiments
Relativistic heavy ion colliders
Astrophysical
observations
T-dominated QM: early Universe
D-dominated QM: compact stars
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Introduction: Quark matter
Solid Quark Matter?

QGP
B
Solid?
Liquid?
Hadron
Phase diagram for CO2
“Astrophysical QM”
0
Gas?
QCD phase? T
http://vega.bac.pku.edu.cn/rxxu
R. X.
Introduction: Quark matter
Two kinds of Quark Matter.
Xu 2005
dec
T
m
ine
onf
D-dom.
ent
T-dom.
ch
ira
ls
ym
.r
es
to
r.
Solid QM?
“Astrophysical
QM”Stars”
http://vega.bac.pku.edu.cn/rxxu
“Pulsars and Quark
http://vega.bac.pku.edu.cn/rxxu R.
R.X.
X.
SUMMARY
 Introduction:
 QM
quark & quark matter
in the early Universe

QM in pulsar-like compact stars

QM as cosmic rays

Conclusions
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in the early Universe
Edward Witten (1984):
1, cosmic QCD phase; 2, strange stars; 3, cosmic rays.
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Introduction: Quark matter
Bodmer-Witten’s
conjecture
mu ~ 5
md ~ 10
ms ~150
 =1.5N
F ~ 400
Farhi &
Jaffe
(1984)
“Astrophysical QM”
Greiner et al 1998
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in the early Universe
Schwarz
astro-ph/0303574
Quark-hadron phase
transition
t ~ 10-5 s, Tc ~ 300 MeV
First order  reheating
S. Banerjee, et al.
hep-ph/0307366
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in the early Universe
Motivations
to study quark-hadron transition
to know “What happened at the transition?”
to set initial physical conditions for BBN
•inhomogeneous distribution  abundances
to generate relics of cosmic QCD transition
•strange quark nuggets? (MACHOs?)
•gravitational waves from colliding bubbles?
•magnetic fields with ~ 100 kpc correlations?
•QCD balls as a new CDM candidate?
•black holes formation during the transition?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
SUMMARY
 Introduction:

quark & quark matter
QM in the early Universe
 QM
in pulsar-like compact stars

QM as cosmic rays

Conclusions
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
A historical note of pulsars
Degenerate pressure
is not omnipotent in
standing against the
gravitational collapse
Maybe there
are stars with
nuclear density
after collapse?
“Neutron” star
S. Chandrasekhar (1983)
L. Landau (1962)
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
A historical note of pulsars
Pulsars
(discovered in
1967) could
be neutron
stars?
Walter Baade and Fritz Zwicky
proposed in 1934 that supernovae
could produce cosmic rays and
neutron stars …
A. Hewish (1974)
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Pulsars in conventional scenario
Radio
pulsars: cosmological lighthouse ...
Pulse sequences from a radio pulsar
Pulsar is pulsing …
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Pulsars in conventional scenario
Neutron Stars
or
Quark stars?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Pulsars in conventional scenario
Distribution
of radio pulsars in the Galaxy
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Members of the family of pulsar-like stars …
Accretion-powered X-ray pulsars
X-ray bursts
Compac
t center
objects
Dim thermal “Neutron” stars
“Astrophysical QM”
What’s really the
nature of pulsars?
Radio pulsars
AXP/SGR
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
The
structure of normal Neutron stars
Atmosphere
Outer
crust
Inner
crust
Neutron
matter
Core?
Heiselberg 2002
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Pulsars:
quark stars?
Ivanenko
Itoh
& Hurdgelaidze (1969)
(1970)
Bodmer
(1971)
Asymptotic
Witten
1986:
freedom
(1984)
Haensel et al.; Alcock et al.
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Neutron
Stars
v.s.
Quark
Stars
http://chandra.harvard.edu/photo/2002/0211/0211_illustration.pdf
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Two
requirements for forming quark star
Quark
•An
de-confinement can occur
estimate of c:(4R3/3)-1 ~ 1.5 N
Strange
matter in bulk is absolutely stable
__(Bodmer-Witten’s conjecture)
•Note:
Strangelet in RHIC could be unstable!
Unfortunately,
one can not know if these
two are satisfied from the first principles
(QCD). But the requirements seem ok …
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Structure
of strange star: bare or crusted
Electric field:
E ~ 1017V/cm
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
How to form a quark star?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
It is still a challenge for astrophysicists to
reproduce a successful core-collapse supernova!
What if to form a quark star, rather than a
neutron stars, in a CC-process?
This idea is attractive since more energy
and radiation (, ) are released …
Note: quark stars formed in this way should be bare!
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Evidence for quark stars?
A summary of our work only …
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
To
solve the binding energy problem (1999)
Observations: drifting subpulses of PSRs
To
expect non-atomic spectra (2002)
Observations: thermal & non-thermal
explain discrepancy between … (2004)
Observations: free prec. & glitch of PSRs
To
understand others …
Observations: superE SGR, -profile (AG)
To
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
NASA News release (2002/4/10): RX J1856 a strange star?
Chandra
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
How
to identify clearly a quark star?
Submillisecond
radio pulsar: FAST?
Low-mass
& small-radius pulsar-like stars:
X-ray interference telescopes MAXIM?
Gravitational
Dust
wave observations: LIGO?
emission from ms-pulsars: Spitzer?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM in pulsar-like compact stars
Five hundred meter Aperture Spherical Telescope
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
SUMMARY
 Introduction:
quark & quark matter

QM in the early Universe

QM in pulsar-like compact stars
 QM

as cosmic rays
Conclusions
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
The higher the particle energy attained, the
smaller __the scale of physics which can be
probed.
Cosmic rays vs. Particle physics
1937 (Anderson & Neddermeyer): 
1947 (Powell): 
1947(Rochester & Butler): strange part. 0,
K, ...
Cosmic rays vs. Astrophysics
Generally, astrophysics studies “cosmic rays”
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
Within the
Galaxy
UHECRs:
19
>~10 eV
The highest
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
GZK
cutoff: estimations
Ep ~ 1019 eV,  ~ Ep/1GeV ~
1010
ECB ~ 3 K ~ 10-4 eV
Proton rest frame
E’CB ~  ECB ~ MeV
Greisen PRL (1966); Zatsepin & Kuzmin JETP (1966)
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
The
GZK cutoff
p   p  's
with threshold
Eth
6 10 eV
Other
19
particles
Photon, Iron
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
No
clear GZK cutoff observed
“Astrophysical QM”
Stecker
2003
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
UHECRs:
What
quark nuggets (strangelets)?
is Strangelet?=>A lump of strange matter
Advantages
Larger
if UHECRs are strangelets:
mass
Beyond GZK cutoff
ML03
Higher
Be
electricity
Easier to accelerate
not point-like
No collapse to BHs
(Xu & Wu 2003)
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
What
is the astrophysical origin of strangelets?
during
the early Universe?
during
the formation of quark stars!
Acceleration
Formation
in induced electric field ~ 1017/P10eV
by stellar processes
1, Evaporation during SNEs
2, Collision of (low-mass) strange QSs
GRBs
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
How
do strangelets evolve in the atmosphere?
Solid strangelets
dec
T
m
ine
onf
ent
ch
i
ra
ls
ym
.r
es
to
r.
Fluid strangelets
Evaporating
hadrons: n, p, ...
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
QM as cosmic rays
How
can we detect strangelets?
Atmospheric
Cerenkov radiation?
Atmospheric
fluorescence radiation?
ESA:
in YBJ?
Neutron
detection in YBJ?
…?
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Cosmic ray
detection
in YBJ
SUMMARY
 Introduction:
quark & quark matter

QM in the early Universe

QM in pulsar-like compact stars

QM as cosmic rays
 Conclusions
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Conclusions
Astrophysical
quark matter are reviewed. In
addition to test GR, pulsars are also useful to test
and to improve the fundamental strong interaction.
Possible
evidence for quark stars are proposed.
The
physics relevant to the elementary chromatic
interaction could be improved if pulsar-like stars
are quark stars.
A solid
state of quark matter is suggested.
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
Thank you!
“Astrophysical QM”
http://vega.bac.pku.edu.cn/rxxu
R. X.
我国天体物理教学中的问题
1,规模上的差距
“西方世界鞭先着”:在发达国家高等教育中已经
非常普遍,并且教学水平和质量也相当高。
2,物理类对“天体物理”教育重视不够
将实施大型天文科学工程:FAST、HXMT、 SST
3,教材
。胡中为、萧耐园、朱慈(土盛),《天文学教程
(上下)》,高等教育出版社(2003)
。李宗伟、肖兴华,《天体物理学》,高等教育
出版社(2000)
……
《天体物理导论》
(约30万字)
北京大学出版社
(2005年底左右出版)
徐仁新
1,适用对象
物理类本科生、研究生,对天体物理学感
兴趣或从事天体物理研究的学者。
2,编写该教材的目的
架起“天文学”与“物理学”两领域的桥
梁,
以便于现代天体物理研究在国内的开展。
3,先前的教学实践
分别以讲义形式在清华(“天体物理”课)
和北大(“天体物理导论”课)高年级本
教材定位
以“普物”风格介绍发生在宇观层次的
若干物理过程。将天体看作探索自然界
基本物理规律的“极端实验室”。
“普物”风格 := 在定性和半定量的层
次上认识、理解各类自然现象。
区别于“理论物理”课程
数量级上一致,而“小数点后若干位”留给理论物
教材内容
1,概况
行星、恒星、星系;观测设备与学科展望
2,准备知识
辐射——认识宇宙的重要窗口;磁化等离子体—
—99%以上宇宙物质的状态。
3,恒星层次
主序恒星——绝大多数肉眼所见的点点繁星;
超新星——恒星晚期的爆发过程;吸积——致密
天体的有效产能方式;白矮星——恒星演化残骸
之一;脉冲星、中子星与夸克星——恒星演化残
骸之二;黑洞——广义相对论预言的天体。
教材内容
1,概况
2,准备知识
3,恒星层次
4,星系与宇宙层次
宇宙射线爆发源——紧次于“大爆炸”的现象;
星系——组成宇宙的基本单元;
宇宙——可观测的一切。
教材内容:附录
附录一、Landau:“论恒星的理论”
附录二、粒子物理标准模型简介
附录三、粒子天体物理简介
附录四、地外文明与系外行星系统
附录五、数、单位制与常数