* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Astrophysical Quark Matter
Accretion disk wikipedia , lookup
Gravitational lens wikipedia , lookup
Leibniz Institute for Astrophysics Potsdam wikipedia , lookup
Weakly-interacting massive particles wikipedia , lookup
Main sequence wikipedia , lookup
Nucleosynthesis wikipedia , lookup
Cosmic microwave background wikipedia , lookup
Stellar evolution wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
Star formation wikipedia , lookup
Astrophysical Quark Matter Renxin Xu (徐仁新) School of Physics, Peking University 2005年10月12日,扬州大学 “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Not only is the Universe stranger than we imagine, it is stranger than we can imagine. —— Arthur Eddington Astrophysical laboratory: to find QGP? Cosmic QCD phase separation: consequence? Compact pulsar-like stars: quark stars? Cosmic rays: quark nuggets? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. SUMMARY Introduction: quark & quark matter QM in the early Universe QM in pulsar-like compact stars QM as cosmic rays Conclusions “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Quark? A historical note … Quarks ? M. Gell-Mann (1969) 1950s~1960s: A success in the classification of hadrons discovered in cosmic rays and in accelerators M. Gell-Mann (1964): Quarks? ---- in mathematical description, rather than in reality. Zweig, Chinese group (1960s): in reality? 1973: SU(3) non-Abelian gauge theory asymptotic freedom Experimental evidence for the last flavor of quark (top quark) in 1990s Introduction: Quark matter The standard model of particle physics Interaction via gauge bosons QCD “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Introduction: Quark matter Experimental evidence for asymptotic freedom “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. M. R. Pennington (University of Durham) in: QCD and Hadronic Physics (Held in PKU, Beijing, June 20, 2005) The Nobel prize in Physics (2004) Frank Wilczek of the Massachusetts Institute of Technology. David J. Gross (L) of the University of California at Santa Barbara and his wife (R) H. David Politzer of the California Institute of Technology, Pasadena, California. Introduction: Quark matter What is Quark Matter? Expected in QCD T (QGP) (Hadron gas) To be a direct consequence of aympt. freedom A simple QCD phase diagram “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Introduction: Quark matter Can we find quark matter? Terrestrial experiments Relativistic heavy ion colliders Astrophysical observations T-dominated QM: early Universe D-dominated QM: compact stars “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Introduction: Quark matter Solid Quark Matter? QGP B Solid? Liquid? Hadron Phase diagram for CO2 “Astrophysical QM” 0 Gas? QCD phase? T http://vega.bac.pku.edu.cn/rxxu R. X. Introduction: Quark matter Two kinds of Quark Matter. Xu 2005 dec T m ine onf D-dom. ent T-dom. ch ira ls ym .r es to r. Solid QM? “Astrophysical QM”Stars” http://vega.bac.pku.edu.cn/rxxu “Pulsars and Quark http://vega.bac.pku.edu.cn/rxxu R. R.X. X. SUMMARY Introduction: QM quark & quark matter in the early Universe QM in pulsar-like compact stars QM as cosmic rays Conclusions “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in the early Universe Edward Witten (1984): 1, cosmic QCD phase; 2, strange stars; 3, cosmic rays. “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Introduction: Quark matter Bodmer-Witten’s conjecture mu ~ 5 md ~ 10 ms ~150 =1.5N F ~ 400 Farhi & Jaffe (1984) “Astrophysical QM” Greiner et al 1998 http://vega.bac.pku.edu.cn/rxxu R. X. QM in the early Universe Schwarz astro-ph/0303574 Quark-hadron phase transition t ~ 10-5 s, Tc ~ 300 MeV First order reheating S. Banerjee, et al. hep-ph/0307366 “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in the early Universe Motivations to study quark-hadron transition to know “What happened at the transition?” to set initial physical conditions for BBN •inhomogeneous distribution abundances to generate relics of cosmic QCD transition •strange quark nuggets? (MACHOs?) •gravitational waves from colliding bubbles? •magnetic fields with ~ 100 kpc correlations? •QCD balls as a new CDM candidate? •black holes formation during the transition? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. SUMMARY Introduction: quark & quark matter QM in the early Universe QM in pulsar-like compact stars QM as cosmic rays Conclusions “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. A historical note of pulsars Degenerate pressure is not omnipotent in standing against the gravitational collapse Maybe there are stars with nuclear density after collapse? “Neutron” star S. Chandrasekhar (1983) L. Landau (1962) “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. A historical note of pulsars Pulsars (discovered in 1967) could be neutron stars? Walter Baade and Fritz Zwicky proposed in 1934 that supernovae could produce cosmic rays and neutron stars … A. Hewish (1974) “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Pulsars in conventional scenario Radio pulsars: cosmological lighthouse ... Pulse sequences from a radio pulsar Pulsar is pulsing … “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Pulsars in conventional scenario Neutron Stars or Quark stars? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Pulsars in conventional scenario Distribution of radio pulsars in the Galaxy “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Members of the family of pulsar-like stars … Accretion-powered X-ray pulsars X-ray bursts Compac t center objects Dim thermal “Neutron” stars “Astrophysical QM” What’s really the nature of pulsars? Radio pulsars AXP/SGR http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars The structure of normal Neutron stars Atmosphere Outer crust Inner crust Neutron matter Core? Heiselberg 2002 “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Pulsars: quark stars? Ivanenko Itoh & Hurdgelaidze (1969) (1970) Bodmer (1971) Asymptotic Witten 1986: freedom (1984) Haensel et al.; Alcock et al. “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Neutron Stars v.s. Quark Stars http://chandra.harvard.edu/photo/2002/0211/0211_illustration.pdf “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Two requirements for forming quark star Quark •An de-confinement can occur estimate of c:(4R3/3)-1 ~ 1.5 N Strange matter in bulk is absolutely stable __(Bodmer-Witten’s conjecture) •Note: Strangelet in RHIC could be unstable! Unfortunately, one can not know if these two are satisfied from the first principles (QCD). But the requirements seem ok … “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Structure of strange star: bare or crusted Electric field: E ~ 1017V/cm “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars How to form a quark star? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars It is still a challenge for astrophysicists to reproduce a successful core-collapse supernova! What if to form a quark star, rather than a neutron stars, in a CC-process? This idea is attractive since more energy and radiation (, ) are released … Note: quark stars formed in this way should be bare! “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Evidence for quark stars? A summary of our work only … “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars To solve the binding energy problem (1999) Observations: drifting subpulses of PSRs To expect non-atomic spectra (2002) Observations: thermal & non-thermal explain discrepancy between … (2004) Observations: free prec. & glitch of PSRs To understand others … Observations: superE SGR, -profile (AG) To “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars NASA News release (2002/4/10): RX J1856 a strange star? Chandra “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars How to identify clearly a quark star? Submillisecond radio pulsar: FAST? Low-mass & small-radius pulsar-like stars: X-ray interference telescopes MAXIM? Gravitational Dust wave observations: LIGO? emission from ms-pulsars: Spitzer? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM in pulsar-like compact stars Five hundred meter Aperture Spherical Telescope “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. SUMMARY Introduction: quark & quark matter QM in the early Universe QM in pulsar-like compact stars QM as cosmic rays Conclusions “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays The higher the particle energy attained, the smaller __the scale of physics which can be probed. Cosmic rays vs. Particle physics 1937 (Anderson & Neddermeyer): 1947 (Powell): 1947(Rochester & Butler): strange part. 0, K, ... Cosmic rays vs. Astrophysics Generally, astrophysics studies “cosmic rays” “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays Within the Galaxy UHECRs: 19 >~10 eV The highest “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays GZK cutoff: estimations Ep ~ 1019 eV, ~ Ep/1GeV ~ 1010 ECB ~ 3 K ~ 10-4 eV Proton rest frame E’CB ~ ECB ~ MeV Greisen PRL (1966); Zatsepin & Kuzmin JETP (1966) “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays The GZK cutoff p p 's with threshold Eth 6 10 eV Other 19 particles Photon, Iron “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays No clear GZK cutoff observed “Astrophysical QM” Stecker 2003 http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays UHECRs: What quark nuggets (strangelets)? is Strangelet?=>A lump of strange matter Advantages Larger if UHECRs are strangelets: mass Beyond GZK cutoff ML03 Higher Be electricity Easier to accelerate not point-like No collapse to BHs (Xu & Wu 2003) “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays What is the astrophysical origin of strangelets? during the early Universe? during the formation of quark stars! Acceleration Formation in induced electric field ~ 1017/P10eV by stellar processes 1, Evaporation during SNEs 2, Collision of (low-mass) strange QSs GRBs “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays How do strangelets evolve in the atmosphere? Solid strangelets dec T m ine onf ent ch i ra ls ym .r es to r. Fluid strangelets Evaporating hadrons: n, p, ... “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. QM as cosmic rays How can we detect strangelets? Atmospheric Cerenkov radiation? Atmospheric fluorescence radiation? ESA: in YBJ? Neutron detection in YBJ? …? “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Cosmic ray detection in YBJ SUMMARY Introduction: quark & quark matter QM in the early Universe QM in pulsar-like compact stars QM as cosmic rays Conclusions “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Conclusions Astrophysical quark matter are reviewed. In addition to test GR, pulsars are also useful to test and to improve the fundamental strong interaction. Possible evidence for quark stars are proposed. The physics relevant to the elementary chromatic interaction could be improved if pulsar-like stars are quark stars. A solid state of quark matter is suggested. “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. Thank you! “Astrophysical QM” http://vega.bac.pku.edu.cn/rxxu R. X. 我国天体物理教学中的问题 1,规模上的差距 “西方世界鞭先着”:在发达国家高等教育中已经 非常普遍,并且教学水平和质量也相当高。 2,物理类对“天体物理”教育重视不够 将实施大型天文科学工程:FAST、HXMT、 SST 3,教材 。胡中为、萧耐园、朱慈(土盛),《天文学教程 (上下)》,高等教育出版社(2003) 。李宗伟、肖兴华,《天体物理学》,高等教育 出版社(2000) …… 《天体物理导论》 (约30万字) 北京大学出版社 (2005年底左右出版) 徐仁新 1,适用对象 物理类本科生、研究生,对天体物理学感 兴趣或从事天体物理研究的学者。 2,编写该教材的目的 架起“天文学”与“物理学”两领域的桥 梁, 以便于现代天体物理研究在国内的开展。 3,先前的教学实践 分别以讲义形式在清华(“天体物理”课) 和北大(“天体物理导论”课)高年级本 教材定位 以“普物”风格介绍发生在宇观层次的 若干物理过程。将天体看作探索自然界 基本物理规律的“极端实验室”。 “普物”风格 := 在定性和半定量的层 次上认识、理解各类自然现象。 区别于“理论物理”课程 数量级上一致,而“小数点后若干位”留给理论物 教材内容 1,概况 行星、恒星、星系;观测设备与学科展望 2,准备知识 辐射——认识宇宙的重要窗口;磁化等离子体— —99%以上宇宙物质的状态。 3,恒星层次 主序恒星——绝大多数肉眼所见的点点繁星; 超新星——恒星晚期的爆发过程;吸积——致密 天体的有效产能方式;白矮星——恒星演化残骸 之一;脉冲星、中子星与夸克星——恒星演化残 骸之二;黑洞——广义相对论预言的天体。 教材内容 1,概况 2,准备知识 3,恒星层次 4,星系与宇宙层次 宇宙射线爆发源——紧次于“大爆炸”的现象; 星系——组成宇宙的基本单元; 宇宙——可观测的一切。 教材内容:附录 附录一、Landau:“论恒星的理论” 附录二、粒子物理标准模型简介 附录三、粒子天体物理简介 附录四、地外文明与系外行星系统 附录五、数、单位制与常数