Download AS2001 - University of St Andrews

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Non-standard cosmology wikipedia , lookup

Aries (constellation) wikipedia , lookup

Rare Earth hypothesis wikipedia , lookup

Dyson sphere wikipedia , lookup

Cygnus (constellation) wikipedia , lookup

Aquarius (constellation) wikipedia , lookup

Space Interferometry Mission wikipedia , lookup

Lyra wikipedia , lookup

History of supernova observation wikipedia , lookup

Formation and evolution of the Solar System wikipedia , lookup

Nebular hypothesis wikipedia , lookup

International Ultraviolet Explorer wikipedia , lookup

Gamma-ray burst wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Perseus (constellation) wikipedia , lookup

Advanced Composition Explorer wikipedia , lookup

Stellar classification wikipedia , lookup

Abundance of the chemical elements wikipedia , lookup

Stellar evolution wikipedia , lookup

Chronology of the universe wikipedia , lookup

Ursa Minor wikipedia , lookup

Big Bang nucleosynthesis wikipedia , lookup

Cosmic distance ladder wikipedia , lookup

Timeline of astronomy wikipedia , lookup

Stellar kinematics wikipedia , lookup

Serpens wikipedia , lookup

Andromeda Galaxy wikipedia , lookup

Hubble Deep Field wikipedia , lookup

Structure formation wikipedia , lookup

Corvus (constellation) wikipedia , lookup

Pea galaxy wikipedia , lookup

Observational astronomy wikipedia , lookup

Messier 87 wikipedia , lookup

Ursa Major wikipedia , lookup

P-nuclei wikipedia , lookup

R136a1 wikipedia , lookup

Galaxy wikipedia , lookup

Nucleosynthesis wikipedia , lookup

Galaxy Zoo wikipedia , lookup

Star formation wikipedia , lookup

Transcript
Lecture 11:
Age and Metalicity
from Observations
Z
“Closed Box” model with constant yield:

Z(t)    ln (t)
metalicity
yield
gas fraction
Z(t)   as t  

Ignores:

1

1.
IGM--ISM exchanges: IGM falls into galaxy
ISM blown out of galaxy
2.
SN Ia, stellar winds, PNe, novae, etc.
3.
Initial enrichment by e.g. Pop.III stars prior to galaxy formation?
4.
Faster enrichment (more SNe) in high-density regions of galaxy.

 

Z
Z(t)    ln (t)



1
(t)  e
Z
Z(t)   t /t


1
t / t
t


Ellipticals: 

t

M0
t 
Ý
M
(t) 1 t /t



t 

Spirals:
 

t
1
t t
Z
Z(t)    ln 1 t /t 


t
t

Z
Z(t)    ln (t)



(t)  1 t /t

M0
t  f
Ýburst
M
f 
1

1

1
Irregulars:
 

Z
Z(t)   ln 1 t /t 


t
t
t
t



Age Estimates
Main sequence lifetime:
HR diagram
1
 MS
 MS
M L 
 7 10    yr
M. L . 
L
9
giants
Lmax
 43
L 
 7 10  
L .
9
yr
(since L  M 4  M  L1/ 4 )
Main sequence
B-V
Lmax (top of main sequence)
gives age t.
Abundance Measurements
•
•
•
•
Star spectra: absorption lines
Gas spectra: emission lines
Galaxy spectra: both
Metal-rich/poor stars: stronger/weaker metal lines
.
relative to H.
HII region spectra
Stellar spectra
• Lab measurements: Unique line signature for each element.
High-Resolution Spectra
Abundance Measurements

Spectra
Line strengths (equivalent widths)
+
Astrophysics

Stellar atmosphere models
+
Physics

Laboratory calibrations

 Fe

 H

, etc.


(Full details of this process are part of other courses)

Bracket Notation
Bracket notation for Fe abundance of a star relative to the Sun:
 Fe

 H
n(Fe) 
n(Fe) 

 log 10
  log 10



 n(H) 
 n(H) .
atoms of Fe
atoms of H
 n(Fe) n(H) 
 
 log 10
n(Fe) n(H) . 


And similarly for other metals, e.g. relative to Fe:

 O

 Fe
  C 
,
, ...

 
 Fe 



Star with solar Fe abundance:  Fe  0.0
 H 

 Fe 
 log 10 2  0.3
Twice solar abundance: 
 H 

 Fe 

Half solar abundance:
 log 10 ?  ?

 H 

[Xi/Fe] vs [Fe/H]
Metallicity
Metalicity (by mass):
f n(Mg)
Z
n(H)  4 n(He)  f n(Mg)
X
vs Abundance
Abundance (by number):
 Mg

 H
n(Mg) 
n(Mg) 

 log 10
  log 10



 n(H) *
 n(H) .
n(H)
n(H)  4 n(He)  f n(Mg)
 Z . 
 Z 

 log 10
 log 10


f
X
.
 f X 


Z
n(Mg)

f X n(H)
Z X . 

 log 10
Z . X 

 

(where f = some factor)
Z X

10 Mg
X.
 Z .
H

10 Mg
H

Primordial:
Xp = 0.75,
Yp = 0.25,
Zp = 0.00
Solar:
X . = 0.70,
Y . = 0.28,
Z . = 0.02
.
Key Observational Results
Z log()
1.
More gas used --> higher metallicity.

Z 1/distance from galaxy centre
2.
More metals near centres of galaxies.
Infall of IGM on outskirts + gas migrates to centre.
More star generations -->  lower at centre.

Z  L0B.3
3.
Small (low luminosity) galaxies have lower metallicities.
•
Dwarf irregulars: form later (young galaxies),  high
•
Dwarf ellipticals: SN ejecta leave the galaxy,  low
Less Metals in Small Galaxies
faint
---->
bright
More metals near Galaxy Centres
Ellipticals
(NGC 3115)
Spirals
(M100)
Review of Course
• Main events in the evolution of the Universe:
–
–
–
–
–
–
The Big Bang (caused by ???)
Symmetry breaking  matter/anti-matter ratio
Quark + antiquark annihilation  photon/baryon ratio
The quark soup  heavy quark decay
Quark-Hadron phase transition and neutron decay  n/p ratio
Big Bang nucleosynthesis  primordial abundances
Xp = 0.75
Yp = 0.25
Zp = 0.0
– Matter-Radiation equality
– Recombination/decoupling  the Cosmic Microwave
Background
– Galaxy formation and chemical evolution of galaxies
• Main events in the chemical evolution of galaxies:
– Galaxy formation  Jeans Mass
• Ellipticals
• Spirals
• Irregulars
 SFRs, gas fraction (t)
– Star formation  = efficiency of star formation
• The IMF (e.g., Salpeter IMF)
– Stellar nucleosynthesis  metals up to Fe  yield 
• Black holes, white dwarfs, neutron stars
– Supernova (i.e., SN 1987A)  metals beyond Fe
• r, p, and s process
• Abundances  X = 0.70 Y = 0.28 Z = 0.02
(solar abundances)
– Planet formation  Life!