Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EDS Mini-colloquium, Mexico City, May 3, 2014 From Lilienfeld to Landauer: Understanding the nanoscale transistor: Mark Lundstrom Electrical and Computer Engineering Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA nanoHUB.org Lundstrom 5.3.2013 1 history of the field-effect transistor concept Lilienfeld, 1926 Heil, 1934 demonstration 22 nm FinFET Atalla and Dawon Kahng Bell Labs, 1959 Intel IEDM, 2012 Lundstrom 5.3.2013 2 NMOS-II NMOS II: 5 microns = 5000 nm 3 Hewlett-Packard Journal, Nov. 1977 Moore’s Law Nanoelectronics Microelectronics 4 http://en.wikipedia.org/wiki/Moore's_law Lundstrom 5.3.2013 4 MOSFET IV characteristic gate-voltage controlled current source circuit symbol D G S 5 gate-voltage controlled resistor (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) Lundstrom 5.3.2013 MOSFET IV: low VDS gate-voltage controlled resistor 6 Lundstrom 5.3.2013 velocity saturation 107 104 7 Lundstrom 5.3.2013 105 MOSFET IV: velocity saturation (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) 8 Lundstrom 5.3.2013 textbook MOSFET model gate-voltage controlled current source gate-voltage controlled resistor (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) 9 Lundstrom 5.3.2013 carrier transport nanoscale MOSFETs Velocity (cm/s) Energy quasi-ballistic D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992. 10 Lundstrom 5.3.2013 MOSFET: IV (2-piece approximation) 11 Lundstrom 5.3.2013 current = charge times velocity 1) Low VDS: 2) High VDS: 12 Lundstrom 5.3.2013 model for ID(VG, VD) If we can make the average velocity go smoothly from the low VD to the high VD limit, then we will have a smooth model for ID(VG, VD). 13 Lundstrom 5.3.2013 drain voltage dependent average velocity Lundstrom 5.3.2013 14 empirical saturation function ✓ ✓ Lundstrom 5.3.2013 15 “MIT Virtual Source” model 1) Only a few device-specific input parameters to this model: 2) 3) The parameter, β, is empirically adjusted to fit the IV. Typically, β ≈ 1.4 – 1.8 for both N- and PMOSFETs. 4) 5) 16 Lundstrom 5.3.2013 MIT Virtual Source Model 32 nm technology Lundstrom 5.3.2013 17 questions 1) Why does the traditional MOSFET model (based on transport physics that is not valid at the nanoscale) continue to describe the IV characteristics of nanoMOSFETs? 2) How does the velocity saturate in a ballistic or quasiballistic MOSFET? 3) What is the meaning of the “apparent mobility” and the “injection velocity.” 4) What will happen below 10 nm? 18 Lundstrom 5.3.2013 outline 1) Introduction 2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models 5) What will happen below 10 nm? 6) Summary Lundstrom 5.3.2013 19 energy band diagrams electron potential energy vs. position G source D drain silicon SiO2 S (Texas Instruments, ~ 2000) Lundstrom 5.3.2013 20 the transistor as a barrier controlled device low gate voltage VD = VS = 0 source channel Lundstrom 5.3.2013 drain 21 the transistor as a barrier controlled device low gate voltage source channel drain high drain voltage 22 Lundstrom 5.3.2013 the transistor as a barrier controlled device high gate voltage source high drain voltage Lundstrom 5.3.2013 23 how transistors work 2007 N-MOSFET (Courtesy, Shuji Ikeda, ATDF, Dec. 2007) 24 E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973 understanding MOSFET IV characteristics electrostatics + transport Lundstrom 5.3.2013 25 Energy Velocity (cm/s) semiclassical transport in nanoscale MOSFETs D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992. 26 Lundstrom 5.3.2013 quantum transport L = 10 nm n(x, E) nanoMOS (www.nanoHUB.org) 27 Lundstrom 5.3.2013 outline 1) Introduction 2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models 5) What will happen below 10 nm? 6) Summary Lundstrom 5.3.2013 28 Landauer approach to transport nano-device gate 29 Lundstrom 5.3.2013 the DD equation for the 21st Century nano-device bulk semiconductor 30 Lundstrom 5.3.2013 “Lessons from Nanoscience” http://nanohub.org/topics/LessonsfromNanoscience 31 Lundstrom 5.3.2013 i) small drain bias nano-device 32 Lundstrom 5.3.2013 small drain bias 33 Lundstrom 5.3.2013 ballistic transport and quantized conductance W --> B. J. van Wees, et al. Phys. Rev. Lett. 60, 848–851,1988. 1) conductance is quantized 2) upper limit to conductance 34 Lundstrom 5.3.2013 ii) large drain bias nano-device 35 Lundstrom 5.3.2013 ballistic MOSFET: linear region near-equilibrium 36 Lundstrom 5.3.2013 linear region with MB statistics ✔ 37 Lundstrom 5.3.2013 ballistic MOSFET: linear region near-equilibrium 38 Lundstrom 5.3.2013 ballistic MOSFET: saturated region Lundstrom 5.3.2013 39 saturated region with MB statistics ✔ 40 Lundstrom 5.3.2013 ballistic MOSFET: 41 Lundstrom 5.3.2013 the ballistic IV (Boltzmann statistics) ballistic on-current ballistic channel resistance “velocity saturation” 42 Lundstrom 5.3.2013 K. Natori, JAP, 76, 4879, 1994. velocity saturation in a ballistic MOSFET ΕΧ vs. x for VGS = 0.5V 1) 2) 3) 4) Increasing VDS -10 43 -5 0 5 10 (Numerical simulations of an L = 10 nm double gate Si MOSFET from J.-H. Rhew and M.S. Lundstrom, Solid-State Electron., 46, 1899, 2002) Velocity (cm/s) “velocity overshoot” D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992. 44 Lundstrom Fall 2012 comparison with experiment: Silicon • Si MOSFETs deliver > one-half of the ballistic on-current. (Similar for the past 15 years.) • MOSFETs operate closer to the ballistic limit under high VDS. A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-Body Extremely Thin SOI MOSFETs With Back Gates," IEEE Transactions on Electron Devices, 56, pp. 2270-2276, 2009. 45 Device characterization and simulation: Himadri Pal and Yang Liu, Purdue, 2010. comparison with experiment: InGaAs HEMTs Jesus del Alamo group (MIT) 46 scattering and transmission X X X λ0 is the mean-free-path for backscattering 47 Lundstrom 5.3.2013 the quasi-ballistic MOSFET 48 Lundstrom 5.3.2013 on-current and transmission 49 Lundstrom 5.3.2013 the quasi-ballistic MOSFET 50 Lundstrom 5.3.2013 scattering under high VDS low VDS high VDS 51 Lundstrom 5.3.2013 outline 1) Introduction 2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models 5) What will happen below 10 nm? 6) Summary 52 Lundstrom 5.3.2013 MIT VS Model: why does it work? 32 nm technology 53 Lundstrom 5.3.2013 connection to traditional model (low VDS) 54 Lundstrom 5.3.2013 connection to traditional model (high VDS) 55 Lundstrom 5.3.2013 the MOSFET as a BJT “base” ‘bottleneck’ “collector” E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973 56 Lundstrom 5.3.2013 Landauer VS model Lundstrom 5.3.2013 57 outline 1) Introduction 2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models 5) What will happen below 10 nm? 6) Summary 58 Lundstrom 5.3.2013 limits to barrier control: quantum tunneling 59 4) 3) 2) 1) Lundstrom 5.3.2013 from M. Luisier, ETH Zurich / Purdue 5 nm MOSFETs? 60 Unpublished results from Saumitra Mehrotra, G. Klimeck group, Purdue University. Lundstrom 5.3.2013 outline 1) Introduction 2) The MOSFET as a barrier-controlled device 3) The MOSFET as a nano-device 4) Connecting the traditional and Landauer models 5) What will happen below 10 nm? 6) Summary 61 Lundstrom 5.3.2013 top of the barrier / VS model under strong control of gate with weak influence of the drain For large VDS, most of the additional voltage drop occurs on the drain end of the channel. In a “well-tempered” MOSFET, the height of the energy barrier is mostly controlled by the gate voltage and only weakly controlled by the drain voltage. Current is controlled by a bottleneck near the beginning of the channel 62 Lundstrom 5.3.2013 the MIT VS model: Why does it work? 63 summary • Understanding MOSFETs means understanding electrostatics and transport. • The Landauer approach provides a clear, physical approach to transport at the nanoscale. • 10 nm and below is still uncharted territory. 64 questions This talk will be available soon at: www.nanoHUB.org For more information, take a nanoHUB-U short course: “Nanoscale transistors” on nanoHUB-U https://nanohub.org/groups/u/self_paced_nanoscale_transistors 65