Download Slides - nanoHUB.org

Document related concepts

Matter wave wikipedia , lookup

Ionization wikipedia , lookup

Bohr model wikipedia , lookup

Tight binding wikipedia , lookup

Electron scattering wikipedia , lookup

Transcript
EDS Mini-colloquium, Mexico City, May 3, 2014
From Lilienfeld to Landauer:
Understanding the nanoscale transistor:
Mark Lundstrom
Electrical and Computer Engineering
Network for Computational Nanotechnology
Birck Nanotechnology Center
Purdue University, West Lafayette, Indiana USA
nanoHUB.org
Lundstrom 5.3.2013
1
history of the field-effect transistor
concept
Lilienfeld, 1926
Heil, 1934
demonstration
22 nm FinFET
Atalla and Dawon Kahng
Bell Labs, 1959
Intel
IEDM, 2012
Lundstrom 5.3.2013
2
NMOS-II
NMOS II: 5 microns = 5000 nm
3
Hewlett-Packard Journal, Nov. 1977
Moore’s Law
Nanoelectronics
Microelectronics
4
http://en.wikipedia.org/wiki/Moore's_law
Lundstrom 5.3.2013
4
MOSFET IV characteristic
gate-voltage
controlled
current source
circuit
symbol
D
G
S
5
gate-voltage
controlled
resistor
(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)
Lundstrom 5.3.2013
MOSFET IV: low VDS
gate-voltage
controlled
resistor
6
Lundstrom 5.3.2013
velocity saturation
107
104
7
Lundstrom 5.3.2013
105
MOSFET IV: velocity saturation
(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)
8
Lundstrom 5.3.2013
textbook MOSFET model
gate-voltage
controlled current
source
gate-voltage
controlled
resistor
(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)
9
Lundstrom 5.3.2013
carrier transport nanoscale MOSFETs
Velocity (cm/s) 
Energy 
quasi-ballistic
D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.
10
Lundstrom 5.3.2013
MOSFET: IV (2-piece approximation)
11
Lundstrom 5.3.2013
current = charge times velocity
1) Low VDS:
2) High VDS:
12
Lundstrom 5.3.2013
model for ID(VG, VD)
If we can make the average velocity go smoothly from the
low VD to the high VD limit, then we will have a smooth model
for ID(VG, VD).
13
Lundstrom 5.3.2013
drain voltage dependent average velocity
Lundstrom 5.3.2013
14
empirical saturation function
✓
✓
Lundstrom 5.3.2013
15
“MIT Virtual Source” model
1)
Only a few device-specific input
parameters to this model:
2)
3)
The parameter, β, is empirically
adjusted to fit the IV. Typically, β ≈
1.4 – 1.8 for both N- and PMOSFETs.
4)
5)
16
Lundstrom 5.3.2013
MIT Virtual Source Model
 32 nm technology 
Lundstrom 5.3.2013
17
questions
1) Why does the traditional MOSFET model (based on
transport physics that is not valid at the nanoscale)
continue to describe the IV characteristics of nanoMOSFETs?
2) How does the velocity saturate in a ballistic or quasiballistic MOSFET?
3) What is the meaning of the “apparent mobility” and the
“injection velocity.”
4) What will happen below 10 nm?
18
Lundstrom 5.3.2013
outline
1) Introduction
2) The MOSFET as a barrier-controlled device
3) The MOSFET as a nano-device
4) Connecting the traditional and Landauer models
5) What will happen below 10 nm?
6) Summary
Lundstrom 5.3.2013
19
energy band diagrams
electron potential
energy vs. position
G
source
D
drain
silicon
SiO2
S
(Texas Instruments, ~ 2000)
Lundstrom 5.3.2013
20
the transistor as a barrier controlled device
 low gate voltage
 VD = VS = 0
source
channel
Lundstrom 5.3.2013
drain
21
the transistor as a barrier controlled device
 low gate voltage
source
channel
drain
 high drain voltage
22
Lundstrom 5.3.2013
the transistor as a barrier controlled device
 high gate voltage
source
 high drain voltage
Lundstrom 5.3.2013
23
how transistors work
2007 N-MOSFET
(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)
24
E.O. Johnson, “The IGFET: A Bipolar Transistor in
Disguise,” RCA Review, 1973
understanding MOSFET IV characteristics
electrostatics + transport
Lundstrom 5.3.2013
25
Energy 
Velocity (cm/s) 
semiclassical transport in nanoscale MOSFETs
D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.
26
Lundstrom 5.3.2013
quantum transport
L = 10 nm
n(x, E)
nanoMOS (www.nanoHUB.org)
27
Lundstrom 5.3.2013
outline
1) Introduction
2) The MOSFET as a barrier-controlled device
3) The MOSFET as a nano-device
4) Connecting the traditional and Landauer models
5) What will happen below 10 nm?
6) Summary
Lundstrom 5.3.2013
28
Landauer approach to transport
nano-device
gate
29
Lundstrom 5.3.2013
the DD equation for the 21st Century
nano-device
bulk semiconductor
30
Lundstrom 5.3.2013
“Lessons from Nanoscience”
http://nanohub.org/topics/LessonsfromNanoscience
31
Lundstrom 5.3.2013
i) small drain bias
nano-device
32
Lundstrom 5.3.2013
small drain bias
33
Lundstrom 5.3.2013
ballistic transport and quantized conductance
W -->
B. J. van Wees, et al. Phys. Rev. Lett. 60, 848–851,1988.
1) conductance is quantized
2) upper limit to conductance
34
Lundstrom 5.3.2013
ii) large drain bias
nano-device
35
Lundstrom 5.3.2013
ballistic MOSFET: linear region
near-equilibrium
36
Lundstrom 5.3.2013
linear region with MB statistics
✔
37
Lundstrom 5.3.2013
ballistic MOSFET: linear region
near-equilibrium
38
Lundstrom 5.3.2013
ballistic MOSFET: saturated region
Lundstrom 5.3.2013
39
saturated region with MB statistics
✔
40
Lundstrom 5.3.2013
ballistic MOSFET:
41
Lundstrom 5.3.2013
the ballistic IV (Boltzmann statistics)
ballistic
on-current
ballistic
channel resistance
“velocity
saturation”
42
Lundstrom 5.3.2013
K. Natori, JAP, 76, 4879, 1994.
velocity saturation in a ballistic MOSFET
ΕΧ vs. x for VGS = 0.5V
1)
2)
3)
4)
Increasing VDS
-10
43
-5
0
5
10
(Numerical simulations of an L = 10 nm double gate Si MOSFET from
J.-H. Rhew and M.S. Lundstrom, Solid-State Electron., 46, 1899, 2002)
Velocity (cm/s) 
“velocity overshoot”
D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.
44
Lundstrom Fall 2012
comparison with experiment: Silicon
• Si MOSFETs deliver > one-half of
the ballistic on-current. (Similar for
the past 15 years.)
• MOSFETs operate closer to the
ballistic limit under high VDS.
A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-Body Extremely Thin SOI
MOSFETs With Back Gates," IEEE Transactions on Electron Devices, 56, pp. 2270-2276, 2009.
45
Device characterization and simulation: Himadri Pal and Yang Liu, Purdue, 2010.
comparison with experiment: InGaAs HEMTs
Jesus del Alamo group (MIT)
46
scattering and transmission
X
X
X
λ0 is the mean-free-path for backscattering
47
Lundstrom 5.3.2013
the quasi-ballistic MOSFET
48
Lundstrom 5.3.2013
on-current and transmission
49
Lundstrom 5.3.2013
the quasi-ballistic MOSFET
50
Lundstrom 5.3.2013
scattering under high VDS
low VDS
high VDS
51
Lundstrom 5.3.2013
outline
1) Introduction
2) The MOSFET as a barrier-controlled device
3) The MOSFET as a nano-device
4) Connecting the traditional and Landauer models
5) What will happen below 10 nm?
6) Summary
52
Lundstrom 5.3.2013
MIT VS Model: why does it work?
 32 nm technology 
53
Lundstrom 5.3.2013
connection to traditional model (low VDS)
54
Lundstrom 5.3.2013
connection to traditional model (high VDS)
55
Lundstrom 5.3.2013
the MOSFET as a BJT
“base”
‘bottleneck’
“collector”
E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973
56
Lundstrom 5.3.2013
Landauer  VS model
Lundstrom 5.3.2013
57
outline
1) Introduction
2) The MOSFET as a barrier-controlled device
3) The MOSFET as a nano-device
4) Connecting the traditional and Landauer models
5) What will happen below 10 nm?
6) Summary
58
Lundstrom 5.3.2013
limits to barrier control: quantum tunneling
59
4)
3)
2)
1)
Lundstrom 5.3.2013
from M. Luisier, ETH Zurich / Purdue
5 nm MOSFETs?
60
Unpublished results from Saumitra Mehrotra, G. Klimeck group,
Purdue University.
Lundstrom 5.3.2013
outline
1) Introduction
2) The MOSFET as a barrier-controlled device
3) The MOSFET as a nano-device
4) Connecting the traditional and Landauer models
5) What will happen below 10 nm?
6) Summary
61
Lundstrom 5.3.2013
top of the barrier / VS model
under strong control of gate with
weak influence of the drain
For large VDS, most of the
additional voltage drop occurs on
the drain end of the channel.
In a “well-tempered”
MOSFET, the height of
the energy barrier is
mostly controlled by the
gate voltage and only
weakly controlled by the
drain voltage.
Current is controlled by a
bottleneck near the
beginning of the channel
62
Lundstrom 5.3.2013
the MIT VS model: Why does it work?
63
summary
• Understanding MOSFETs means understanding
electrostatics and transport.
• The Landauer approach provides a clear,
physical approach to transport at the nanoscale.
• 10 nm and below is still uncharted territory.
64
questions
This talk will be available soon at: www.nanoHUB.org
For more information, take a nanoHUB-U short course:
“Nanoscale transistors” on nanoHUB-U
https://nanohub.org/groups/u/self_paced_nanoscale_transistors
65