Download BF961 N–Channel Dual Gate MOS-Fieldeffect Tetrode

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Islanding wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Electromagnetic compatibility wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Power inverter wikipedia , lookup

Electrical substation wikipedia , lookup

Ohm's law wikipedia , lookup

History of electric power transmission wikipedia , lookup

Transistor wikipedia , lookup

Rectifier wikipedia , lookup

Triode wikipedia , lookup

Surge protector wikipedia , lookup

Metadyne wikipedia , lookup

Voltage regulator wikipedia , lookup

Power electronics wikipedia , lookup

P–n diode wikipedia , lookup

Schmitt trigger wikipedia , lookup

Alternating current wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Current source wikipedia , lookup

Voltage optimisation wikipedia , lookup

Stray voltage wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Mains electricity wikipedia , lookup

Buck converter wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
BF961
Vishay Semiconductors
N–Channel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input- and mixer stages especially for FM- and VHF TV-tuners up to 300 MHz.
Features
D Integrated gate protection diodes
D High cross modulation performance
D Low noise figure
D High AGC-range
D Low feedback capacitance
D Low input capacitance
3
G2
D
4
2
G1
94 9307
96 12647
1
BF961 Marking: BF961
Plastic case (TO 50)
1=Drain, 2=Source, 3=Gate 1, 4=Gate 2
S
12623
Absolute Maximum Ratings
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source voltage
Drain current
Gate 1/Gate 2 - source peak current
Total power dissipation
Channel temperature
Storage temperature range
Test Conditions
Type
Tamb ≤ 60 °C
Symbol
Value
VDS
20
ID
30
±IG1/G2SM
10
Ptot
200
TCh
150
Tstg
–55 to +150
Unit
V
mA
mA
mW
°C
°C
Symbol
RthChA
Unit
K/W
Maximum Thermal Resistance
Tamb = 25_C, unless otherwise specified
Parameter
Test Conditions
Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm3
plated with 35mm Cu
Document Number 85002
Rev. 3, 20-Jan-99
Value
450
www.vishay.com
1 (7)
BF961
Vishay Semiconductors
Electrical DC Characteristics
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source
breakdown voltage
Gate 1 - source
breakdown voltage
Gate 2 - source
breakdown voltage
Gate 1 - source
leakage current
Gate 2 - source
leakage current
Drain current
Test Conditions
ID = 10 mA, –VG1S = –VG2S = 4 V
Gate 1 - source
cut-off voltage
Gate 2 - source
cut-off voltage
VDS = 15 V, VG2S = 4 V, ID = 20 mA
VDS = 15 V, VG1S = 0, ID = 20 mA
Type
Symbol
V(BR)DS
Min
20
±IG1S = 10 mA, VG2S = VDS = 0
±V(BR)G1SS
±IG2S = 10 mA, VG1S = VDS = 0
±V(BR)G2SS
Typ
Max
Unit
V
8
14
V
8
14
V
±VG1S = 5 V, VG2S = VDS = 0
±IG1SS
100
nA
±VG2S = 5 V, VG1S = VDS = 0
±IG2SS
100
nA
–VG1S(OFF)
20
10.5
20
3.5
mA
mA
mA
V
–VG2S(OFF)
3.5
V
Max
Unit
mS
pF
pF
fF
pF
dB
dB
dB
VDS = 15 V, VG1S = 0, VG2S = 4 V
BF961
BF961A
BF961B
IDSS
IDSS
IDSS
4
4
9.5
Electrical AC Characteristics
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified
Parameter
Forward transadmittance
Gate 1 input capacitance
Gate 2 input capacitance
Feedback capacitance
Output capacitance
Power gain
AGC range
Noise figure
www.vishay.com
2 (7)
Test Conditions
VG1S = 0, VG2S = 4 V
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
VG2S = 4 to –2 V, f = 200 MHz
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
Symbol
y21s
Cissg1
Cissg2
Crss
Coss
Gps
DGps
F
Min
12
Typ
15
3.7
1.6
25
1.6
20
50
1.8
2.5
Document Number 85002
Rev. 3, 20-Jan-99
BF961
Vishay Semiconductors
Typical Characteristics (Tamb = 25_C unless otherwise specified)
22
Y21S – Forward Transadmittance ( mS )
P tot – Total Power Dissipation ( mW )
300
250
200
150
100
50
20
18
20
40
60
80
14
12
10
8
2V
1V
2
VG1S – Gate 1 Source Voltage ( V )
96 12162
Figure 4. Forward Transadmittance vs.
Gate 1 Source Voltage
4.0
C issg1 – Gate 1 Input Capacitance ( pF )
VG1S= 0.6V
20
18
ID – Drain Current ( mA )
3V
0
–2.0–1.5–1.0–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
22
0.4V
16
14
0.2V
12
10
0
8
–0.2V
–0.4V
–0.6V
–0.8V
6
4
2
0
0
2
4
6
3.5
3.0
VDS=15V
VG2S=4V
f=1MHz
2.5
2.0
1.5
1.0
0.5
0
–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
8 10 12 14 16 18 20 22 24
VDS – Drain Source Voltage ( V )
96 12160
VG1S – Gate 1 Source Voltage ( V )
96 12163
Figure 2. Drain Current vs. Drain Source Voltage
Figure 5. Gate 1 Input Capacitance vs.
Gate 1 Source Voltage
4.0
24
22
20
18
16
14
12
10
8
6
4
2
0
VDS=15V
IDS=10mA
C issg2 – Gate 2 Input Capacitance ( pF )
Y21S – Forward Transadmittance ( mS )
0V
4
Figure 1. Total Power Dissipation vs.
Ambient Temperature
VG1S=0.5V
0V
–0.5V
–2
96 12161
4V
6
100 120 140 160
Tamb – Ambient Temperature ( °C )
96 12159
VG2S=5V
16
0
0
VDS=15V
f=1MHz
–1
0
1
2
3
4
5
VG2S – Gate 2 Source Voltage ( V )
Figure 3. Forward Transadmittance vs.
Gate 2 Source Voltage
Document Number 85002
Rev. 3, 20-Jan-99
3.6
VDS=15V
VG1S=0
f=1MHz
3.2
2.8
2.4
2.0
1.6
1.2
0.8
0.4
0
–2
6
96 12164
–1
0
1
2
3
4
5
6
7
VG2S – Gate 2 Source Voltage ( V )
Figure 6. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
www.vishay.com
3 (7)
BF961
Vishay Semiconductors
C oss – Output Capacitance ( pF )
3.0
2.5
10
VG2S=4V
f=1MHz
VDS=15V
VG2S=4V
f=50...700MHz
5
0
Im ( y21 ) ( mS )
2.0
1.5
1.0
f=50MHz
ID=5mA
10mA
20mA
–5
–10
100MHz
200MHz
300MHz
–15
400MHz
–20
0.5
500MHz
600MHz
–25
700MHz
0
0
–30
2
4
6
8 10 12 14 16 18 20 22
VDS – Drain Source Voltage ( V )
96 12165
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Figure 7. Output Capacitance vs. Drain Source Voltage
Figure 9. Short Circuit Forward Transfer Admittance
18
f=700MHz
16
Im ( y11 ) ( mS )
12
Im ( y22 ) ( mS )
600MHz
14
500MHz
10
400MHz
8
300MHz
6
VDS=15V
VG2S=4V
ID=5...20mA
f=50...700MHz
200MHz
4
2
100MHz
0
0
1
2
3
4
5
6
7
8
9
Figure 8. Short Circuit Input Admittance
www.vishay.com
4 (7)
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
f=700MHz
96 12168
600MHz
ID=5mA
500MHz
ID=20mA
400MHz
300MHz
VDS=15V
VG2S=4V
ID=5...20mA
f=50...700MHz
200MHz
100MHz
0
10
Re (y11) ( mS )
96 12166
Re (y21) ( mS )
96 12167
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Re (y22) ( mS )
Figure 10. Short Circuit Output Admittance
Document Number 85002
Rev. 3, 20-Jan-99
BF961
Vishay Semiconductors
VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V , Z0 = 50
W
S12
S11
j
90°
120°
j0.5
60°
j2
150°
j0.2
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
0
30°
j5
0.2
0.5
1
2
1
5
600
700MHz
180°
0.04
0.08
0°
50
100
–j0.2
300
–j5
700 MHz
500
–j0.5
300
–150°
–30°
–j2
–120°
–j
12 920
–60°
–90°
12 921
Figure 11. Input reflection coefficient
Figure 13. Reverse transmission coefficient
S21
S22
j
90°
120°
60°
j0.5
30°
400
j0.2
200
700MHz
50
180°
j2
0.8
1.6
0°
0
j5
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
0.2
0.5
1
2
5
100
ID= 20mA
10mA
–30°
5mA
–30°
–150°
300
500
–j0.2
12 922
–j2
–60°
–90°
Figure 12. Forward transmission coefficient
Document Number 85002
Rev. 3, 20-Jan-99
–j5
700 MHz
–j0.5
–120°
1
12 923
–j
Figure 14. Output reflection coefficient
www.vishay.com
5 (7)
BF961
Vishay Semiconductors
Dimensions in mm
96 12242
www.vishay.com
6 (7)
Document Number 85002
Rev. 3, 20-Jan-99
BF961
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Semiconductors products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
Document Number 85002
Rev. 3, 20-Jan-99
www.vishay.com
7 (7)