* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Uranus and Neptune
Planet Nine wikipedia , lookup
Late Heavy Bombardment wikipedia , lookup
History of Solar System formation and evolution hypotheses wikipedia , lookup
Exploration of Io wikipedia , lookup
Kuiper belt wikipedia , lookup
Exploration of Jupiter wikipedia , lookup
Definition of planet wikipedia , lookup
Scattered disc wikipedia , lookup
Jumping-Jupiter scenario wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
Planets beyond Neptune wikipedia , lookup
Triton (moon) wikipedia , lookup
The Outer Worlds Uranus was discovered by chance • Uranus recognized as a planet in 1781 by William Herschel while scanning the sky for nearby objects with measurable parallax: discovered Uranus as slightly extended object, ~ 3.7 arc seconds in diameter. Neptune’ Discovery Discovered in 1846 at position predicted from gravitational disturbances on Uranus’s orbit by John Couch Adams and Urbain Jean Leverrier. (But don’t forget Galle!) Blue-green color from methane in the atmosphere 4 times Earth’s diameter; 4 % smaller than Uranus The Atmospheres of Uranus and Neptune Outer atmospheres of Uranus and Neptune are similar to those of Jupiter and Saturn Uranus and Neptune are cold enough that ammonia freezes; methane dominates and gives the characteristic blue color The Atmospheres of Uranus and Neptune Uranus is very cold; clouds only in lower, warmer layers. Few features are visible: The Atmosphere of Uranus Like other gas giants: No surface. Gradual transition from gas phase to fluid interior. Mostly H; 15 % He, a few % Methane, ammonia and water vapor. Optical view from Earth: Blue color due to methane, absorbing longer wavelengths Cloud structures only visible after artificial computer enhancement of optical images taken from Voyager spacecraft. The Structure of Uranus’ Atmosphere Only one layer of Methane clouds (in contrast to 3 cloud layers on Jupiter and Saturn). 3 cloud layers in Jupiter and Saturn form at relatively high temperatures that occur only very deep in Uranus’ atmosphere. Uranus’ cloud layer difficult to see because of thick atmosphere above it. Also shows belt-zone structure Belt-zone cloud structure must be dominated by planet’s rotation, not by incidence angle of sun light! The Atmospheres of Uranus and Neptune Neptune has storm systems similar to those on Jupiter, but fewer: The Atmospheres of Uranus and Neptune Band structure of Neptune is more visible, and Neptune has internal heat source of unknown origin: Cloud Structure of Uranus Hubble Space Telescope image of Uranus shows cloud structures not present during Voyager’s passage in 1986. Possibly due to seasonal changes of the cloud structures. Neptune is a cold, bluish world with Jupiter-like atmospheric features • No white ammonia clouds are seen on Uranus or Neptune • Presumably the low temperatures have caused almost all the ammonia to precipitate into the interiors of the planets • All of these planets’ clouds are composed of methane • Much more cloud activity is seen on Neptune than on Uranus. • This is because Uranus lacks a substantial internal heat source. Neptune’s Clouds • Much more cloud activity is seen on Neptune than on Uranus • This is because Uranus lacks a substantial internal heat source Exaggerated Seasons On Uranus • Uranus’s axis of rotation lies nearly in the plane of its orbit, producing greatly exaggerated seasonal changes on the planet • This unusual orientation may be the result of a collision with a planetlike object early in the history of our solar system. Such a collision could have knocked Uranus on its side The Motion of Uranus Very unusual orientation of rotation axis: Almost in the orbital plane. Possibly result of impact of a large planetesimal during the phase of planet formation. Large portions of the planet exposed to “eternal” sunlight for many years, then complete darkness for many years! 19.18 AU 97.9o Uranus and Neptune contain a higher proportion of heavy elements than Jupiter and Saturn • Both Uranus and Neptune may have a rocky core surrounded by a mantle of water and ammonia • Electric currents in the mantles may generate the magnetic fields of the planets Magnetospheres and Internal Structure Comparison of the interiors of the Jovian planets. The Magnetic Field of Uranus No metallic core no magnetic field was expected. But actually, magnetic field of ~ 75 % of Earth’s magnetic field strength was discovered: Offset from o center: ~ 30 % Inclined by ~ 60 Possibly due to dynamo in against axis of of planet’s liquid-water/ammonia/methane rotation. radius! solution in Uranus’ interior. Magnetosphere with weak radiation belts; allows determination of rotation period: 17.24 hr. Magnetospheres and Internal Structure Uranus and Neptune both have substantial magnetic fields, but at a large angle to their rotation axes. The rectangle within each planet shows a bar magnet that would produce a similar field. Note that both Uranus’s and Neptune’s are significantly off center. The Magnetosphere of Uranus Rapid rotation and large inclination deform magnetosphere into a corkscrew shape. UV images During Voyager 2 flyby: South pole pointed towards sun; direct interaction of solar wind with magnetosphere Bright aurorae! Uranus and Neptune each have a system of thin, dark rings The Rings of Uranus Rings of Uranus and Neptune are similar to Jupiter’s rings. Confined by shepherd moons; consist of dark material. Apparent motion of star behind Uranus and rings Rings of Uranus were discovered through occultations of a background star Uranus’s rings are narrow: Two shepherd moons keep the epsilon ring from diffusing: The Rings of Neptune Neptune has five rings, three narrow and two wide: The Rings of Neptune Ring material must be regularly resupplied by dust from meteorite impacts on the moons. Interrupted between denser segments (arcs) Made of dark material, visible in forwardscattered light. Focused by small shepherd moons embedded in the ring structure. The moons of Uranus – 27 at present • The first two were discovered by William Herschel in 1787, and named, by his son, after characters from Shakespeare’s A Midsummer Nights Dream, Titania and Oberon. • Two more moons were found by William Lassell in 1851 and named Ariel and Umbriel • G. Kuiper discovered Miranda in 1948. • All the moons of Uranus are named after characters from Shakespeare or Alexander Pope. • Voyager 2’s flyby in January 1986 led to the discovery of another 10. • Six additional moons have since been discovered by telescope. The Moons of Uranus 5 largest moons visible from Earth. 10 more discovered by Voyager 2; more are still being found. Dark surfaces, probably ice darkened by dust from meteorite impacts. 5 largest moons all tidally locked to Uranus. Moons of Uranus Interiors of Uranus’s Moons Large rock cores surrounded by icy mantles. The Surfaces of Uranus’s Moons Oberon Old, inactive, cratered surface, but probably active past. Long fault across the surface. Dirty water may have flooded floors of some craters. Titania Largest moon Heavily cratered surface, but no very large craters. Active phase with internal melting might have flooded craters. The Surfaces of Uranus’s Moons Umbriel Dark, cratered surface No faults or other signs of surface activity Ariel Brightest surface of 5 largest moons Clear signs of geological activity Crossed by faults over 10 km deep Possibly heated by tidal interactions with Miranda and Umbriel. Uranus’s Moon Miranda Most unusual of the 5 moons detected from Earth Ovoids: Oval groove patterns, 20 km high cliff near the equator probably associated with convection currents in the Surface features are old; Miranda is no longer geologically active. mantle, but not with impacts. MIRANDA The Moons of Neptune Unusual orbits: Triton: Only satellite in the solar system orbiting clockwise, i.e. “backward”. Nereid: Highly eccentric orbit; very long orbital period (359.4 d). Two moons (Triton and Nereid) visible from Earth; 6 more discovered by Voyager 2 Triton is a frigid, icy world with a young surface and a tenuous atmosphere • Neptune has 13 satellites, one of which (Triton) is comparable in size to our Moon or the Galilean satellites of Jupiter • Triton has a young, icy surface indicative of tectonic activity • The energy for this activity may have been provided by tidal heating that occurred when Triton was captured by Neptune’s gravity into a retrograde orbit • Triton has a tenuous nitrogen atmosphere The Surface of Triton Very low temperature (34.5 K) Triton can hold a tenuous atmosphere of nitrogen and some methane; 105 times less dense than Earth’s atmosphere. Surface composed of ices: nitrogen, methane, carbon monoxide, carbon dioxide. Possibly cyclic nitrogen ice deposition and reDark smudges on the nitrogen ice surface, vaporizing on Triton’s south pole, similar to CO2 probably due to methane rising from below surface, forming carbon-rich deposits when ice polar cap cycles on exposed to sun light. Mars. The Surface of Triton (2) Ongoing surface activity: Surface features probably not more than 100 million years old. Large basins might have been flooded multiple times by liquids from the interior. Ice equivalent of greenhouse effect may be one of the heat sources for Triton’s geological activity.