* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download V - Leanote
Jordan normal form wikipedia , lookup
Cross product wikipedia , lookup
Singular-value decomposition wikipedia , lookup
Eigenvalues and eigenvectors wikipedia , lookup
Exterior algebra wikipedia , lookup
System of linear equations wikipedia , lookup
Laplace–Runge–Lenz vector wikipedia , lookup
Matrix calculus wikipedia , lookup
Euclidean vector wikipedia , lookup
Vector space wikipedia , lookup
Chapter 4 Vector Spaces • 4.1 Vector spaces and Subspaces 向量空间 和 子空间 • 4.2 Null Space and Column Space 零空间 和 列空间 • 4.3 Linearly independent sets, bases • 4.4 Coordinate systems 坐标系 • 4.5 The dimension of a vector space 维数 • 4.6 Rank 秩 1 • DEFINITION • A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms (or rules) listed below. The axioms must hold for all vectors u, v and w in V and for all scalars c and d. 1. The sum of u and v, denoted by u + v, is in V 2. u + v = v + u 3. ( u + v ) + w = u + ( v + w ) 4. There is a zero vector 0 in V, such that u + 0 = u 5. For each vector u in V, there is a vector –u in V, such that u + (–u) = 0 6. The scalar multiple of u by c, denoted by cu, is in V 7. c ( u + v ) = cu + cv 8. ( c + d ) u = cu + du 9. c ( du ) = ( cd ) u 2 10. 1u = u • EXAMPLE For n 0, the set Pn of all polynomials of degree at most n is the set of all polynomials of the form p(t) = a0 + a1t + a2t2 + … + antn, where the coefficients a0 , a1, a2, … , an and the variable t are real numbers. Pn is a vector space. 不超过n次的多项式 3 • THEOREM 1 • If v1, v2 ,…, vp are in a vector space V, then Span{v1, v2 ,…, vp } is a subspace of V. 4 4.2 Null Space and Column Space • The Null Space of a Matrix Nul A = {x : xRn and Ax = 0 }. • If A=[a1,…,an], then Col A = Span{ a1,…,an } 5 4.3 Linearly independent sets, bases 线性无关组,基 • An indexed set of vectors { v1,…, vp } in V is said to be linearly independent if the vector equation c1v1+ c2v2+ … + cpvp = 0 has only the trivial solution c1= 0, c2= 0, … , cp = 0. 6 • The set { v1,…, vp } is said to be linearly dependent if the vector equation c1v1+ c2v2+ … + cpvp = 0 has a nontrivial solution c1, c2, … , cp. 7 • THEOREM 4 • An indexed set {v1,…, vp } of two or more vectors, with v1 0, is linearly dependent if and only if some vj (with j >1) is a linear combination of the preceding vectors v1,…, vj-1. • Proof c1v1+ c2v2+ … + cpvp = 0,…… 8 • EXAMPLE 1 • Let p1(t)=1, p2(t)=t, and p3(t)=4-t. Then { p1, p2, p3} is linearly dependent because p3=4p1-p2. 9 • DEFINITION • Let H be a subspace of a vector space V. An indexed set of vectors B={ b1,…, bp } in V is a basis for H if (i) B is a linearly independent set, and (ii) the subspace spanned by B coincides with H, that is, H = Span{ b1,…, bp }. 10 1 0 2. • , is a basis of R 0 1 • The set { e1, e2,…, en } is called the standard basis for Rn. 标准基 • S={1, t, t2, …, tn} is a basis for Pn. 11 3 4 2 v1 0 , v2 1 , v3 1 , 6 7 5 • is {v1, v2, v3} a basis for R3? 12 • THEOREM 5 • The Spanning Set Theorem • Let S= { v1,…, vp } be a set in V, and let H = Span{ v1,…, vp }. a. If one of the vectors in S –say, vk—is a linear combination of the remaining vectors in S, then the set formed from S by removing vk still spans H. b. If H{0}, some subset of S is a basis for H. 13 1 0 2 1 0 2 S , , , H Span , , 0 1 3 0 1 3 1 0 2 h H , let h c1 +c2 c3 , 0 1 3 1 0 1 0 then h c1 +c2 c3 (2 3 ) 0 1 0 1 1 0 (c1 2c3 ) +( c2 3c3 ) 0 1 14 Bases for Nul A and Col A 3 6 1 1 7 1 2 2 3 1 A 1 2 2 3 1 ~ 2 4 5 8 4 2 4 5 8 4 0 0 6 12 12 1 2 2 3 1 1 2 0 1 3 ~ 0 0 1 2 2 ~ 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 15 3 6 1 1 7 1 2 0 1 3 A 1 2 2 3 1 ~ 0 0 1 2 2 2 4 5 8 4 0 0 0 0 0 x1 2 1 3 x 1 0 0 2 x3 x2 0 x4 2 x5 2 x2u x4v x5 w x4 0 1 0 x5 0 0 1 So, Nul A = Span{u,v,w} 16 2 1 3 1 0 0 {u, v, w} { 0 , 2 , 2 } 0 1 0 0 0 1 is a basis of Nul A. 17 • Bases for Col A 1 0 B [b1 , b2 , b3 , b4 , b5 ] 0 0 4 0 0 0 0 2 1 1 0 0 0 0 0 0 1 0 Col B Span{b1 , b3 , b5} 18 1 4 0 2 1 1 3 12 1 5 5 0 ~ A [a1 , a2 , a3 , a4 , a5 ] 2 8 1 3 2 0 5 20 2 8 8 0 4 0 0 0 0 2 1 1 0 0 0 0 0 0 1 0 Col A Span{a1 , a3 , a5} 19 • Bases for Col A • THEOREM 6 The pivot columns of a matrix A form a basis for Col A. • Homework: 4.3 Exercises 2,8,15,16 20